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Abstract: Hyperspectral imaging can simultaneously acquire spectral and spatial information of the
samples and is, therefore, widely applied in the non-destructive detection of grain quality. Supervised
learning is the mainstream method of hyperspectral imaging for pixel-level detection of mildew
in corn kernels, which requires a large number of training samples to establish the prediction or
classification models. This paper presents an unsupervised redundant co-clustering algorithm (FCM-
SC) based on multi-center fuzzy c-means (FCM) clustering and spectral clustering (SC), which can
effectively detect non-uniformly distributed mildew in corn kernels. This algorithm first carries out
fuzzy c-means clustering of sample features, extracts redundant cluster centers, merges the cluster
centers by spectral clustering, and finally finds the category of corresponding cluster centers for each
sample. It effectively solves the problems of the poor ability of the traditional fuzzy c-means clustering
algorithm to classify the data with complex structure distribution and the complex calculation of the
traditional spectral clustering algorithm. The experimental results demonstrated that the proposed
algorithm could describe the complex structure of mildew distribution in corn kernels and exhibits
higher stability, better anti-interference ability, generalization ability, and accuracy than the supervised
classification model.

Keywords: hyperspectral imaging; corn kernel mildew detection; unsupervised redundant clustering
algorithm; wavelength band selection

1. Introduction

Corn is one of the three main grain crops in the world, and its quality plays a critical
role in food security. However, due to its high original moisture, large embryo and strong
hygroscopicity, corn kernels are susceptible to mildew during storage and transport, which
seriously affects their quality and poses threats to the health of humans and animals [1].
Therefore, it is of great significance to develop effective methods to accurately detect and
timely monitor mildew in corn kernels to ensure food security.

Most traditional detection methods for corn kernel mildew include artificial sensory
evaluation and physicochemical analyses [2,3]. Artificial sensory evaluation is easily af-
fected by subjective factors, such as personal experience and physical conditions, it is
challenging to ensure accurate and consistent detection, it requires high investment, and
has low efficiency. Although the physicochemical analysis method has high accuracy, it
involves using some harmful chemical reagents, which may destroy the original structure
of corn kernels and has a long detection cycle and poor repeatability. More importantly,
none of the above methods can realize real-time online detection. To improve the detec-
tion efficiency, non-destructive detection techniques have been widely used for the rapid
detection, screening and grading, quality identification, and safety analysis of foods [4,5].
Non-destructive detection methods commonly used in the detection of corn kernel mildew
mainly include near-infrared spectroscopy [6], computer vision [7], and electronic nose [8].
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However, the point scanning mode of near-infrared spectroscopy largely limits its detection
for samples with the non-uniform distribution of mildew.

Moreover, computer vision heavily depends on external visual acquisition equip-
ment and image processing technology, which are vulnerable to environmental factors.
The electronic nose lacks stability and applicability. Hyperspectral remote sensing is an
emerging interdisciplinary approach [9–11]. Because it can simultaneously reflect ground
objects’ spatial and spectral information, it is widely used in geological exploration, urban
remote sensing and planning, remote sensing mapping, disaster monitoring, and precision
agriculture. In recent years, hyperspectral image technology has gradually become a re-
search hotspot in the non-destructive detection of grains [12]. With hyperspectral imaging,
some studies have established non-destructive detection methods for fungal infections
in rice, wheat, and maize by [13–15]. Yin et al. [16] preprocessed the hyperspectral data
of corn kernels with different degrees of mildew infection through multiplicative scatter
correction. They used the partial least square regression coefficient to select the charac-
teristic wavelength, and finally used the Fisher discriminant analysis for identification.
Yang et al. [17] processed the hyperspectral data using a deep sparse autoencoder, selected
feature variables by variable combination population analysis and shuffled frog leaping
algorithm, and established classification models of kernel extreme learning machine, ex-
treme learning machine, and support vector machine, respectively. Another study [18]
analyzed the maize seed mildew classification with hyperspectral image data obtained by
a support vector machine based on the linear kernel, support vector machine based on
the quadratic kernel, and BP neural network model, respectively. The current mainstream
detection methods of corn kernel mildew generally involve supervised learning, which
requires large training samples to establish prediction or classification models. However, it
is generally difficult to obtain sufficient labeled samples, resulting in inaccurate estimation
of the algorithm’s parameters.

