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Abstract: This paper proposes LTC-Mapping, a method for building object-oriented semantic maps
that remain consistent in the long-term operation of mobile robots. Among the different challenges
that compromise this aim, LTC-Mapping focuses on two of the more relevant ones: preventing
duplicate instances of objects (instance duplication) and handling dynamic scenes. The former refers
to creating multiple instances of the same physical object in the map, usually as a consequence of
partial views or occlusions. The latter deals with the typical assumption made by object-oriented
mapping methods that the world is static, resulting in outdated representations when the objects
change their positions. To face these issues, we model the detected objects with 3D bounding
boxes, and analyze the visibility of their vertices to detect occlusions and partial views. Besides this
geometric modeling, the boxes are augmented with semantic information regarding the categories of
the objects they represent. Both the geometric entities (bounding boxes) and their semantic content are
propagated over time through data association and a fusion technique. In addition, in order to keep
the map curated, the non-detection of objects in the areas where they should appear is also considered,
proposing a mechanism that removes them from the map once there is evidence that they have been
moved (i.e., multiple non-detections occur). To validate our proposal, a number of experiments
have been carried out using the Robot@VirtualHome ecosystem, comparing its performance with a
state-of-the-art alternative. The results report a superior performance of LTC-Mapping when modeling
both geometric and semantic information of objects, and also support its online execution.

Keywords: semantic maps; object-oriented maps; long-term consistency; instance duplication;
dynamic scenes; mobile robots; object detection; Detectron2

1. Introduction

In the context of mobile robotics, object-oriented semantic mapping refers to the
process of building and maintaining a reliable representation of the objects found in the
robot workspace by linking their geometric information (e.g., pose, size, shape, etc.) with
their semantics (e.g., object types, functionalities, events, relations, etc.) [1–3]. An example
of the latter may be that televisions are devices, usually placed in living rooms that can
entertain people and are operated by a remote controller. In this context, semantic maps
are crucial for an efficient robot operation, since they provide the robot with the level of
understanding of the elements in human-centered environments required to operate with
them [4,5]. For example, if the user tells the robot “Hey! I’m bored”, the robot could react by
turning on the TV. Some typical robotic tasks that could benefit from the exploitation of
these maps could be object search [6], navigation [7] or human–robot interaction [8], among
others [3,9,10].
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While object-oriented semantic maps bring clear benefits to intelligent robots, two
main challenges appear to keep them effective for long-term robot operation: avoiding
duplicated object instantiations and coping with dynamic objects [11–13]. Let us clarify
these concepts. On the one hand, there is a need to check whether a new recognized object
corresponds to an already instantiated object in the map (then, it must be updated), or to a
new entity not seen before, in which case it must be incorporated in the map. Since object
detection is usually performed from images where the objects may be partially visible—
either due to occlusions from other objects or because it does not fall entirely within the
camera field-of-view—this association task becomes cumbersome. Failing to associate
partial observations of the same physical object seriously compromises the reliability of
the resulting map, leading to the instance duplication problem, i.e., a single real object
is instantiated multiple times (see Figure 1). On the other hand, there is another non-
negligible issue that could seriously hamper the reliability of object-oriented semantic maps
over time: the assumption that the world is static [11]. This simplification is inconsistent
with the reality of human-centered environments (e.g., a house or an office), where most
objects are highly likely to be moved. For example, in Figure 1, under this assumption,
the representation of Chair 1 remains in the map even though the chair is no longer there.
This fact turns the resulting map into a time-stamped snapshot, which does not truthfully
represent the real-world.

Chair 1Couch 1

Camera Image Semantic Map

Common issues�

LTC-Mapping�

Chair 1Couch 1Couch 2

Couch 1

t1

Chair

Couch

Couch

t0

t1

Figure 1. Illustration of the effects of two main challenges that compromise the reliability of semantic
maps: instance duplication and dynamic objects. For each time moment t, we show the results yielded
by the object detector (left) and the updated semantic map (right). At time t0, a chair and a partially
visible couch are detected and instantiated in the map. However, at time t1, the previously detected
chair has been moved and the couch is entirely visible. Ignoring the aforementioned challenges leads
to the semantic map referred as Common issues, where two different instances refer to the same
physical couch and the instance of the chair remains.

In this paper, we present LTC-Mapping, a method for the construction and maintenance
of object-oriented semantic maps from RGB-D images which specifically addresses the
aforementioned challenges, i.e., instance duplication and dynamic objects. Concretely, an
off-the-shelf object detector is used to detect objects in RGB images, projecting the image
mask of each detection to the 3D scene using the associated depth information. Then, our
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proposal models each object in the workspace with a 3D bounding box, which captures the
essential geometric information of the real object (pose and size). Each model is anchored to
its semantics i.e., a confidence score about the categories it belongs to (e.g., chair, microwave,
tv, etc.) and a set of flags indicating the visibility of the vertices of its bounding box that has
been visible. The latter affords us to address the previously described instance duplication
problem since this estimation provides useful insights on whether an object is expected to
be larger than detected due to partial views, occlusions, etc. We exploit this information and
new detections to refine the geometric knowledge of the objects in the map by sharpening
their pose and size, even merging two object instances if they are considered to belong
to the same physical object. In addition, to ensure the consistency of the resulting map
over time against dynamic objects, we take into consideration not only detections but
also non-detections of previously mapped objects. The non-detection concept refers to the
missing detection of an object that was expected to be re-observed at a certain location. This
concept is defined from a characterization of the object detector response, and permits us to
decrease the confidence of the non-detected objects in the map, resulting in their removal
after multiple non-detections.

