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Abstract: Efficient handwriting trajectory reconstruction (TR) requires specific writing surfaces for
detecting movements of digital pens. Although several motion-based solutions have been developed
to remove the necessity of writing surfaces, most of them are based on classical sensor fusion methods
limited, by sensor error accumulation over time, to tracing only single strokes. In this work, we
present an approach to map the movements of an IMU-enhanced digital pen to relative displacement
data. Training data is collected by means of a tablet. We propose several pre-processing and data-
preparation methods to synchronize data between the pen and the tablet, which are of different
sampling rates, and train a convolutional neural network (CNN) to reconstruct multiple strokes
without the need of writing segmentation or post-processing correction of the predicted trajectory.
The proposed system learns the relative displacement of the pen tip over time from the recorded raw
sensor data, achieving a normalized error rate of 0.176 relative to unit-scaled tablet ground truth (GT)
trajectory. To test the effectiveness of the approach, we train a neural network for character recognition
from the reconstructed trajectories, which achieved a character error rate of 19.51%. Finally, a joint
model is implemented that makes use of both the IMU data and the generated trajectories, which
outperforms the sensor-only-based recognition approach by 0.75%.

Keywords: trajectory reconstruction; inertial measurement unit; sensor-based deep learning;
convolutional neural network; handwriting recognition; digital pen

1. Introduction

Handwriting is an essential method to transfer and record information in daily lives.
With the advancements in technologies, digitally recording data input by smart devices,
e.g., text input without a keyboard, has become a popular application in the domain of
human–computer interaction. In recent years, several systems have been developed for
the application of handwriting recognition, in which text data is automatically recognized
and digitized into a machine-form text, and have achieved notable recognition rates [1].
However, the application of such systems is limited to digitizing text, and cannot be used
when the requirements extend beyond simple text recognition, such as visually seeing
input text or drawn pictures, in which the reconstruction of the trajectory of movement
is required.

Trajectory reconstruction (TR) is defined as the positional change estimation over time,
and can be used to retrace the movements of an object in space. TR is used in several
domains, including robotics and localization, and is often based on visual systems [2,3],
requiring a controlled camera-based environment, with expensive equipment and high
computational image-processing techniques, to function. Contrarily, inertial sensors are
low cost and self-sustained, and, therefore, provide an advantageous setup for applications
of TR.
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Inertial-measurement-unit (IMU)-based systems have gained popularity throughout
the previous years in several domains in which camera-based systems prevailed. Classi-
fication applications using IMUs, in which movements are classified into a set of classes
(human activity [4], gesture [5–7], and handwriting [8,9] recognition), have been devel-
oped with adequate accuracies. However, TR applications using IMUs are still limited to
large-scale applications, in which the accepted margin of error is not affected by sensor
error accumulation over time, due to the large distances considered in the applications.
Applications include autonomous vehicles localization [10,11], pedestrian tracking [12,13],
and indoor localization [14,15], which track the movements of vehicles or subjects on a
large-scale surface area.

However, solutions for small-scale TR, such as handwriting, are still limited. Hand-
writing TR requires precision on a millimeter level, narrowing the accepted error rates
considerably in comparison to larger scale applications. Moreover, slight external dis-
turbance that can occur during operation, which can usually be neglected in larger scale
applications, can significantly affect the quality of handwriting reconstruction. The trem-
bling of the hand while holding the pen is enough to hinder a gesture recognition system
as ineffective for recovering handwriting movements.

Current available solutions for handwriting TR rely on the positional-based detection
of writing, which constrains a system to multiple devices. A digital pen along with
a supporting writing surface run simultaneously [16], from which a coordinate-based
trajectory is reconstructed. However, several limitations occur when using such systems
which often limit the capabilities of human–computer interaction in terms of usability.
Primarily, the compatibility between digital pens and writing devices poses a limitation
to freely using any pen on any device. Occasionally, technical difficulties occur that limit
devices from detecting the pens writing on them due to pairing difficulties between the
two devices. Secondly, the size of writing screens limits the capability to freely write in
wide areas. Small writing screens cause instability of the writer’s hand, which, in turn,
affects the speed and strength, and, consequently, the quality of writing. To tackle these
limitations, IMUs can be used, integrated within writing devices, that allow tracking of the
movements of a smart pen, without the need for other devices to track the position of a pen
tip on a digital surface.