Therefore, it is urgent to study the classification algorithm based on unsupervised
learning. However, mildew distribution in corn kernels is usually non-uniform, and the
existing unsupervised classification algorithms face two significant problems for pixel-
level detection of corn kernel mildew. First, the data with complex structures cannot be
well classified. For example, prototype-based clustering algorithms, such as K-means,
can only well classify clumpy data. Second, the vast computational cost is unsuitable for
rapid online detection applications. Traditional nonlinear clustering algorithms, such as
spectral clustering, are based on the similarity matrix for data classification to the realize
pixel-level classification and require the calculation of the eigenvalues and eigenvectors
of the data matrix, which is very large and proportional to the sample size. To achieve
pixel-level hyperspectral image classification of corn kernel mildew, this paper proposes
an unsupervised co-clustering algorithm based on multi-center fuzzy clustering (FCM)
and spectral clustering (SC). The motivation of the algorithm is that FCM can accurately
extract data prototypes, and SC can better describe the distribution of the data structure.
This algorithm processes the samples by multi-center fuzzy clustering to describe the
distribution of mildew in corn kernels, and then merges the obtained cluster centers by
spectral clustering, which can not only maintain the nonlinear structure of redundant
cluster centers, but also greatly reduce the computational cost.

The proposed algorithm has two scientific contributions. First, we proposed a co-
clustering algorithm that combines fuzzy and spectral clustering to classify the structural
hyperspectral image data. Since fuzzy clustering can accurately extract data prototypes
and spectral clustering can better describe the distribution of data structure, it can better
solve the problems of high dimensionality, noise, and nonlinearity faced by hyperspectral
image classification. Second, the current corn kernel mildew detection with hyperspectral
images is mainly based on supervised classification methods, such as partial least squares
and support vector machines. These methods require large training samples, and their
performance heavily depends on the quality of the training samples. In this paper, the
unsupervised co-clustering algorithm was used for the first time to achieve good results in
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detecting corn kernel mildew, which provides a feasible solution for later research on grain
quality based on hyperspectral image technology. The experimental results demonstrate
that the algorithm can not only describe the complex structure of mildew distribution in
corn kernels but also possesses strong stability, anti-interference ability, generalization
ability, and high accuracy relative to the supervised prediction or classification models.

2. Materials and Methods
2.1. Experimental Materials

Corn kernel itself has certain amounts of spores and endospores. Endospores are the
dormant form of bacteria, and spores are produced by mildew, which can also produce
mildew under natural conditions. The corn kernel samples used in this study were pur-
chased from a farmer’s market in Shanxi Province. Corn kernel samples were placed in a
constant temperature (28 ◦C) and humidity (90%) experimental box for cultivation. After
eight days, the samples produced varying amounts of mildew. Then, 60 corn kernels were
randomly selected as the experimental materials, arranged into a 6 × 10 matrix on the
detection board.

2.2. Hyperspectral Acquisition System

The hyperspectral image data acquisition system is shown in Figure 1. It comprises
a hyperspectral camera (SPECIM FX10, Oulu, Finland), a light source (Osram, two 50 W
linear halogen lamps), a mobile platform, and a computer. The imaging method of the
hyperspectral imager is linear array stack scanning. The spectral range is 400–1000 nm, the
spectral resolution is 5.5 nm, the number of spectral bands is 224, the signal-to-noise ratio
is 600:1, and the scanning speed is 65 mm/s. During the image collection, 60 corn kernels
were neatly placed on the mobile platform, and the lens was adjusted vertically downward.
The system software was used to control the acquisition system to obtain the hyperspectral
image data of corn kernels. For the collected hyperspectral images, the ENVI software was
used to select the region of interest (ROI), and then the spectral data were analyzed and
processed by Matlab.
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Figure 1. The hyperspectral image data acquisition system of corn kernel mildew.