In order to evaluate the performance of LTC-Mapping, we carried out a set of experiments
in different indoor environments with representative settings from the Robot@VirtualHome
ecosystem [14]. Moreover, to test the adaptability to dynamic environments, we include
experiments where objects appear and disappear from those environments. From the
obtained results, we demonstrate the suitability of LTC-Mapping, which also exhibits a
superior performance than a state-of-the-art alternative [13], achieving approximately a
70% of object classification accuracy while keeping a low error in modeling their geometry.
The method implementation is publicly available at https://github.com/MAPIRlab/LTC-
Mapping (accessed on 12 July 2022).

2. Related Work

In the context of mobile robots working in human-centered environments, the geomet-
ric modeling of the environment has been widely addressed and has reached a considerable
degree of maturity [15,16]. A purely geometric map is sufficient for a robot carrying out
low-level tasks (e.g., navigation), but not for reasoning and interacting with the workspace
and its elements. In the last decades, leveraging the advances in deep learning for object
detection, multiple contributions have been proposed to enrich geometric maps with se-
mantic information, enabling a high-level understanding of the environment. The latter is
known in the literature as the semantic mapping problem [1]. Next, we review the most
relevant works of semantic mapping and object detection. For an exhaustive review of
these research areas, the interested reader can refer to [17,18].

2.1. Semantic Mapping

Semantic mapping refers to the problem of building and maintaining a representation
of the spatial elements present in the environment, linking both their geometric and
semantic information [1,3,19]. However, according to how the semantic information is
represented in the map, the approaches to semantic mapping can be divided into two
groups: dense and object-oriented.

On the one hand, dense semantic mapping contributions annotate spatial representa-
tions (e.g., 2D cells or 3D voxels) with object information acquired from images, but they
do not consider objects as instances. For example, Regier et al. [20] employ a Convolu-
tional Neural Network (CNN) for object detection to label cells of a 2D grid map with
semantic information, aiming to exploit it for obstacle avoidance. Moving from 2D to 3D,
Tateno et al. [21] and McCormac et al. [22] exploit real-time SLAM to incrementally build
3D surfel-based representations, where each surfel is annotated with an object class and a
confidence score. Xiang et al. [23] propose a Data Associated Recurrent Neural Network
(DA-RNN) to joint mapping and semantic labeling of a 3D scene through voxels from RGB-
D videos. Other works follow the same approach, i.e., labeling 3D global representations,

https://github.com/MAPIRlab/LTC-Mapping
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but employing different representation models such as Li et al. [24] and Sun et al. [25],
which employ octree maps in order to reduce the error from pose estimation.

On the other hand, object-oriented methods, which represent objects in the map as
individual instances anchored with semantic information, exhibit some advantages that
justify their extensive applicability (e.g., a more compact map representation, a more
straightforward exploitation, etc.). For example, Dengler et al. [13] present an online
semantic mapping method that represents instances of objects as 2D polygons over the
geometric map, which are annotated with semantic information (i.e., object class and a
likelihood). The available information in the semantic map is updated over time to provide
robustness against dynamic changes in the scene and to avoid instance duplication. In
contrast, Sünderhauf et al. [11] propose to extend the geometric representation of objects
to 3D by using point clouds but considering the world as static, hence objects are just up-
dated when they are detected. Similarly, Narita et al. [26] and Grinvald et al. [27] propose
volumetric semantic mapping methods based on voxels, which are labeled with semantic
information coming from object detection CNNs integrated over time. Since voxels are
computationally demanding, Nakajima et al. [28] propose to annotate the semantic infor-
mation to 3D regions rather than each element of the scene (e.g., surfels and voxels), which
significantly alleviate the computational cost. More compact approaches are presented by
Deeken et al. [29] and Wang et al. [30], which uses 3D bounding boxes to represent objects,
storing just the essential geometric information (i.e., size and pose). However, a common
drawback of these works is that they do not consider instance duplication and dynamic
objects challenges simultaneously or even consider either of them, thus compromising the
long-term consistency of semantic maps.

LTC-Mapping is framed within the object-oriented semantic mapping philosophy, but
distances from previous works in: (i)the explicit tackling of the instance duplication prob-
lem, producing just a representation in the map for each physical object in the real-world
(one-to-one mapping), and (ii) the consideration of the world as dynamic, so the map is
not only updated with new object detections, but also with missing detections of objects
already represented in the map. These features aim to provide a reliable semantic map
useful in the long-term robot operation.