The usage of IMUs for handwriting TR poses difficulties due to errors occurring in
the recorded data as a result of sensor drift. To address this issue, previous studies [17–19]
providing IMU-based handwriting tracking solutions, mainly followed classical sensor
fusion approaches, which require heavy pre-processing, and increased system complexity.
Such systems required data segmentation, relative motion extraction, and displacement
calculation of sensor data. Moreover, an initial pose estimation, coordinate transformation,
as well as post-processing rotation, including slant and slope estimation and correction,
were required to perform the TR task. However, when a large range of linear, rotational,
and translational movements is considered, the obtained precision is limited to situation-
specific adaptations of IMU sensors, which can be overcome by the means of a data-driven
system using artificial neural networks.

Neural networks have shown successful results for modeling recognition systems for
handwriting; however, they have not been explored for the application of handwriting TR.
In this paper, we aim to fill this gap by presenting a data-driven approach for small scale
trajectory reconstruction using an IMU-enhanced digital pen that is surface-independent
and requires no additional equipment or data segmentation in operation, but only for
data collection and model training. In contrast to previous studies, our solution requires
minimal pre-processing in terms of data segmentation and displacement calculation, but
instead is based on convolutional neural networks (CNNs) that directly map raw IMU data
into displacement data. A digital pen is used to write on a tablet, from which ground-truth
coordinate data is collected relative to the movements of the pen. The data is then used to
train a CNN to retrace the trajectories from the movements of the pen from the sensors’ data.
The predicted trajectories are evaluated, afterwards, via distance measures in comparison to
the collected ground-truth data. Additionally, we use data collected by writing on paper to
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validate the effectiveness of the system for writing on regular paper. A writing recognition
system is developed using trajectories generated for data obtained by writing on paper,
and is compared with the recognizer developed with the original IMU data. A graphical
summary of the procedure in this work is shown in Figure 1.

On Paper RecordingOn Tablet Recording

Trajectory
Model Inference

Predicted Sequence of
Characters 

Trajectory Model
Training

Predicted Tablet
Trajectories 

Recognition Model
Training

Data Synchronization

Data Preparation

Label Interpolation

Chunking

Stroke Interpolation

Tablet X,Y Data Pen IMU Data Pen IMU Data

Figure 1. A visual summary of the workflow of our paper. We develop an end-to-end neural network
model for handwriting trajectory reconstruction using data collected by writing with a digital pen
on a tablet. The system was also tested on writing on paper by developing a text recognition model
using IMU data and the relative generated trajectory data.

The next chapters are outlined as follows. Section 2 presents a summary of the commer-
cial and previous solutions provided for handwriting TR. In Section 3, the data-collection
method, for the extraction of positional data from a tablet that relatively correlates to the
IMU data recorded by the pen while writing, is presented with the different methods of
data synchronization and data pre-processing. In the same chapter, we describe the archi-
tecture and implementation details of the neural network that allows the reconstruction of
complete words. Section 4 presents the results obtained from our experiments of trajectory
reconstruction and word recognition. Finally, Sections 5 and 6 discuss the obtained results
and conclude the paper.
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2. Related Work

Handwriting digitization solutions have been developed in several studies and prod-
ucts throughout the past years, considering the importance of the application in topics
such as picture drawing, note taking, and document signing [20–22]. Yet, even with the
advancements in technology, the topic of digital-pen tracing lags behind such advance-
ments, and still requires the use of multiple devices to acquire adequate pen movements
on a surface. In this section, we discuss some of the available products and solutions in
which pen reconstruction has been developed as an application, including prior research
focusing on TR only via IMUs.

2.1. Commercial Products

Many commercial solutions have been introduced in the past decade that efficiently
reconstruct written text into a digital form. Popular smart pens, such as Samsung Spen [23]
or Apple Pencil [24], are supplied as accessories for mobile devices and their use is limited
to this pairing. Other products are presented in the form of smart notebook sets [25–27],
removing the restriction of writing on tablets and providing a more natural handwriting
experience. In such solutions, data is processed in different ways varying from taking
pictures of written documents, using grid-based paper, or using tablets behind papers to
capture pen movements. Such solutions present accurate trajectory recovery, however, are
positional-based and rely on specific writing surfaces to detect pen movements.

2.2. IMU-Based Recognition Systems

Several solutions have been developed throughout the past years for the application
of handwriting recognition using inertial data. Character-level classification models for
the Latin alphabet by [28–31] showed an accuracy of up to 83%, while word-recognition
models showed recognition rates of 82.03% [32]. These systems presented recognition
models, in which digitized text is output from the models, but no models for the trajectory
reconstruction of the digital pens, where the output is the actual handwriting instead of
digital text, were developed.