2.3. Data Preprocessing

The data acquisition process by the hyperspectral imaging system is inevitably inter-
fered with by environmental factors, such as noise, background, and dispersive light [19].
The noise information in the spectral data will cause errors in the model established during
spectral analysis. Therefore, it is necessary to preprocess the hyperspectral data to remove
undesired information, such as uneven illumination, background, and bad pixels. The
commonly used pretreatment algorithms include Savitzky–Golay smoothing (SG), stan-
dard normal variable (SNV), multiplicative scatter correction (MSC), and first derivative
(FD) [20,21]. SG smoothing estimates the average spectral value of a particular wavelength
point based on several wavelengths before and after the point with the moving average
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algorithm or least-squares fitting method, which is then used to replace the original spectral
value. Complete wavelength smoothing can eliminate or reduce the spectral data with
random noises, but the calculation is complicated. SNV is used for each spectral data
point, and by assuming that the absorbance and reflectance values of all wavelength points
satisfy the normal distribution, it can perform standard normal treatment on each original
reflectance value to eliminate the spectral error caused by surface scattering due to the
presence of unevenly distributed granules on the surface. MSC is a spectral data prepro-
cessing algorithm that eliminates scattering caused by uneven particle size distribution. FD
can not only effectively remove the noise generated by baseline changes and background
interference but also effectively captures the weak information in the sample data. Al-
though derivative preprocessing has numerous positive effects on the spectrum, due to
the existence of noise, the random noise in the original spectrum may be amplified, and
the signal-to-noise ratio will be reduced without proper derivative preprocessing. Here, to
reduce the influence of corn kernel shape and contour on the spectral data and improve the
identification accuracy, SNV and MSC were used to preprocess the hyperspectral image
data of corn kernel mildew. The calculation formula of SNV is as follows:

Xa,SNV =
Xa − Xa√

1
p−1

p
∑

i=1

(
Xai − Xa

)2
(1)

where Xa is the spectral vector of the ath sample, Xa is the mean value of the spectral vector,
and p is the number of wavelength variables.

The calculation formula of MSC is as follows:
Ai,j =

1
n

n
∑

i=1
Ai,j

Ai = mi A + bi

Ai(MSC) =
Ai−bi

mi

(2)

In this formula, A represents the n × p dimensional spectral data matrix; n is the
number of samples; p is the number of wavelength points used for spectral collection;
A is the average spectral vector obtained by averaging the original hyperspectral of all
samples at each wavelength point; Ai is the 1× p dimensional matrix; mi and bi represent
the relative offset coefficients and shifts of hyperspectral Ai and the average spectral A of
each sample obtained by unary linear regression.

3. Co-Clustering Algorithm

The fuzzy clustering algorithm is one of the current research hotspots in the image
segmentation technology. Since fuzzy clustering can accurately extract data prototypes and
spectral clustering can better describe the distribution of data structure, an unsupervised
classification algorithm is proposed to solve the classification problem in the pixel-level
hyperspectral image data of corn kernel mildew. By allowing X = {x1, x2, · · · , xn} to be n
data samples, the samples can be divided into c categories with the corresponding cluster
centers {v1, v2, · · · , vc}; the membership of the jth sample to the ith cluster center is uij, and
m is the fuzzy coefficient. The objective function of the proposed co-clustering algorithm is
as follows: 

minJ(U, V, Y) =
c
∑

i=1

n
∑

j=1
um

ij ‖xj − vi‖
2

2

+ λtr(YLY)

s.t.
c
∑

i=1
uij = 1, j = 1, 2, · · · , n, L = I − D−

1
2 WD−

1
2

(3)

where L is the Laplace matrix, W ∈ RC∗C denotes the similarity matrix between the

redundant cluster centers, and wij = exp(− ‖vi−vj‖2

2σ2 ) and Y is the classification results of
the redundant cluster centers.
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By solving the objective function, U =
{

uij
}

and Y =
{

yjk

}
can be obtained after the

optimization, and the final value of sample xi belonging to the kth class can be expressed
as zik = uij · yjk.