2.2. Object Detection and Semantic Segmentation

To populate a map with high-level information from the objects in the environment, it
is crucial to dispose of a trustworthy object detector. Initially, approaches based on machine
learning techniques exhibited successful results in this area. A common pipeline of those
works is the extraction of image descriptors such as Scale-Invariant Feature Transform
(SIFT) or Speeded-Up Robust Features (SURF) and their classification through machine
learning algorithms, for example Supported Vector Machines (SVMs) in Pontil et al. [31]
or Bag-of-Words in Nister et al. [32]. However, a serious drawback of these works comes
when different object categories can exhibit similar features, hence the results tend to be
ambiguous. The latter is tackled in posterior works by including contextual information
in the classification. In this sense, a widely exploited contextual information is the object–
object relations, e.g., chairs are usually found close to tables. For example, Valentin et al. [33]
classify the faces of a mesh representing an object in the scene by considering its relations
with near objects through a Conditional Random Field (CRF). Extensions to this work are
proposed by Ruiz-Sarmiento et al. [34–36], where CRFs are used along with ontologies [37]
to increase the efficiency of object detection.

More recently, deep learning neural networks are showing a substantial maturity, out-
performing machine learning-based methods [38]. Among deep learning-based methods,
we highlight popular networks which outputs bounding boxes of objects in the image anno-
tated with the object class and a confidence score, such as YOLO [39], Single-Shot Detector
(SSD) [40], and RetinaNet [41]. However, by using these kinds of networks, it becomes
necessary to post-process the bounding box to remove the background of the object. Going
a step further, semantic segmentation networks also provide a mask of the pixels belonging
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to the object. The latter is a key aspect for obtaining accurate representations of objects and
hence semantic segmentation networks are the most widely used for semantic mapping.
The most popular semantic segmentation network is Mask R-CNN [42], but also others
such as SceneCut [43], RefineNet [44], and MaskX R-CNN [45] are widely used.

3. LTC-Mapping

Our proposal aims to incrementally build and maintain a semantic map of a dynamic
environment from images captured by an RGB-D camera mounted on a mobile robot. To
do so, for each input image, four stages are carried out: (i) object detection and modeling,
where objects are identified and characterized from input images, (ii) data association,
which enables determining the correspondences between the new detected objects and
the objects already represented in the map, (iii) map integration, to refine and extend the
knowledge available in the map, and (iv) map maintenance, to keep the map reliable and
up-to-date. The complete method pipeline can be seen in Figure 2.

Data 
Association

Map
Integration

Map Maintenance Semantic Map
Object Detection 

and Modeling

3D minimum Z-oriented bounding boxes

New Image

Objects expected to be observed

Figure 2. Pipeline of LTC-Mapping. White boxes represent data processing stages while gray box
stands for the formal representation of the semantic map, which contains the prior knowledge.

It must be noticed that, since LTC-Mapping works on an image-by-image basis, we
require knowing at each time instant the camera pose w.r.t. the world frame (TW

C ), in
order to fuse the new gathered information into a global semantic map. However, because
the camera is normally fixed to the robot, the camera pose w.r.t. the robot (TR

C ) can be
assumed to be known. Therefore, knowing that TW

C = TW
R TR

C , the problem is reduced to
obtain the robot-world relative pose (TW

R ). The latter is retrieved in this work through
the well-known Adaptive Monte Carlo Localization (AMCL) method implemented in the
AMCL ROS package (http://wiki.ros.org/amcl) (accessed on 12 July 2022). Hence, from
now on, we consider that the camera pose is known. This way, an object-based semantic
map is composed of a 2D geometric map that works as a common (world) reference system,
and a set of representations of objectsOM = {o1, . . . , on}modeling the objects found in the
robot workspace. Next, we describe in further detail the four core stages of our proposal.

3.1. Object Detection and Modeling

A trustworthy detection of the objects in the robot workspace is a keystone task in
the generation of object-based semantic maps, CNN-based techniques being the de-facto
choice in modern solutions. Of special interest in mobile robotics applications are those
CNNs that, in addition to the bounding boxes of each detected object in the image, their
category c, and associated confidence scores s, also provide a mask over the pixels in the
image belonging to said objects. When using an RGB-D camera, this permits the mapping
of those masks from the RGB to the Depth image in order to retrieve their geometry in the
scene. This work considers the utilization of this type of networks.

However, masks provided by this kind of CNNs are not error-free and tend to include
pixels belonging to adjacent elements in the image. The latter becomes a major concern in
order to obtain a 3D representation of the object. To address this problem, the pixel mask is
pre-processed by applying the thinning morphological operation [46], removing possible
outliers at the object boundaries while keeping the topological skeleton of the object (see
Figure 3.1).

http://wiki.ros.org/amcl
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6. Result
1. Thinning 2. Point cloud

projection
3. Point cloud segmentation

and filtering
4. Minimum Z-oriented

bounding box fitting
5. Vertex occlusion

estimation

Figure 3. Overview of the process used to build the models of the detected objects. Each detected
object mask is first subjected to a thinning step to remove spurious pixels while maintaining the
object structure. Then, it is projected in 3D space to obtain a point cloud which we segment and
filter—removing the gray points shown. From the resulting point cloud, we fit a Z-oriented bounding
box, whose vertices we evaluate to check if they are visible. The latter is represented in the figure
using red dots for the non-visible vertices and green dots for the visible ones.