2.3. IMU-Based Trajectory Reconstruction Systems

In contrast to commercial products, limited studies have considered trajectory recon-
struction using IMU-enhanced devices. Gyropen [17] used a mobile phone’s corner as a
writing device, retracing an approximation of the movements of the phone via the angular
velocity rotating around a fixed virtual center point. The system was used to reconstruct the
Latin alphabet, with a recognition rate of 82% after reconstruction, yet was limited to single
strokes. Similarly, noise reduction methods were studied in [18,33] using a smartphone
to retrace the movements of the device, using angular velocity and linear acceleration, by
calculating the displacement through data integration with a reset switch mechanism to
compensate for accumulated integration errors. Finally, neural networks were used to
classify trajectories into the lowercase single strokes Latin characters, achieving an accuracy
of approximately 93% on 19 classes. An IMU-integrated pen was used in [34] to reconstuct
single-stroke shapes, which achieved an accuracy of 90.4% for the classification of ten digits.

Recently, Handwriting-Assistant [19] introduced an attachable IMU-based pen cap,
which measured the pen-tail linear acceleration and angular velocity throughout the writing
process. Writing was divided into on and off plane, then segmented single strokes were
reconstructed, rotated, and aligned to retrieve the complete reconstruction of the complete
trajectory. The system achieved a normalized error rate between a minimum of 0.07
and maximum of 0.13, varying with the pen length. The system was also evaluated on
single-character recognition of the Latin alphabet, achieving a recognition rate of 98.2%.

The described works presented different approaches of reconstructing movements us-
ing IMU data recorded on different devices. However, in terms of TR, the different systems
reconstruct only single strokes, resulting in reconstructed cursive word writings with no
pen-up between letters, and demonstrated effectiveness only on short pen traces. Addition-
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ally, different pre-processing steps, such as tip estimation and coordinate transformation,
were required, as well as post-processing rotation and alignment steps being implemented
to present the final reconstruction. Moreover, the systems were evaluated on the recogni-
tion of single characters, which, overall, included single or two strokes. Meanwhile, the
solution presented in this paper allowed the reconstruction of complete words, using a
neural network approach, without the need of segmentation or post-processing alignment
during inference, and provided the recognition rates on complete words. Table 1 presents a
summary of the different works discussed, showing the different aspects required for the
functioning of the systems.

Table 1. Summary of the related work of trajectory reconstruction systems. Gyr and Acc represent
gyroscope and accelerometer, repectively.

Authors Strokes Segmentation Calibration TR Method Recognition Method Recognition
Type

[17] Single - Yes Gyr single integration Apple Newton recognizer Words
[33] Single - Yes Acc double integration Hidden markov models Characters
[18] Single - Yes Acc double integration Hidden markov models Characters
[34] Single - Yes Acc double integration Vista tablet PC recognizer Digits
[19] Multi Yes Yes Acc double integration Google IME recognizer Characters

Proposed
Model Multi No No Neural networks Neural networks Words

3. Materials and Methods

In this section, we introduce the tools and methods used to develop our system.
We present the digital pen used for writing, the data-collection methods that allow the
collection of labeled ground-truth data, and then present the CNN model that makes
use of labeled data in a supervised learning approach to map sensor data to coordinate
trajectory data.

3.1. Data Acquisition

The STABILO Digipen [35] is a regular ballpoint pen, equipped with multiple sensors,
that allows writing on paper while acquiring sensor data in the process, and has been used
in several works for the task of handwriting recognition [29–32]. It streams data via an
integrated Bluetooth module at a rate of 100 Hz, and can be paired to a handheld device on
which data with a total of 13 channels are collected along with timesteps of the recording
time. Six channels include data from two triaxial accelerometers (front and back of the
pen), adjusted to a range of ±2 g with a resolution of 16 Bit (front) and 14 Bit (rear). Three
channels are for the gyroscope (3 axes) of a range of ±1000°/s with a resolution of 16 Bit,
and three cover the magnetometer (3 axes) data that has a range of 2.4 mT with a resolution
of 14 Bit. The final channel is for a force sensor that has a measurement range of 0 to 5.32 N
with a resolution of 12 Bit, which helps in distinguishing when writing is taking place
during the recording. Figure 2 shows the distribution of the sensors along the pen.

Figure 2. Sensor distribution in the Digipen.

The Samsung Galaxy Tab S6 [36] was used for our data collection, which allows data
recording at a rate of 60 Hz with a resolution of 2560 × 1600 pixels per inch. The data
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collected included the X, Y, and Z coordinates, along with the pressure with which the user
was writing, in addition to recording time.