The objective function is solved in two steps to reduce the complexity. First, we used a
fuzzy clustering algorithm to handle the preprocessed corn kernel mildew hyperspectral
image data, extracted the cluster centers as the next input data, and then used spectral
clustering to merge the cluster centers. The schematic diagram of the proposed co-clustering
algorithm is shown in Figure 2. As observed from the objective function, the first part
of this algorithm implements fuzzy C-means clustering [22,23], and the second part uses
spectral clustering [24,25] to merge the redundant cluster centers. Finally, each sample finds
the category to which the corresponding cluster center belongs, and the final classification
results can be obtained. After the first fuzzy clustering, the vast data set can be compressed.
After removing the noises, the obtained cluster centers are processed by spectral clustering.
At this time, the amount of data has been dramatically reduced, and the dimensions of the
constructed similarity matrix and Laplace matrix will also be sharply decreased. The final
clustering results will be more stable, and the calculation will be significantly simplified.
The algorithm flow chart is shown in Figure 3.
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4. Experimental Results and Analysis
4.1. Spectral Preprocessing Results

The scattering phenomenon will occur in collecting spectral data due to the unique
morphology of corn kernel surfaces, such as surface granularity and irregularity. To
avoid the influence of corn kernel shape and contour on the spectral data and improve
the recognition accuracy, the SNV and MSC algorithms were adopted to preprocess the
hyperspectral image data of corn kernel mildew. Before the pretreatment, the noises of
the front and back bands are considerable during hyperspectral image acquisition, which
will harm the post-processing procedures. In the experiment, noisy bands were removed,
168 bands between 450 nm and 900 nm were retained, then SNV and MSC were used for the
pretreatment. Figure 4 shows the spectrum of the hyperspectral image data of corn kernel
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mildew before and after the removal of bands with high noise. Figure 5 shows the spectrum
of the hyperspectral image data of corn kernel mildew after SNV and MSC pretreatment.
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4.2. Gabor Feature Extraction

The two-dimensional (2D) Gabor wavelet is a Fourier transform whose window func-
tion is the Gaussian kernel function [26]. It has a high multi-scale and multi-directionality
and reasonable resolution in spatial and frequency domains. Two-dimensional Gabor has
strong robustness for unfavorable environment conditions, such as illumination, and can
effectively characterize the texture features of images. Hence, it is often used in image
processing and analysis. In this paper, we extracted the discriminative 2D Gabor texture
features of corn kernels. It can remove part of the influence of illumination and noise points
on the image quality, as well as make more effective use of the advantages of both spectrum
and image of the hyperspectral image data. The expression for a two-dimensional Gabor
filter can be defined as follows:

ϕµ,ν(z) =
‖kµ,ν‖

σ2 exp(
−‖kµ,ν‖2‖z‖2

2σ2 )

[
exp(ikµ,νz)− exp(

−σ2

2
)

]
(4)

where µ and ν represent the orientation and scale functions of the 2D Gabor filter, kµ,ν
indicates the fundamental frequency vector, which controls the filter’s window size and
oscillation frequency, and z = (x, y)T represents the coordinate of the pixel location in the

image. In this formula, exp(−‖kµ,ν‖2‖z‖2

2σ2 ) is a Gaussian function to reflect the localization
information in both the time and frequency domains, σ represents the ratio of the window
width to the wave vector length, which is generally taken as σ= 2π, and ‖•‖ is a Euclidean
parametric operation. Part of the parameters are defined as follows:

kµ,ν = (kv cos ϕµ, kv sin ϕµ)

kν = kmax
f ν

ϕµ = πµ
8

(5)
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where ϕµ is the selection direction for kµ,ν, kv is the selection scale of kµ,ν, kmax is the
maximum frequency, and f is the sample step size. In general, the values of kmax = π/2,
f =
√

2. µ and ν directly impact the completeness of the feature extraction, and the filter
set of eight directions and five scales is usually chosen. The 2D Gabor filter defined by the
equation can also be written in a complex form as follows:

ϕµ,ν(z) = Re(ϕµ,ν(z)) + iIm(ϕµ,ν(z)) (6)