In order to obtain a 3D representation of the objects, we first project the pixels
of the mask into the 3D space w.r.t. the camera frame to obtain a local point cloud
PC = [XC, YC, ZC] as follows:

XC

YC

ZC

 = ZCK−1

x′

y′

1

 = ZC


1
f

0
−x0

f

0
1
f
−x0

f
0 0 1


x′

y′

1

 = ZC


x′ − x0

f
y′ − y0

f
1

 (1)

where K is the matrix containing the camera intrinsic parameters (focal length of the camera
f , and camera center (x0, y0)), while (x′, y′) refers to the coordinates of the pixels in the
mask and ZC to their depth.

A common drawback in the estimation of the 3D representation occurs when the
detected object includes holes (e.g., a chair with bars in the back). This implies that
the resulting point cloud PC also contains outliers that are not part of the object itself.
Hence, to filter out these outliers, our method applies a spatial density-based clustering
(DBSCAN [47]), producing the result illustrated in Figure 3.3. The inliers are considered as
part of the object and hence are transformed from the camera frame to the world frame,
obtaining the object point cloud PW .

Finally, to conclude the pipeline of LTC-Mapping to represent objects’ geometry, we
propose the use of 3D minimum oriented bounding boxes, that is, the boxes that enclose the
minimum volume of each object. As discussed, this object modeling exhibits low memory
requirements while preserving the essential geometric information of objects (i.e., pose and
size). Since objects in the real-world are usually resting on surfaces parallel to the ground,
we make the assumption that they can only appear rotated in the vertical axis, hence the
bounding box is reduced to Z-oriented. Based on this fact, for each object, we obtain its
representation by computing the best-fitting 3D bounding box B = [cx, cy, cz, θ, w, h, d] of
PW (see Figure 3.4), which is defined by its pose (position of the centroid [cx, cy, cz] and
orientation θ) and size (width w, height h, and depth d).

Next, we enrich these bounding boxes with semantic information: a confidence vector
of the possible object classes the objects could belong to, and an estimation about the
visibility of the bounding boxes vertices in the images. The former provides per-class
confidence scores S = [s0, . . . , sn] with n = r + 1, where r is the number of object categories
recognizable by the used CNN. Notice that we also include an additional class, Other,
to account for the possibility of the object being misdetected. As for the estimation of
the observed vertices, we build the vector V = [b0, . . . , b7] of the bounding box B, where
each bi represents a Visible flag, stating if the vertex was visible in the observation or
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not. This estimation is carried out by re-projecting each vertex of the bounding box into
the image plane and checking if they are within the camera field-of-view or if they are
occluded. Occlusions are checked by applying Z-buffering techniques [48] over the re-
projected vertices, i.e., comparing the depth of the re-projected vertex with the value of the
corresponding pixel in the depth image. The result of this step is shown in Figure 3.5. From
this information, we can infer which sides of the object were occluded in the observation,
which is taken into account in the next stage of LTC-Mapping: data association. This way,
each object oi ∈ OM is represented in the semantic map by the 3-tuple oi = (B,S ,V). For
the sake of simplicity, we refer to this object representation as the object itself, where it does
not create confusion.

3.2. Data Association

The proposed data association follows an image-to-model approach. In this process,
the objects detected in an image captured at time t, forming the setOIt , are matched against
the already instantiated objects in the map that must be visible from the current camera
point of view, represented by ÔMt−1. This restriction aims to maintain spatial coherence and
reduce the number of mismatches. Thus, if a new detected object matches with a previously
instantiated one, we integrate their information. Otherwise, the object representation is
initialized in the semantic map.

To determine whether or not a detected object oi ∈ OIt refers to an already existing
object ôj ∈ ÔMt−1, we measure the similarity between their respective bounding boxes Bi
and Bj. The latter is performed by computing the average Euclidean distance between
pairs of nearest vertices from both bounding boxes. The choice of this metric is motivated
by the fact that it is able to compare the pose and scale of two bounding boxes at once. It is
computed as follows:

similarity(Bi,Bj) =
1
8

7

∑
k=0

√
(pi,k − pj,k)2. (2)

where pi,k and pj,k refer to the k-th bounding box vertex of oi and ôj, respectively.
It is important to note that this metric is not fair when comparing two representations

referring to the same real object but with different observability conditions, i.e., one comes
from a complete observation while the second comes from a partial observation. Thus,
considering the visibility conditions given by the previously mentioned Visible flag of each
corner, we discern two different scenarios, adapting the metric accordingly:

• Three or more pairs of vertices are visible. A pair of vertices is considered as visible
as long as each vertex is Visible in their respective bounding box. Based on this
knowledge, we can assume that at least two dimensions of their size are known and
are not expected to be highly modified with new detections. Therefore, the distance
between these vertices is more informative than the distance between non-visible
vertices, which may not represent a real vertex of the object. Hence, under this
scenario, the metric is particularized just to the average distance between pairs of
non-occluded vertices.

• Less than three pairs of vertices are visible. In this case, given the lack of reliable
information, we compute the average distance between all pairs of vertices.