In order to acquire ground-truth data as coordinate data, the regular tip of the Digipen
was replaced with a Wacom compatible electro-magnetic resonance tip, which changes
the Digipen to the form of stylus pen, allowing writing on tablet, as shown in Figure 3
(left). A recording app provided by STABILO guided the user throughout the recording
process, and collectd the IMU sensor data and tablet positional data. Additionally, the app
instructed the user with the next word to be written, which allowed the collection of text
labels, as shown in Figure 3 (right).

Figure 3. Wacom compatible writing tip on the Digipen (left bottom pen), and the recording
app (right).

The data was collected with three Digipens to ensure that the system is not biased
towards a single pen. Participants were seated in a regular writing environment and were
requested to write the words that were displayed on a tablet, then switching between
different labels manually upon completion. No constraints on the writing style was set,
as both cursive and non-cursive writing were accepted for the study. A total of six users
participated in the study. The users were of different ages, included five males and one
female, were right handed, and were familiar with writing the Latin alphabet. Each
recording session provided the total recording data separated between sensor data, tablet
data, and word text labels.

3.2. Data Synchronization & Preparation

Synchronization between the pen data and tablet using the recorded timesteps was
not a viable solution due to lagging problems that occured upon sending data from the
pen to the tablet. Additionally, the different sensitivity between the pen-force sensor
and the tablet-pressure sensor posed a limitation for using alignment algorithms, such as
dynamic time wearping, to align both signals by the applied force. Finally, the different
sampling rates between the systems hindered having time-distributed data points between
the two systems. Time-distributed is defined in the rest of the paper as having a single IMU
datapoint represented as a single coordinate datapoint.

In order to synchronize the data between the pen and the tablet, the word text labels
were used to determine between which time steps a specific word was written in both
systems. The lag between the two systems was removed by the hovering movements prior
and subsequent to the writing carried out by the user when switching between the labels.
To ensure adequate quality of data, all hovering data points before and after the recording
of a word were discarded, while keeping hovering data points in between the start and end
of writing, determined by the force sensor and pressure data, representing multiple strokes
of a word. Here, a stroke is defined as a continuous touch or hover movement.

In order to obtain signals with the same sampling rate for subsequent processing,
tablet data was upsampled using linear interpolation to match the length of the relative
sensor data for each word sample, which provided time-distributed data between the two
systems. This is referred to in the rest of the paper as ‘Label’ interpolation. However,
linearly interpolating the complete samples changed the representation of the applied
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pressure on the tablet data in comparison to the pen data, such that the force applied at
different timesteps of the recording differ between the two. This caused the data to include
touch datapoints on the tablet while hovering with the pen, and vice versa, as shown in
Figure 4, which represents a normalized force and pressure plot of a randomly selected
sample. To avoid having incorrectly aligned force distributions, each recording was split
into different touch and hover strokes, and each tablet stroke was upsampled to the relative
sensor stroke, which allowed to have equivalent forces at each timestep of the recording,
hereon referred to as ’Stroke’ interpolation. Strokes were identified by the values recorded
by the tablet-pressure sensors and pen-force sensor. Zero valued data represented hovering
strokes, whereas non-zero valued data (irrelevant of amplitude) represented touch strokes
in both the tablet and pen data.
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Figure 4. Tablet data upsampling via complete label interpolation and stroke-based interpolation.

The tablet recorded the absolute position of the pen tip on the screen at each timestep.
However, since the aim of the system was to retrace the tip of the pen between a start and
end position on a surface, the absolute positions in the data were converted into relative
displacement vectors. This allowed the system to learn the displacement of the pen tip
from its original location after movements of the pen, instead of the absolute coordinates.
To this end, the difference between the data points among each sample was calculated,
adding a zero in the first position to keep the same length of each sample. Additionally,
this served as an alternative to data scaling since the absolute values of the data, on a high
resolution scale, were reduced to the relative differences between the timesteps. Figure 5
shows an example of the character ’B’ in the absolute trajectory and the calculated relative
displacement vectors. Sensor data was normalized using the Z-score normalization and
used in the normalized raw form as input.
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Figure 5. Absolute coordinates of the character ‘B’ (left), and the calculated relative displacement
vectors of the same character (right).

Additionally, data was divided into equal chunks of length of ten timesteps, equivalent
to 100 milliseconds, after stroke interpolation, defined as ‘Chunks’ in the rest of the paper.
This aims to represent the system in real time in which the sensor data was live streamed to
the tablet, and the trajectory was predicted for each of the ten timesteps independently of
other chunks. Chunking was not applied to label-interpolated data, since the tablet chunks
included wrong data relative to the sensor chunks due to the same problem as shown in
Figure 4.