Splitting it by the real and imaginary parts gives the following equations:

Re(ϕµ,ν(z)) =
‖kµ,ν‖

σ2 exp(
−‖kµ,ν‖2‖z‖2

2σ2 )

[
cos(ikµ,νz)− exp(

−σ2

2
)

]
(7)

Im(ϕµ,ν(z)) =
‖kµ,ν‖

σ2 exp(
−‖kµ,ν‖2‖z‖2

2σ2 )
[
sin(ikµ,νz)

]
(8)

When performing 2D Gabor wavelets, the primary 2D Gabor wavelet parameters µ, ν
and σ should be set appropriately to obtain a complete image without loss. For the corn
kernel image I(z), the Gabor feature extraction is the convolution of this image with the 2D
Gabor wavelet function ϕµ,ν(z).

Gµ,ν(z) = I(z) ∗ ϕµ,ν(z) (9)

Gabor features are extracted from the image on eight directions µ = {0, 1, 2, 3, 4, 5, 6, 7}
and five scales ν = {0, 1, 2, 3, 4} to obtain forty sub-outputs. Figure 6 shows the wavelet
subgraph obtained from a corn kernel image filtered by 40 Gabor wavelets.
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4.3. Wavelength Band Selection

Hyperspectral data usually contain spectral bands with redundant and multicollinear-
ity information. Therefore, feature selection of the preprocessed spectral data is critical for
improving the model accuracy and reducing the modeling time and complexity. Principal
component analysis (PCA) [27] is the most basic algorithm that can effectively solve the
problems of hyperspectral data correlation and multicollinearity and achieve feature ex-
traction and data dimension reduction. After the transformation, several new variables,
namely principal components (PCs), are used to replace the original variables. While
retaining the information of the original variable to the maximum, the primary information
is concentrated in the first few unrelated and orthogonal PCs. The basic principle of PCA is
to use linear projection to project the original data to the new coordinate system, arrange
the PCs according to the data projection variance in turn, and finally obtain the same
number of original variables, orthogonal and non-overlapping PCs. Usually, the first few
PCs retain the primary information of the original data, and the PCs with less contribution
can be ignored. PCA transformation of the original spectral matrix can be described as
the following:

Y = XL (10)
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where Y =
{

y1y2 · · · yp
}
(p < n) is the scoring matrix and L = {l1l2 · · · lm} is the principal

component matrix.
In this paper, 94% of the information was retained by PCA. As shown in Figure 7,

the accumulative contribution rates of PC1, PC2, PC3, PC4, PC5 and PC6 are 67.54%,
82.79%, 90.71%, 93.04%, 93.91% and 94.58%, respectively. Finally, the data were reduced to
6 dimensions, equivalent to replacing the original 168 dimensions with 6 new dimensions,
significantly reducing the amount of data, while retaining the most information in the
original data.
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4.4. Model Identification and Evaluation

Most noises and redundant data have been removed after pretreatment and feature
selection, and the feature data can be obtained after dimension reduction. With the wave-
length extracted from PCA as the feature data, the classification model is established and
verified by the proposed co-clustering algorithm. The detection algorithm for the hyper-
spectral image of corn kernel mildew is shown in Figure 8. Since the proposed classification
model is an unsupervised learning algorithm, there is no need to divide the samples. In
order to better describe the distribution of corn kernel mildew and verify the performance
of the algorithm, we made a comparison of the proposed algorithm with some other four
representative algorithms with the same data, including the K-means clustering algorithm
(K-means), fuzzy C-means clustering algorithm (FCM), kernel fuzzy clustering algorithm
(KFCM) and Gaussian mixture model (GMM). In the experiments, all clustering algorithms
had the same termination criteria; the fuzzy coefficient in FCM was set as 2; the K(xj, vi) in
KFCM objective function was Gaussian kernel; and the fuzzy weighting index m was set
to 2.