Hence, an object oi is matched with an instantiated object ôj as long as the similarity
function returns a value lower than a given threshold τmax. Note that, in this work, we con-
sider that an already instantiated object can match with two different new object detections
since state-of-the-art object detectors tend to over-segment objects in the image [27]. Thus,
a global optimization step in the data association process is not required.

It can be noticed that measuring the distance between pairs of vertices requires knowl-
edge about the correspondences between said pairs. This task is usually solved in similar
problems by employing Nearest Neighbor (NN) techniques. In this context, NN works as
follows: for each vertex of Bi, NN associates it with its nearest vertex from Bj. However,
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it computes the optimal association pair one-by-one, hence the global result could not be
the optimal one as it can be seen in Figure 4a. A well-known solution to this problem is
using Global Nearest Neighbor (GNN), which yields the global result by minimizing the
distance between vertices globally rather than one-by-one (see Figure 4b). In our case,
this algorithm would become highly time-consuming: it requires computing 88 possible
vertices’ combinations. Doing this for each possible objects’ association could compromise
the online execution of the semantic mapping method.

01

23

0
1

2
3

01

23

0
1

2
3

a� Vertex association with NN. b� Vertex association with GNN.
Figure 4. Example of the difference between the association using NN and GNN. On the left, the
result using NN, being a local minimum where the vertices are mismatched. On the right, the
results obtained using GNN, where the vertices are correctly matched to obtain a global minimum of
distances between vertices.

However, by particularizing GNN to our problem and including prior knowledge, the
computation time can be significantly reduced. Concretely, since we assume that bounding
boxes lay on surfaces parallel to the ground (i.e., x and y-axis rotations are null), both top
and bottom vertices are equal except for the z-coordinate. The latter leads to reducing the
task just to associate the vertices of one of the two faces (i.e., top or bottom), hence the
possible combinations are 44. Moreover, considering that the relative position between
the vertices of one face of the bounding box is known, this number is reduced to four
valid combinations. This particularization of GNN enables the online execution of the
proposed method.

3.3. Map Integration

Once the matching between new objects’ detections OIt and those already instantiated
in the map OMt−1 is completed, we proceed to integrate this information in order to expand
and refine the semantic map, obtaining OMt . To do so, we leverage the reliability of the
information by considering the observability conditions of objects given by the Visible flags.
Exploiting the flags, we consider that the bounding box of an object is Defined if the size of
the three dimensions is known. The latter leads to suppose that the object geometry, once
represented in the map, is not expected to be highly modified with new observations.

Thus, depending on whether the bounding box of the new detected object Bi and the
bounding box of its matched object on the map Bj are or are not defined, we consider four
possible scenarios:

• Bi Defined and Bj Defined. In this scenario, both bounding boxes should cover the
entire object and are expected to be similar. Hence, the resulting bounding box comes
from separately averaging both size and orientation. The resulting bounding box
remains as Defined.

• Bi not Defined and Bj Defined. In this case, the new observation is partial (e.g., due to
occlusions), so the obtained bounding box does not completely represent the real object.
Therefore, we do not modify the bounding box of the already instantiated object.

• Bi Defined and Bj not Defined. Similarly to the above case, the bounding box of the
new detection being the most complete one, we replace the instantiated bounding box
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Bj with the new one Bi, as it should represent the real object more accurately. Hence,
the bounding box in the map is now set as Defined.

• Bi not Defined and Bj not Defined. Under this scenario, both bounding boxes belong
to partial observations. Hence, in this case, we compute the minimum bounding
box that encloses both Bi and Bj. However, this operation is highly sensitive to the
orientation of both bounding boxes and, consequently, minor errors in orientation
affect the bounding box size highly. This leads to the fact that, after integrating
multiple partial observations, the size tends to become larger and larger. To overcome
this problem, we apply to the resulting bounding box a slight 3D morphological
erosion [49], which prevents an endless expansion until a Defined detection is received.

Referring to the semantic knowledge anchored to each object representation in the
map, we update and normalize the confidence value of each object class in the accumulated
confidence vector (s ∈ S) of the instantiated object ôj as follows:

sj,c =
si,c + D sj,c

∑r
l=0 si,l + D sj,l

, c = 0, . . . , n. (3)

where D is the number of observations of the object represented in the map and n is the
number of known classes by the neural network plus the class Other.

3.4. Map Maintenance

Building on the statement of a dynamic environment, it is required not only to update
the map with new detections, but also to consider those objects that were expected to
appear in the current image but are missing. In this work, we incorporate the concept of
non-detection to address this fact. The 3-tuple ond of a non-detection is modeled as:

• Bnd: a bounding box with no size located at the position where the instantiated object
was expected to be found.

• Snd: the confidence value of the class Other is set with a value vOther obtained from
a characterization of the object detector response (i.e., true positives, false negatives,
etc.) obtained from a previous analysis. The remaining classes are set uniformly as:

sc =
1− vOther

r
, c = 0, . . . , r. (4)

where r is the number of object classes detectable by the neural network.
• Vnd: an empty visibility vector.