The final dataset consisted of single words, represented in both IMU and relative-
displacement-vectors data of equal lengths: label upsampled, stroke upsampled, and
chunked. Deep-learning models were trained from scratch using this dataset, without
relying on pre-trained models for trajectory reconstructing or handwriting recognition.

3.3. Trajectory Modeling

One dimensional convolutional neural networks (CNNs) were trained for mapping
sensor IMU data to tablet coordinate data in a regression task, using the mean squared
error (MSE) loss. As inputs, we used the channels corresponding to the two accelerometers,
the gyroscope, and the force channel, displayed in Figure 2. The magnetometer channels
were discarded, since the usage of tablet closely to the pen can affect the quality of the
magnetometer measurements.

The architecture used in this paper is described in full detail in Table 2: the input
layer was followed by three convolutional layers, each of which was followed by batch
normalization, to reduce the training time and achieve better results, and dropout, to avoid
overfitting. The output of the last convolutional layer was passed to a time-distributed
fully connected (FC) layer consisting of two units, representing the X and Y coordinates.
The Z coordinate channel was also discarded as it was not needed for the final inference
of trajectories on the tablet. The models were trained on a batch size of 64 samples, with
a learning rate of 0.0001. Long short-term memory (LSTM) neural networks were not
implemented, since the aim was to predict a time-distributed relative displacement, and,
therefore, learning long-term dependencies was not required.

First, we tested the performance of our model on the ground-truth trajectory data
collected with the tablet. A leave-one-user-out (L1UO) cross validation was implemented,
in which a model was trained on five users and tested on the sixth user to ensure that the
system works for unknown users in a user-independent form. Table 3 shows the number of
samples in the different folds, each sample representing a single word recording, totalling
2108 words samples. Six different models were generated (from the L1UO cross validation)
for each of the different types of the processing methods (Label, Stroke, Chunks) mentioned
in Section 3.2, totalling 18 models.

To test the generalisation capability in a surface-independent setup, three final models
were trained on all users together, for the different pre-processing methods, which were
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later used to generate trajectories from IMU data of words written on paper, as discussed
in Section 3.4.

Table 2. Detailed description of the convolutional neural network used in this study.

Layer Hyperparameters # of Parameters

1D convolution Filters: 256, Kernel-size: 3 7936
Batch normalization Momentum: 0.99, Epsilon = 0.001 1024
Dropout Rate: 0.3 0
1D convolution Filters: 256, Kernel-size: 3 196,864
Batch normalization Momentum: 0.99, Epsilon = 0.001 1024
Dropout Rate: 0.3 0
1D convolution Filters: 256, Kernel-size: 3 196,864
Batch normalization Momentum:0.99, Epsilon = 0.001 1024
Dropout Rate: 0.3 0
TimeDistributed (fully connected) Units: 2 514

Total parameters 405,250

Table 3. User-tablet data recordings split into leave-one-user-out folds.

Folds # of Training Samples # of Test Samples

1 1774 334
2 1608 500
3 1941 167
4 1718 390
5 1875 233
6 1624 484

3.4. Recognition Modeling

To evaluate the effectiveness of the TR system on data written on regular paper, text
recognition models were implemented to test the quality of the generated trajectories, since
ground-truth trajectory data of on regular paper is not available. The dataset provided
by [32] was used, which consisted of 27,961 words written on plain paper using the Digipen.
The trajectories for all samples in the paper dataset were generated using the three final
models trained using all the samples from the tablet dataset, as discussed in Section 3.3,
producing three datasets of the paper-written data as predicted trajectories.

First, we trained a model on the raw data of IMUs for the word-recognition task. For
this purpose, the convolutional long-short term deep neural network (CLDNN) model
defined in [32] was implemented. Similarly, the CLDNN model was implemented for
the different generated trajectory datasets, since it achieved the best results in terms of
recognition using the raw IMU data from the recorded words, producing different models
for each dataset.

The data consisted of multiple samples of word instances, and each sample was
represented as time-series data of different lengths, including 13 channels. Therefore,
the model input layer consisted of 13 units, for all the channels recorded by the IMU
sensors. Three convolutional layers, two LSTM layers, and a single FC layer followed,
using the connectionist temporal classification (CTC) [37] loss with a Softmax output layer.
Hyper-parameters were set similar to previous works, and a five-fold cross validation in a
user-independent split, shown in Table 4, was implemented.
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Table 4. User paper data recordings split into five user-independent folds.

Folds # of Training Samples # of Test Samples

1 24,087 3874
2 22,877 5084
3 22,896 5065
4 22,900 5061
5 22,896 5065

To train a word-recognition model on trajectories (instead of the IMUs signal), we
modified the input layer in the previous architecture to be able to feed the generated
trajectory datasets. Now, X and Y time-series data was used as input, while the rest of the
architecture parameters were left unchanged. A total of 20 models were trained for the
5 folds, 5 using the IMU data and 15 for each of the generated trajectories.