The predefined parameters for the co-clustering algorithm include the number for
the first and final clustering and the sigma value in the spectral clustering. In order to
better describe the distribution of mildew, all data were finally divided into two categories,
namely the mildew part and the non-mildew part. Therefore, the final cluster number was
set as 2, and the sigma value in spectral clustering was set to 0.5. As for the number of
the first clustering, two factors, namely clustering accuracy and computational cost, were
considered. Several experiments were designed for in-depth analysis, as shown in Figure 9.
A larger number of clustering results in fewer data points in each cluster, and there will
be fewer cluster centers in the middle of the two clusters. Therefore, the final clustering
effect is better. However, spectral clustering requires the computation of the similarity
matrix, and the computing speed is closely related to the amount of data. Hence, the time
for calculating each cluster increases with the increasing number of clusters. According
to the experimental analysis, the clustering accuracy is the highest when the number of
clusters reaches 17,000. Increasing the number of clusters does not significantly impact the
results but will greatly increase the calculation time. Therefore, the number of clusters in
the following experiment was 17,000.
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In addition to accuracy (CR), we combined the normalized mutual information (NMI)
and RAND index (RI) to verify the performance of the algorithm jointly. As for the evalu-
ation standards, CR evaluates the efficacy of the clustering by comparing the clustering
results with real tag matches; RI is to match the correct and matching error log to eval-
uate the data; while NMI is mainly different from these two evaluation standards, as it
introduces the maximum likelihood estimation and calculation of mutual information and
finally normalizes the results.

Currently, most detection methods for corn kernel mildew by hyperspectral image
technology only utilize the spectral features and do not take advantage of image features
simultaneously acquired by the hyperspectral technology. Hence, we attempted to conduct
experiments from two perspectives, including detection only with spectral features and
detection with both spectral and image features.

First, the spectral features were clustered, and the clustering results are presented in
Figure 10 and Table 1. The mildew part is marked in yellow, while the non-mildew part
is marked in blue. The clustering analysis results revealed that due to the non-clumpy
and relatively complex structure of the hyperspectral image data of corn kernel mildew,
the K-means and FCM based on Euclidean distance had poor performance in NMI, RI,
and CR, which were 0.1231, 0.5328, 62.81% and 0.1233, 0.5326, 62.77%, respectively. The
GMM algorithm is more suitable for elliptic data, and the clustering results are generally
dependent on the cluster center, and thus cannot solve the clustering problem of complex
structure data. The KFCM algorithm introduces the kernel function and can map the
data to a high-dimensional feature space to obtain more regular data for better clustering.
However, the constraint condition of membership sum of 1 makes it sensitive to isolated
points and noise. On the other hand, it is an iterative descent algorithm, making it sensitive
to the initial cluster center and challenging to converge to the global optima. Therefore, the
NMI, RI and CR values are only 0.1232, 0.5325 and 62.76%, respectively. In the proposed
co-clustering algorithm, the cluster centers of the fuzzy clustering algorithm are used as the
data of spectral clustering, which reduces the sample size from 75,250 to 17,000. If spectral
clustering is performed directly on the data, it is necessary to perform eigen decomposition
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on the Laplace matrix with a size of 75,250 × 75,250, resulting in a high computation cost;
thus, spectral clustering cannot be applied to the data. Moreover, because it is difficult for
the isolated noise point to become the cluster center, fuzzy clustering also has a certain
de-noising effect. The spectral clustering algorithm has excellent clustering performance
for non-clumpy data. The NMI, RI and CR values of the FCM-SC algorithm reach 0.5467,
0.8470 and 91.65%, respectively, which are optimal compared with the other algorithms.
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(d)  (e)  (f) 

Figure 10. Clustering  results  in corn kernel mildew hyperspectral  image data by different algorithms 

(spectral features). (a), Mildew corn kernels; (b), K‐means; (c), FCM; (d), KFCM; (e), GMM; (f), FCM‐SC. 

 

Figure  13. Classification  results  of  SVM  and  LDA  in  corn  kernel mildew  hyperspectral  image  data 

(spectral and image features) (a) SVM and (b) LDA. 
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Figure 10. Clustering results in corn kernel mildew hyperspectral image data by different algorithms
(spectral features). (a), Mildew corn kernels; (b), K-means; (c), FCM; (d), KFCM; (e), GMM; (f), FCM-SC.