Thus, considering the objects already instantiated in the map that fall within the
camera field of view and are not occluded by other instantiated objects, if they did not
match a new object detection, we associate them with a non-detection. The effect of
integrating a non-detection is a decrease of the confidence that the model represents a real
object and an increase of the confidence of the Other class. In this sense, objects whose most
representative class is Other are more likely to represent an object that is no longer in the
environment or produced by a false positive, therefore being removed from the semantic
map. As a consequence, objects obtaining multiple non-detections are prone to disappear
from the map.

4. Experimental Setup

In order to evaluate the performance of LTC-Mapping, we have carried out a number
of experiments comparing its outcome with the one from a state-of-the-art approach [13].
The experiments have taken place in different representative environments from the
Robot@VirtualHome ecosystem [14]. A further description of both the dataset and the setup
employed in the experiments is provided in Section 4.1. The implementation details of the
evaluated methods are explained in Section 4.2. Then, the obtained results are reported in
Section 5.
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4.1. Robot@VirtualHome Ecosystem

Robot@VirtualHome [14] is a publicly available ecosystem (https://github.com/
DavidFernandezChaves/RobotAtVirtualHome) (accessed on 12 July 2022) composed by a
set of 30 virtual realistic-looking environments recreated from real households, containing
objects belonging to 60 different object types. The ecosystem includes a virtualization of the
Giraff robot [50], which is equipped with a 2D laser scan and an RGB-D camera mounted
at a height of 1.05 m from the floor. For evaluation purposes, we have selected a set of
six representative environments, which are shown in Figure 5: House 1 and House 21
as large size environments, House 22 and House 24 as normal size, and House 20 and
House 28 as small size scenarios containing objects located close to each other. For the sake
of reproducibility, the navigation paths followed by the robot are those provided by the
dataset under the Wanderer robot behavior. In the experiments carried out, these paths
are followed twice in a row. In order to simulate a dynamic environment, the location of
certain object was modified in the second lap.

a� House 1

b� House 21

c� House 24 e� House 20

d� House 22 f� House 28
Figure 5. Environments from Robot@VirtualHome ecosystem used in the experimental validation
of the method. Large, medium, and small size environments are depicted in (a,b), (c,d) and (e,f),
respectively.

4.2. Implementation Details

In order to detect objects in the scene, and for both methods under consideration, we
make use of a state-of-the-art object detection CNN. Namely, we use the tool Detectron2 [51],
which incorporates an implementation of Mask R-CNN [42], pre-trained on the Microsoft
COCO dataset [52]. This network is able to detect 80 different object classes, but just 26
are relevant to this work, since the remaining ones are categories scarcely appearing in
the considered environments, e.g., animals (giraffe, elephant, etc.) and vehicles (bus, train,
etc.), etc.

To implement the proposed method, we have leveraged our recent work ViMantic [53],
a distributed robotic architecture for semantic mapping. This tool includes, among other
features, a formal model for the definition and managing of the semantics of the environ-
ment, distributed execution capabilities through a client–server design, user interfaces for
the visualization and interaction with the maps, and public availability. In the experiments
carried out, a robot—operating as a client—has been instantiated in the considered en-

https://github.com/DavidFernandezChaves/RobotAtVirtualHome
https://github.com/DavidFernandezChaves/RobotAtVirtualHome
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vironments, which process the acquired information (i.e., RGB-D images) using an ROS
node in charge of detecting and modeling the objects. The obtained objects are sent to
the server side of ViMantic, which performs the data association, map integration, and
map maintenance stages (recall Section 3). In order to match two object detections, we
set the τmax parameter to 1 m. (recall Section 3.2). In the case of the method proposed by
Dengler et al. [13], its implementation is available as a ROS package, hence the complete
algorithm is implemented on the client side, so the server is used just for visualization.

As for hardware specifications, the server side ran on a computer with an Intel Core
i7-5700HQ CPU at 2.70 GHz, 16 GB DDR3 memory RAM at 800 MHz, and an Nvidia
GeForce GTX 960M GPU with 2 GB of memory. In contrast, as the client requires higher
computational resources, we employed a computer with an Intel Core i7-8750H CPU at
2.20 GHz, 16 GB DDR4 memory RAM at 1333 MHz and an Nvidia GeForce GTX 1070 GPU
with 8 GB.

5. Experimental Results

This section reports the obtained results of the experiments carried out with regard to
different aspects worth discussing. First, Section 5.1 provides quantitative results regarding
the geometric and semantic modeling of objects. Then, Section 5.2 yields some examples
of semantic maps to qualitatively check the performance of the considered methods. Fi-
nally, Section 5.3 reports on the computational time required by the different stages of
LTC-Mapping.

5.1. Quantitative Results

We first discuss how accurate our method is for modeling both the geometry and
semantics of the objects in the environment. Regarding objects’ geometry, Table 1 illus-
trates the yielded results in this regard. Since the method from [13] employs 2D bounding
boxes to represent objects in the map, we use the Intersection over Union (IoU) function to
measure its performance. Note that LTC-Mapping uses 3D bounding boxes, so, for a fair
comparison, we project them onto the XY-plane. The results show a superior performance
of LTC-Mapping, achieving on average a ∼0.092 higher IoU value. Additionally, we assess
the precision of the 3D models obtained by our proposal by measuring the Volumetric Inter-
section over Union (VIoU). Note that the intersection between two 3D oriented bounding
boxes is not a 3D bounding box, hence computing the VIoU is not straightforward. Thus,
instead, we employ an approximation of the VIoU applying the Pick’s theorem [54].