Additionally, the models with the best results from the different models trained using
the generated trajectories were used to train a joint IMU-coordinate model, using both
IMU and trajectories as inputs to a neural network consisting of two parallel CLDNN
branches, concatenating the outputs of the final FC layers in both branches before the CTC
output layer.

4. Results

The neural network models learned the relative displacement vectors of the trajectories,
i.e., the displacement from the position in the previous time step. Therefore, to acquire the
original trajectories of what was written, the cumulative sum of all previous displacement
vectors was calculated, in order to reconstruct the original word and acquire the absolute
coordinates. The output trajectories were normalized using min–max scaling to evaluate
the predictions on a unit scale. In this section, we present our findings and experiment
results in both tasks, i.e., trajectory reconstruction and text recognition.

4.1. Trajectory-Reconstruction Evaluation

Root mean squared error (RMSE) was calculated to evaluate the similarity of the
IMU-reconstructed trajectories in comparison to the ground truth from the original ones,
which showed the normalized Euclidean-distance error between the ground truth and the
prediction on the two dimensional plane.

Table 5 shows the results achieved for the different models over the different users. The
L1UO cross validation on the models trained using the label-based interpolation resulted in
a mean of 0.1864 normalized error on the unit scale. Stroke interpolation of the data showed
an improvement in the performance of 5.47% in comparison to the label interpolation,
achieving an error rate of 0.1762. Chunking the stroke-interpolated data showed similar
results, with an average error of 0.1772, outperforming the un-chunked data in three of the
six folds.

Table 5. Normalized TR error rates over the different users.

1 2 3 4 5 6 Mean

Label 0.1649 0.2149 0.1734 0.1928 0.1764 0.1964 0.1864
Stroke 0.1633 0.2154 0.1615 0.1634 0.1726 0.1812 0.1762

Chunks 0.1608 0.2285 0.1654 0.1628 0.1621 0.1838 0.1772

4.2. Text-Recognition Evaluation

Since the dataset consisted of only words, the character error rate (CER) was calculated
to evaluate both the original IMU data and the generated trajectory data over the five folds.
CER is calculated as:

CER = (S + D + I)/N (1)
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where S, D, and I represent the substitutions, deletions, and insertions, respectively, required
to obtain the correct word from a wrong sequence of characters. N represents the total
number of characters in the given correct word. Table 6 shows the CER achieved of the
different models over the five folds. The model trained using the IMU data resulted in
an average CER of 16.0683%, and was the baseline to indirectly assess the quality of the
generated trajectories.

Table 6. Character error rates over the five folds of the paper data using IMU data and generated
trajectories.

1 2 3 4 5 Mean

IMU 14.9484 27.3908 11.5514 12.9280 13.5233 16.0683

Label 20.7685 30.1311 19.4653 18.8399 16.1897 21.0789
Stroke 20.3729 28.7688 17.1135 18.1958 14.8872 19.8676

Chunks 20.0750 28.5405 17.3706 17.4865 14.0788 19.5103

Joint
IMU-Chunks 15.2440 25.3947 11.2754 12.3797 12.2769 15.3141

The models trained using label-based interpolated data achieved the higher CER of
21.0789% on average, while stroke interpolation improved the CER by 1.2113%, with an
average of 19.8676% error rate. Chunking the data slightly outperformed the un-chunked
data, resulting in a 19.5103% CER.

The joint model, which uses both the IMU data and the generated trajectories as input,
achieved an improved recognition rate of 15.3141% CER, outperforming the baseline IMU
model by 0.7542%.

5. Discussion

The aim of this study was to develop a system that traces the movements of a sensor-
enhanced digital pen and recreates written words on paper in a digital form displayed on
a handheld device. Training data was collected by a digital pen on a tablet by multiple
users, in a regular writing environment, and was used to develop a CNN-based system that
works without using specific writing surfaces. The system was evaluated on tablet-written
data using distance metrics by calculating the deviation in the predicted trajectories relative
to the original recorded trajectories. Evaluation of paper-written data was carried out using
a text-recognition system, rating the effectiveness of the system compared to a baseline
model using IMU data.

