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Abstract: Diabetes mellitus is a chronic condition characterized by a disturbance in the metabolism
of carbohydrates, fats and proteins. The most characteristic disorder in all forms of diabetes is
hyperglycemia, i.e., elevated blood sugar levels. The modern way of life has significantly increased
the incidence of diabetes. Therefore, early diagnosis of the disease is a necessity. Machine Learning
(ML) has gained great popularity among healthcare providers and physicians due to its high potential
in developing efficient tools for risk prediction, prognosis, treatment and the management of various
conditions. In this study, a supervised learning methodology is described that aims to create risk
prediction tools with high efficiency for type 2 diabetes occurrence. A features analysis is conducted
to evaluate their importance and explore their association with diabetes. These features are the
most common symptoms that often develop slowly with diabetes, and they are utilized to train
and test several ML models. Various ML models are evaluated in terms of the Precision, Recall, F-
Measure, Accuracy and AUC metrics and compared under 10-fold cross-validation and data splitting.
Both validation methods highlighted Random Forest and K-NN as the best performing models in
comparison to the other models.

Keywords: diabetes; prediction; Machine Learning; data analysis

1. Introduction

Diabetes mellitus is a common metabolic disease characterized by high blood glucose
levels. In diabetes, the body inefficiently produces little or no insulin. Increased blood sugar
(hyperglycemia) and impaired glucose metabolism occur either as a result of decreased
insulin secretion or due to decreased sensitivity of the body cells to the action of this
hormone (insulin) [1]. Depending on the insulin disorder, diabetes is classified into the
following types:

• Type I diabetes or juvenile diabetes: In this type, insulin-producing pancreatic cells
are destroyed by an autoimmune mechanism (that is, by antibodies produced by the
body itself). It mainly affects young people, insulin is completely absent, and the
patient requires insulin therapy from the beginning [2].

• Type II diabetes: It is characterized by increased resistance of the body to insulin with
the result that what is produced is not sufficient to meet the metabolic needs of the
body. Type 2 diabetes is the most common cause of diabetes in adults. An important
predisposing factor for the development of type 2 diabetes is obesity. Other predis-
posing factors are age and family history. If necessary, anti-diabetic drugs are used.
In case the treatment fails, it is recommended to administer insulin to control these
patients as well [3].

• Gestational diabetes: It is a type of diabetes that first appears during pregnancy
(excluding women with pre-pregnancy diabetes). This type is similar to type 2 diabetes.
Obese women are more likely to develop gestational diabetes. Gestational diabetes
is reversible and resolves after childbirth but can cause perinatal complications and
maternal and neonatal health problems [4].
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Diabetes often has no symptoms. If they do occur, the symptoms may include thirst,
frequent urination, overeating and hunger, fatigue, blurred vision, nausea, vomiting
and weight loss (despite overeating) [5]. Some people are more likely to develop dia-
betes. Various factors may be taken into consideration to evaluate the associated risk for its
occurrence. In particular, people who are more prone to develop diabetes are usually over
45 years and physically inactive in their daily life.

From a gender and waist perspective, men with a waist circumference greater than
102 cm or women with a waist circumference greater than 88 cm have a higher risk for
developing diabetes. Furthermore, a body mass index greater than 30 is an indicator
of obese people. Finally, diabetes relates to the coexistence of other comorbidities, such
as elevated cholesterol levels, history of diabetes in the immediate family environment,
hypertension or cardiovascular disease, peripheral vascular disease, women with polycystic
ovaries, gestational diabetes (especially women who are pregnant with overweight children)
and drugs that cause diabetes (e.g., cortisone) [6,7].

Chronic complications of diabetes can be reduced through regular blood sugar control.
The target organs affected by diabetes are the eyes, the kidneys, the nervous system and
the vessels of the heart, brain and peripheral arteries [8,9].

Early diagnosis of the disease is crucial to avoid unpleasant developments regarding
the patient’s health. Lifestyle changes with proper diet and exercise, as well as medication
under the supervision of appropriate physicians, are the most important elements for an
effective therapeutic approach. The science of medicine has made great steps in reducing
disease mortality and improving patients’ quality of life [10,11].

Proper treatment of patients with diabetes is imperative currently as we deal with the
critical pandemic COVID-19. It should be noted here that patients with diabetes are more
likely to have complications from COVID-19 and have increased mortality [12].