Although in this case a comparison with the method from [13] is not possible, having
notions of the meaning of this metric, it can be said that LTC-Mapping is able to properly
represent the three dimensions of the objects. It is important to mention that, when
computing IoU and VIoU metrics, the complete ground-truth of each object is considered.
However, instantiated objects in the map could have not been observed completely, their
obtained representations being partial. This fact prevents both metrics to reach higher
values. This is also noticeable in the position error, which measures the distance between
the centers of mass of the ground-truth and the evaluated object. Nevertheless, this error
is considerably reduced by our proposal when compared to its counterpart, improving
it by 34.5 cm on average. These metrics could be further reduced by introducing active
perception techniques motivating the inspection of partially observed objects in the map,
situations that can be easily detected in our method by employing the visibility flags V .

Referring to the semantic information available in the map, we compare the top-1
object class (i.e., the class with maximum score according to the confidence score vector
S) of each represented object with the associated semantic label of the ground-truth. The
results depicted in Table 2 demonstrate that LTC-Mapping is able to build reliable semantic
maps, keeping a low number of false detections in comparison with [13]. This proves that
the proposed non-detection concept is beneficial to maintain a true representation of the
real-world over time. Moreover, for most of the environments, our method outperforms
both in precision and recall to the state-of-the-art method. However, note how the number
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of false negatives is not insignificant for either semantic mapping method. The latter is
explained by the fact that the robot followed predefined inspection paths in which not all
objects were visible. That is, all the objects in the different houses were considered for this
metric computation, not just those observed by the robot. If needed, this metric could be
improved by using exploration algorithms maximizing the area covered by the robot [9].

Table 1. Geometric evaluation for each environment of the evaluated methods through the Intersec-
tion over Union (IoU) function and its Volumetric form (VIoU), and the error between the centers of
masses of the ground-truth and the object representation in the map. Best results are marked in bold.

Lap 1 Lap 2

Environment Method IoU VIoU Position Error (m) IoU VIoU Position Error (m)

House1 LTC-Mapping 0.478 0.377 0.255 0.365 0.268 0.247
Dengler et al. [13] 0.232 – 0.564 0.212 – 0.445

House20 LTC-Mapping 0.472 0.312 0.222 0.488 0.347 0.203
Dengler et al. [13] 0.307 – 0.563 0.461 – 0.501

House21 LTC-Mapping 0.396 0.196 0.302 0.397 0.299 0.268
Dengler et al. [13] 0.390 – 0.597 0.356 – 0.586

House22 LTC-Mapping 0.465 0.352 0.151 0.476 0.313 0.153
Dengler et al. [13] 0.294 – 0.543 0.259 – 0.579

House24 LTC-Mapping 0.392 0.227 0.306 0.405 0.246 0.264
Dengler et al. [13] 0.319 – 0.842 0.454 – 0.515

House28 LTC-Mapping 0.396 0.264 0.199 0.487 0.285 0.220
Dengler et al. [13] 0.365 – 0.626 0.463 – 0.569

Average LTC-Mapping 0.433 0.288 0.239 0.436 0.293 0.226
Dengler et al. [13] 0.318 – 0.622 0.368 – 0.532

Table 2. Evaluation of the semantic information available in the maps built by each evaluated method
for each environment. The metrics employed refer to the number of true positives (TP), false positives
(FP), false negatives (FN), accuracy, recall, and F1-score. Note that, for this evaluation, we compare
the top-1 class of each object represented in the map with the label of the ground-truth. Best results
are marked in bold.

Lap 1 Lap 2
Environment Method TP FP FN Accuracy Recall F1-Score TP FP FN Accuracy Recall F1-Score

House1 LTC-Mapping 15 4 27 78.95% 35.71% 49.18% 16 4 26 80.00% 38.10% 46.38%
Dengler et al. [13] 5 38 37 11.63% 11.90% 11.76% 6 27 36 18.18% 14.29% 16.00%

House20 LTC-Mapping 10 3 9 76.92% 52.63% 62.50% 11 4 8 73.33% 57.89% 64.71%
Dengler et al. [13] 6 19 13 24.00% 31.58% 27.27% 7 15 12 31.82% 36.84% 34.15%

House21 LTC-Mapping 19 4 25 82.61% 43.18% 56.72% 18 5 26 78.26% 40.91% 52.94%
Dengler et al. [13] 7 33 37 17.50% 15.91% 16.67% 7 41 37 14.58% 15.91% 15.22%

House22 LTC-Mapping 6 2 6 75.00% 50.00% 60.00% 6 3 6 66.67% 50.00% 57.14%
Dengler et al. [13] 6 11 6 35.29% 50.00% 41.38% 6 15 6 28.57% 50.00% 36.36%