5.1. Trajectory Reconstruction

CNNs were utilized to learn a time-distributed displacement of the pen tip, using
sensor IMU recordings, for each timestep in the IMU data. However, due to the different
sampling rates between the pen and tablet systems, the number of timesteps for a single
sample recording differ with a ratio of 60 datapoints per second of coordinate data to
100 of sensor data. To acquire a similar length of timesteps, data acquired from the tablet
were upsampled with linear interpolation to the length of the sensor data for each sample.
Three different pre-processing methods were considered in our study to prepare the data
for the neural network modeling of the trajectories, namely: label interpolation, stroke
interpolation, and chunking.

5.1.1. Pre-Processing Differences

Figure 6 shows the generated trajectories of random samples taken from the tablet
dataset, displaying the ground-truth trajectories recorded on the tablet, as well as the
trajectories predicted, by the different models, from the relative IMU data recorded by
the pen. Generating trajectories from paper-written data showed similar results to tablet-
written data, demonstrating that the system worked irrespective of the writing surface,
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as shown in Figure 7. Since trajectory GT data is not available for paper-written data, the
system was also evaluated in a text-recognition application, discussed in Section 5.2.

gerade Juni ging des XVI

GT

Label

Stroke

Chunks

Figure 6. Trajectory recovery results when writing on tablet, including the ground truth trajectory
collected by the tablet.

Baby Nase Tomate Natur Kompass

Label

Stroke

Chunks

Figure 7. Trajectory recovery results when writing on paper.

A qualitative assessment of the generated trajectories showed that the model trained
with label-interpolated data was able to learn the general movement of the pen but gener-
ated straight trajectories more than curved ones during inference. Examples can be seen in
Figure 7, in which the curves in the letters ‘B’ and ‘s’ were clearer in the stroke-interpolated
predictions. The reason behind this can be explained by Figure 4, where the four hov-
ering strokes, having pressure equal to zero, in the label interpolation were longer than
the hovering shown by the original IMU data, or the stroke-interpolated coordinate data.
Since label interpolation upsampled the time series irrelevant of touch and hover strokes,
hovering datapoints (which are mostly straight) were extended and unevenly distributed
to the data relevant to touch datapoints from the original IMU data. Moreover, instances of
writing were displayed as hovering, and vice versa, due to the same issue of having hover
datapoints relative to writing movements of the pen. Stroke interpolation tackled these
issues and generated smoother curved trajectories. Both presented similar results overall
with slightly lower error rates presented by the model trained using stroke interpolated
data. Though the differences are minimal in this study, the error differences will clearly be
visible when considering longer recordings due to error accumulation, such as sentences,
which is the final aim of the current study. Chunking the data and modeling every ten
timesteps in the IMU data to the relative datapoints in the coordinate data showed similar
results, implying that the system was able to learn specific short movements, indepen-
dent of the the rest of the movements in a specific sample. This allowed the system to
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generate the trajectories from the IMU data every 100 milliseconds during a live-streamed
writing session.

In terms of error rates, all models showed much lower error rates on the training data
in comparison to the test data, reaching an average normalized error of 0.0484 compared
to 0.1799, respectively, implying that the models still overfitted, and can be improved
to achieve lower error rates if more data was available in future works. Finally, even
with adequate results achieved by CNNs, different architectures can be considered, such
as Autoencoders, that have shown acceptable results in retracing trajectories from text
images [38–40].

5.1.2. Data Limitations

Though the models achieved notable results and quality trajectories, some drawbacks
were identified in a testing session of the system. Characters in a retraced word did not
always align correctly in a straight writing line as originally written. This was due to having
higher error rates in hovering strokes in comparison to touch strokes, on average reaching
0.1834 and 0.1581, respectively. This occured as a result of having different ratios between
touch and hover data, as the written words in the dataset consisted more of writing strokes
with fewer hovering strokes occurring between characters, or between multiple strokes of
single characters. The ratio of touch to hover timesteps in the dataset was approximately
68% to 32%, respectively, calculated by the average length of the strokes among the different
samples. Since the nature of the IMU data differs when writing, in contrast to hovering,
due to surface friction, the trained models achieved inferior results on hover data between
the different strokes, since touch data is more prevalent in the used dataset.

The developed system was completely data-driven. Consequently, the quality of the
data used for training the models is significant, and, as such, any available bias in the data
affects the final output of the system. The collected data consisted of written words, in
the Latin alphabet, and written from left to right. Therefore, the models learned constant
movement to the right even when there was none, which was seen when hovering the
pen without movement while testing. Examples can be seen in Figures 6 and 7, in which
the second stroke of the letters ’i’ and ’K’ were further to the right of the first stroke of the
letters instead of on top.

To avoid such limitations of the system in future studies, the data-collection process has
to be adapted to include more hovering data while ensuring a balance between touch and
hover strokes within the dataset. Similarly, the constant right movement of the predicted
trajectories can also be considered within the data-collection process, adapting the labels to
different movements instead of regular words, ensuring the data includes a wide variance
in movements in different directions over the tablet.