Table 1. Performance of different clustering algorithms on hyperspectral data (spectral features).

Method K-Means FCM KFCM GMM FCM-SC

NMI 0.1231 0.1233 0.1232 0.1340 0.5467
RI 0.5328 0.5326 0.5325 0.5430 0.8470

CR (%) 62.81 62.77 62.76 64.68 91.65

Second, detection experiments with both spectral and image features are conducted.
Figure 11 and Table 2 show the clustering results after merging the spectral and image
features. From a comprehensive perspective, all clustering results have been improved
after introducing image features. It is because in addition to the spectral features, Gabor
feature extraction is performed on corn kernel hyperspectral images from eight directions
and five scales, which means that forty image features are added for each pixel. The
accuracy of the proposed algorithm reaches 93.47% and is increased by 2% compared with
the accuracy without the addition of the image features, which is the best compared with
other algorithms and reflects the algorithm’s stability.
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Figure 11. Clustering results in corn kernel mildew hyperspectral image data by different algorithms
(spectral and image features). (a), Mildew corn kernels; (b), K-means; (c), FCM; (d), KFCM; (e), GMM;
(f), FCM-SC.

Table 2. Performance of different clustering algorithms on hyperspectral data (spectral and image
features).

Method K-Means FCM KFCM GMM FCM-SC

NMI 0.1334 0.1453 0.1635 0.1370 0.5885
RI 0.5653 0.5763 0.5854 0.5470 0.8943

CR (%) 64.81 67.85 68.76 64.78 93.47

The above results demonstrate that the proposed unsupervised clustering algorithm
has excellent performance in the hyperspectral image classification of corn kernel mildew.
Currently, supervised classification algorithms are mostly used. We compared the pro-
posed algorithm and the currently used supervised clustering algorithms, namely linear
discriminant analysis (LDA) and support vector machine (SVM). Classification results of
SVM and LDA in corn kernel mildew hyperspectral image data (spectral features) are
shown in Figure 12.
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Figure 12. Classification results of SVM and LDA in corn kernel mildew hyperspectral image data
(spectral features). (a) SVM and (b) LDA.

As shown in Figure 13., the accuracy of SVM and LDA is greatly improved compared
with that of the traditional unsupervised clustering algorithm. From the data point of view,
the accuracy of the two classification methods has been improved to some extent after the
introduction of the Gabor image features. The accuracy rates in the two cases of SVM and
LDA are 89.43%, 90.23% and 84.39%, 86.75, respectively, but are still lower than that of the
proposed co-clustering algorithm. Comparison of the performance of different classification
methods is shown in Figure 14. SVM involves the calculation of a high-rank matrix, and a
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large sample number will increase the calculation time and space cost. Moreover, SVM is
very sensitive to kernel functions and parameters. Although LDA involves a fast calculation,
it is unsuitable for non-Gaussian distribution samples due to its linear classification nature.
In addition, SVM and LDA are supervised classification algorithms and require labeling the
samples and training in advance, while the unsupervised clustering algorithm can perform
the classification without sample labeling.
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Figure 13. Classification results of SVM and LDA in corn kernel mildew hyperspectral image data
(spectral and image features) (a) SVM and (b) LDA.

Sensors 2022, 22, x FOR PEER REVIEW 13 of 15 
 

 

Figure 13. Classification results of SVM and LDA in corn kernel mildew hyperspectral image data 
(spectral and image features) (a) SVM and (b) LDA. 

 
Figure 14. Comparison of the performance of different classification methods. 

5. Discussion 
The experimental results prove that traditional unsupervised clustering methods 

cannot perform well regarding corn mildew detection. The reason may be that the simi-
larity measure cannot measure the complex data structure well. The supervised classifi-
cation method is based on a particular training set, and the classification effect is better 
than that of the traditional unsupervised clustering method. However, the results of the 
supervised classification method depend on the accuracy of the labels of the prediction 
set, and the process is complicated. The co-clustering method proposed in this paper can 
provide more stable and excellent performance to overcome these problems. 