Recent advances in the fields of Artificial Intelligence (AI) and Machine Learning (ML)
may provide clinicians and physicians with efficient tools for the early diagnosis of various
diseases, such as Cholesterol [13], Hypertension [14], COPD [15], Continuous Glucose
Monitoring [16], Short-Term Glucose prediction [17], COVID-19 [18], CVDs [19], Stroke [20],
CKD [21], ALF [22], Sleep Disorders [23], Hepatitis [24] and Cancer [25]. The prediction
of type 2 diabetes is the point of interest in this research work. For this specific disease,
numerous research studies have been conducted with the aid of machine-learning models.

For the purpose of the specific research, we present a type 2 diabetes risk assessment
framework consisting of a plethora of classification models and assuming as risk factors the
gender, age (demographic data) and the most common symptoms that relate to the diabetes
development. The contributions of this manuscript are two-fold. First, after class balancing,
features analysis is conducted, which includes (i) feature ranking to identify their order of
importance in the diabetes class and (ii) capturing their prevalence in the diabetes class.

The second proposition of this paper is a comparative evaluation of several models in
order to identify the ones with the highest performance metrics, which means that they are
the most appropriate to correctly identify those at high risk. The most common performance
metrics are utilized to evaluate the classifiers’ performance, such as the Precision, Recall,
F-Measure, Accuracy and AUC. Performance analysis is conducted after the application of
class balancing, assuming 10-fold cross-validation and data splitting, which demonstrated
that Random Forest and K-NN are the most efficient models.

They achieved an accuracy of 98.59% after SMOTE with 10-fold cross-validation and 99.22%
after SMOTE with a percentage split (80:20) in comparison to the other models. Furthermore,
the proposed models were compared with published research works that used the same
dataset with the same features we relied on. From the results of the experiments, our models
outperformed in all cases.

The rest of the paper is organized as follows. Section 2 describes the relevant works
with the subject under consideration. In addition, in Section 3, a dataset description and
analysis of the methodology followed are made. In addition, in Section 4, we discuss the
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acquired research results. Finally, our conclusions and future directions are outlined in
Section 5.

2. Related Work

Currently, researchers have paid great attention to the development of AI-based tools
and methods suitable for chronic conditions monitoring and control. Specifically, ML
models have been widely utilized to quantify the risk of a disease occurrence assuming
various features or risk factors. In the context of this section, our purpose is to present
relevant works concerning diabetes.

First, the authors in [26] proposed a framework for diabetes prediction consisting of
different machine learning classifiers, such as K-Nearest Neighbor, Decision Trees, Random
Forest, AdaBoost, Naive Bayes and XGBoost and Multilayer Perceptron neural networks.
Their proposed ensembling classifier is the best performing classifier with the sensitivity,
specificity, false omission rate, diagnostic odds ratio and AUC of 0.789, 0.934, 0.092, 66.234
and 0.950, respectively.

Moreover, in [27], the authors utilized machine-learning techniques in the Pima Indian
diabetes dataset to develop trends and detect patterns with risk factors using the R data
manipulation tool. They applied supervised machine learning algorithms, such as linear
kernel Support Vector Machine (SVM-linear), radial basis function, K-Nearest Neighbor,
Artificial Neural Network and Multifactor Mimensionality Reduction, in order to classify
the patients into diabetic and non-diabetic. The SVM-linear model provides the best
accuracy of 0.89 and precision of 0.88. On the other hand, the K-NN model provided the
best recall and F1 score of 0.90 and 0.88, respectively.

In addition, the authors in [28] compared machine-learning-based models, such as
Glmnet, Random Forest, XGBoost and LightGBM, to commonly used regression models for
the prediction of undiagnosed type 2 diabetes. With six months of data available, a simple
regression model performed with the lowest average Root Mean Square Error of 0.838,
followed by Random Forest (0.842), LightGBM (0.846), Glmnet (0.859) and XGBoost (0.881).
When more data were added, Glmnet improved with the highest rate (+3.4%).

Logistic Regression, K-Nearest Neighbor, Support Vector Machine, Naïve Bayes, Deci-
sion Tree and Random forest were applied in [29]. The 10-fold cross-validation was also
applied to test the effectiveness of different models. The experimental results showed that
the accuracy of Random Forest was 94.10% and outperforms the other models.

Additionally, in [30] Logistic Regression is used to identify the risk factors for diabetes
based on p-value and odds ratio (OR). The Naïve Bayes, Decision Tree, Adaboost and Ran-
dom Forest were applied to predict the diabetic patients. Furthermore, three types of
partition protocols (K2, K5 and K10) were considered and repeated in 20 trials. The overall
ACC of the ML-based system is 90.62%. The combination of Logistic Regression-based
feature selection and Random Forest-based classifier gives 94.25% ACC and 0.95 AUC for
the K10 protocol.