5.2. Text Recognition

A paper-written word dataset was provided by previous works to test the effectiveness
of the generated trajectories by our models in a word-recognition system. Additionally,
the models implemented in this study were inspired by the model that achieved the best
results on the mentioned dataset. Several models were implemented for the different
pre-processing steps and evaluated separately.

Similar to the results presented by the trajectory models, the recognition model us-
ing stroke-interpolated data achieved better results than the model trained with label
interpolated data, while chunked data also produced similar results to the un-chunked
data. Overall, the models using generated trajectory data achieved inferior results com-
pared to the models trained using the IMU data; however, its performance is promising:
more trajectory data and lower error rates in the trajectory modeling could lead to better
recognition rates.

The joint models using both IMU and chunk data as inputs showed the best results,
outperforming the baseline model trained with the IMU data only, implying that with
better reconstruction results, it is possible to improve general recognition algorithms using
IMU data recorded by the Digipen.
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5.3. Comparison to State-of-the-Art Approaches

The system presented in this paper surpassed previously developed solutions for appli-
cation in handwriting reconstruction in terms of word reconstruction. With regards to data
pre-processing and preparation, previous solutions required multiple initialization steps,
such as segmenting recordings into writing and hovering, calculating the displacement of a
pen tip relative to a global coordinate system, and applying rotation matrices to estimate
the final displacement of the pen. In terms of reconstruction, each segmented stroke was
reconstructed, then the estimated tip positions were connected chronologically. Finally,
angle calculation and orientation was needed to align the recovered trajectory to the initial
readable format. Moreover, the recognition systems presented were for single-character
recognition only.

The presented solution was developed with minimal pre-processing, requiring only
the stroke interpolation of the coordinate data to acquire time-distributed datapoints. To
the knowledge of the authors, it is the first data-driven, neural network based system that
efficiently recovers handwriting in real time. Additionally, no post-processing alignment
was required to recover the correct pen tip displacement in a correct readable format. The
models required no data segmentation, but instead, learned the hovering movements of
the pen in addition to the writing movements, which was a limitation in previous works
in which the retraced trajectories were mostly for continuous single strokes. In terms
of efficiency, the absence of conventional pre-processing methods, and post-processing
alignment methods, reduced the complexity of the system averaging an inference time of
0.052 s, relative to previously developed models with a prediction time reaching up to 4 s.
Moreover, since the data was collected in regular writing conditions, no situation-specific
adaptations of the system are required. This paper also presented a word recognition model
of the reconstructed trajectories, and was not limited to single stroke reconstruction or
single letter recognition. However, concerning general image reconstruction, the system
still lagged behind in recovering the trajectories of random images written on paper due to
data limitations discussed in Section 5.1.2.

6. Conclusions

The goal of this work was to develop a system capable of reconstructing handwriting
on paper into a digitized form on a handheld device. Data was collected from six partic-
ipants who wrote random words on a tablet using a digital pen equipped with several
IMU sensors. Three pre-processing methods were introduced to prepare the data for neural
network modeling, and test the effectiveness of the system for real-time trajectory recovery.
CNNs were implemented to map the recorded sensor data to the relative trajectory coor-
dinate data using a supervised learning approach. A L1UO cross validation resulted in a
mean normalized error of 0.1762 on a unit-scale tablet trajectory evaluation.

The developed models were used to recover images from paper-written data, pro-
vided by a previously used dataset [32] for the development of a word recognition system.
Generated trajectories were then used to develop similar recognition models previously
introduced, achieving a character recognition rate of 80.4897% for word recognition. More-
over, a joint model using both IMU data and reconstructed trajectory data was implemented,
outperforming IMU-only models, reaching a character recognition rate of 84.6859%.

In summary, handwriting TR is a challenging problem due to the small surface area
upon which writing takes place, yet is a significant application due the importance of
handwriting in daily lives. Current solutions demand the usage of specific writing surfaces,
detecting the tip of digital pens on the relative writing surfaces. This paper presented a
surface-free solution for reconstructing handwritten words. We demonstrated effectiveness
of our method on reconstructing trajectories on a small scale, without relying on classical
sensor fusion methods, but instead following a fully data-driven approach.

Future work following this would include the reconstruction of complete sentences
without limiting the system only to words. Moreover, the system would be generalized for
random image reconstruction, without limiting the system to the Latin alphabet, which
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allows the development of a multi-lingual trajectory reconstruction system that is not solely
based on the Latin alphabet.
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