The excellent performance of FCM-MC may be attributed to two factors. First, after 
using the FCM algorithm to cluster the feature data, noises are discarded, and the obtained 
cluster centers can also better represent the characteristics of the data itself. 

Second, the spectral clustering algorithm can cluster in any shape of the sample space 
and converge to the optimal global solution, and at the same time, the computational com-
plexity of spectral clustering is significantly reduced after the FCM clustering. 

6. Conclusions 
This paper proposes a new corn kernel mildew detection method using hyperspectral 

imaging. First, SNV and MSC are used for preprocessing to remove the hyperspectral im-
age data with high noise. Then, Gabor features are extracted, and PCA is applied to select 
the features of the preprocessed data. Finally, an unsupervised clustering algorithm is 
proposed for pixel-level classification for the first time. The proposed algorithm adopts 
multi-center fuzzy clustering to describe the distribution of corn kernel mildew and then 
merges the cluster centers by spectral clustering, which can not only maintain the nonlin-
ear structure of redundant cluster centers but also significantly reduces the computational 
cost. The experimental results suggest that the proposed algorithm can describe the com-
plex structure of corn kernel mildew distribution with high stability, anti-interference 
ability, generalization ability, and accuracy compared with the supervised prediction or 
classification models. At present, the process of redundant clustering and spectral cluster-
ing in the algorithm in this paper was carried out in separate stages, which belong to a 
two-stage clustering algorithm. In the future, we will start from the hyperspectral image 
characteristics of the corn mildew mechanism and combine redundant and spectral clus-
tering to make the clustering process cooperate to improve the robustness and conver-
gence of the algorithm. 

Author Contributions: All authors have made significant contributions to this manuscript. Concep-
tualization, S.Z.; methodology, Z.K.; software, T.H. and L.D.; writing—original draft preparation, 

89.43
84.39

90.23
86.75

80
85
90
95

SVM LDA

Performance of supervised method in the 
detection of  corn kernels mildew

CR-Spectral Features（%）

CR-Spectral and Image Features（%）

Figure 14. Comparison of the performance of different classification methods.

5. Discussion

The experimental results prove that traditional unsupervised clustering methods
cannot perform well regarding corn mildew detection. The reason may be that the similarity
measure cannot measure the complex data structure well. The supervised classification
method is based on a particular training set, and the classification effect is better than that
of the traditional unsupervised clustering method. However, the results of the supervised
classification method depend on the accuracy of the labels of the prediction set, and the
process is complicated. The co-clustering method proposed in this paper can provide more
stable and excellent performance to overcome these problems.

The excellent performance of FCM-MC may be attributed to two factors. First, after
using the FCM algorithm to cluster the feature data, noises are discarded, and the obtained
cluster centers can also better represent the characteristics of the data itself.

Second, the spectral clustering algorithm can cluster in any shape of the sample space
and converge to the optimal global solution, and at the same time, the computational
complexity of spectral clustering is significantly reduced after the FCM clustering.

6. Conclusions

This paper proposes a new corn kernel mildew detection method using hyperspectral
imaging. First, SNV and MSC are used for preprocessing to remove the hyperspectral
image data with high noise. Then, Gabor features are extracted, and PCA is applied to
select the features of the preprocessed data. Finally, an unsupervised clustering algorithm
is proposed for pixel-level classification for the first time. The proposed algorithm adopts
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multi-center fuzzy clustering to describe the distribution of corn kernel mildew and then
merges the cluster centers by spectral clustering, which can not only maintain the nonlinear
structure of redundant cluster centers but also significantly reduces the computational cost.
The experimental results suggest that the proposed algorithm can describe the complex
structure of corn kernel mildew distribution with high stability, anti-interference ability,
generalization ability, and accuracy compared with the supervised prediction or classifica-
tion models. At present, the process of redundant clustering and spectral clustering in the
algorithm in this paper was carried out in separate stages, which belong to a two-stage clus-
tering algorithm. In the future, we will start from the hyperspectral image characteristics of
the corn mildew mechanism and combine redundant and spectral clustering to make the
clustering process cooperate to improve the robustness and convergence of the algorithm.
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