House24 LTC-Mapping 11 6 13 64.71% 45.83% 53.66% 10 4 14 71.43% 41.67% 52.63%
Dengler et al. [13] 12 32 12 27.27% 50.00% 35.29% 7 23 17 23.33% 29.17% 25.93%

House28 LTC-Mapping 4 7 17 36.36% 19.05% 25.00% 6 7 15 46.15% 28.57% 33.33%
Dengler et al. [13] 4 19 17 17.39% 19.05% 18.18% 4 20 17 16.67% 19.05% 17.78%

Average LTC-Mapping 10.83 4.33 16.17 69.09% 41.07% 51.18% 11.17 4.50 15.83 69.31% 42.86% 51.19%
Dengler et al. [13] 6.67 25.33 20.33 22.18% 29.74% 25.09% 6.17 23.50 20.83 22.19% 27.54% 24.24%

Looking at Tables 1 and 2 and comparing the results between the first and the sec-
ond lap, it can be noticed that both evaluated methods are able to adapt properly to
dynamic environments, showing LTC-Mapping a slight improvement in comparison with
Dengler et al. [13]. In this context, both methods maintain the accuracy and recall of the
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semantic map over time, which means that the map remains useful after changes in the
environment. Furthermore, the geometric information is refined, reducing the error in
position while increasing the IoU and VIoU values.

5.2. Qualitative Results

In order to qualitatively evaluate the considered methods, an instance of the semantic
map built by each one, layered over the ground-truth information, is shown in Figure 6.
Visually, two relevant aspects can be highlighted where our method outperforms the results
from [13]: (i) the accuracy and completeness in the geometric representation of objects,
including essential 3D information, and (ii) the unique representation in the map of each
perceived physical object, thus successfully dealing with the instance duplication problem.

(a)

(b)

Figure 6. Semantic maps built by each evaluated method in the environment House 20 from the
Robot@VirtualHome ecosystem. (a) LTC-Mapping; (b) Dengler et al. [13].

5.3. Analysis of Computational Time

This section aims to validate the online operation of LTC-Mapping. For this purpose,
we have designed a more restrictive scenario than the one used in the previous experiments,
where a computer running the server side of ViMantic is not available, that is, both server
and client must run on the same computer (presumably the robot onboard one). This way,
for running the experiments described in this section, we have used a laptop equipped
with an Intel Core i7-8750H CPU at 2.20 GHz, 16 GB DDR4 memory RAM at 1333 MHz,
and an Nvidia GeForce GTX 1050M GPU with 4 GB of memory.

Table 3 summarizes the average computational times required by the key stages of our
method. The obtained results show that our method is able to work online at ∼2 Hz even
in this more restrictive scenario, as long as the object detection stage is executed in parallel.
In robots with constrained resources, the time consumed by the detection of objects could
be reduced by downsizing the input images (at the cost of not detecting far objects), or by
replacing the object detection network with a more lightweight one (e.g., YOLO [39], at the
cost of accuracy).
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Table 3. Average computation time per frame for each of the key stages of LTC-Mapping with RGB-D
input images of 640 × 480 resolution. Note that the object detection is computed in parallel to our
pipeline and hence is not included in the total time of LTC-Mapping.

Stage Avg. Time (ms)

Object Modeling 137.58

Data Association 141.91

Map Integration 143.05

Map Maintenance 76.27

Total 498.81

Object Detection (Detectron2) 494.84

6. Conclusions and Future Work

This work contributes a novel object-based semantic mapping method, coined LTC-
Mapping, which continuously adapts to changes in the environment, extending the use-
fulness of the produced maps in long-term robot operation. Object-based maps are incre-
mentally built from a sequence of RGB-D images, fusing partial information from objects
into a global representation. In this sense, for each image, we extract objects and model
them using 3D bounding boxes, whose vertices are annotated with information about their
visibility in the given image. The resulting bounding boxes are enriched with semantic
information (i.e., confidence scores about their belonging classes) and are integrated in the
global model through a data association stage. In this stage, exploiting the information
about the visibility of the bounding boxes’ vertices, we refine and extend the knowledge
available in the semantic map, hence palliating the instance duplication issue. Moreover, we
introduce the concept of non-detection, which refers to the missed detection of previously
detected objects in the location where they should appear. The latter is exploited to keep
the map up-to-date by removing objects with multiple consecutive non-detections, which
indicates that the object has been moved.

The performance of the proposal has been validated with a set of experiments carried
out in different environments of the Robot@VirtualHome ecosystem. In these experiments,
our method reported a superior performance than a state-of-the-art alternative regarding
IoU, position error, and F1-score metrics. Examples of built semantic maps have also
been depicted, which permits to visually check how LTC-Mapping successfully handles
the instance duplication issue. Additionally, its online operation has also been validated,
reporting for the experiments a working frequency of ∼2 Hz.

For future work, we plan to incorporate not only objects to the semantic map, but also
structural elements of the scene (e.g., walls), and to exploit them and the contextual infor-
mation that they provide to refine the map. We also plan to explore the utilization of active
perception methods for the further inspection of partially visible objects. Additionally, we
also consider deploying an extended version of LTC-Mapping including the aforementioned
thoughts in the real-world under a multi-robot scenario.
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