Furthermore, in [31], dataset creation, features selection and classification using differ-
ent supervised machine-learning models, such as Naïve Bayes, Decision Trees, Random
Forests and Logistic Regression, were considered. The ensemble Weighted-Voting-Logistic
Regression-Random Forest ML model was proposed to improve the prediction of diabetes,
scoring an Area Under the ROC Curve (AUC) of 0.884.

Finally, published works [32–35] based on [36] dataset. Specifically, in [32] the authors
based on Naive Bayes, Logistic Regression and Random Forest algorithms and, after apply-
ing 10-fold cross-validation and percentage split (80:20) evaluation techniques, Random
forest has been found to have the best accuracy in order to predict diabetes in both cases.
In [33], the authors applied Bayes Network, Naïve Bayes, J48, Random Tree, Random
Forest, K-Nearest Neighbor and Support Vector Machine, and, after applying 10-fold
cross-validation, the K-Nearest Neighbor performed the highest accuracy with 98.07%.

In [34], Naive Byes, Random Forest, Support Vector Machine and Multilayer Percep-
tron were applied. The results showed that the Random Forest provides the highest values
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of 0.975 for precision, recall and F-measure, respectively. Multiplayer perceptron also works
well with 0.96 precision value, 0.963 recall value and 0.964 F-measure value, respectively.
Last, in [35], the authors based on Artificial Neural Network and Random Forest, and after
applying 10-fold cross-validation, the Random Forest outperformed with an accuracy of
97.88%. To sum up, in Table 1 we summarize the aforementioned related works.

Table 1. Related works for the subject under consideration.

Research Work Use Case Dataset Proposed Models Metrics

[26] Diabetes Prediction Pima Indian Diabetes Dataset Soft Weighted Voting
AUC: 0.950

Sensitivity: 0.789
Specificity: 0.934

[27] Diabetes Classification Pima Indian Diabetes Dataset SVM/KNN

SVM: Accuracy 0.89,
Precision 0.88

KNN: Recall 0.9,
F1 score 0.88

[28] Diabetes Detection Not Publicly Available Simple Linear Regression RMSE: 0.838

[29] Diabetes Prediction Pima Indian Diabetes Dataset Random Forest Accuracy: 94.1%

[30] Classification and
prediction of diabetes

National Health and
Nutrition Examination Survey Random Forest Accuracy: 94.25%

AUC: 0.95

[31] Diabetes Detection ELSA Database Weighted Majority Voting AUC: 0.884

[32] Diabetes Prediction [36] Random Forest

Accuracy: 94.1%
10-fold cross-validation

Accuracy: 99%
Percentage split (80:20)

[33] Diabetes Prediction [36] KNN Accuracy: 98.07%

[34] Diabetes Prediction [36] Random Forest
Accuracy, Precision,
Recall, F-Measure:

97.5%

[35] Diabetes Prediction [36] Random Forest Accuracy: 97.88%

3. Materials and Methods

In this section, our analysis will focus on the dataset description, the adopted method-
ology (i.e., data preprocessing, feature ranking and analysis in terms of the target classes),
the risk prediction models and the evaluation metrics.

3.1. Dataset Description

Our experimental results were based on [36] dataset. No specific processing was
performed on this dataset as there were no missing and extreme values. The number of
participants is 520 and all the attributes (16 as input to machine-learning models and 1 for
the target class) are analyzed as follows:

• Age (years) [37]: This feature captures the participant’s age.
• Gender [38]: This feature refers participant’s gender. The number of men is 328

(63.1%) while the number of women is 192 (36.9%).
• Polyuria [39]: This feature captures whether the participant experienced excessive

urination or not. The percentage of participants who had excessive urination is 49.6%.
• Polydipsia [39]: This feature captures whether the participant experienced exces-

sive thirst/excess drinking or not. The percentage of participants who experienced
excessive thirst/excessive alcohol consumption is 44.8%.

• Sudden weight loss [40]: This feature captures whether the participant had an episode
of sudden weight loss or not. The percentage of participants who had an episode of
sudden weight loss is 41.7%.
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• Weakness [41]: This feature captures whether the participant had an episode of feeling
weak. The percentage of participants who had an episode of feeling weak is 58.6%.

• Polyphagia [42]: This feature captures whether the participant had an episode of
excessive/extreme hunger or not. The percentage of participants who had an episode
of excessive/extreme hunger is 45.6%.

• Genital thrush [43]: This feature captures whether the participant had a yeast infection
or not. The percentage of participants who had a yeast infection is 22.3%.

• Visual blurring [44]: This feature captures whether the participant had an episode of
blurred vision or not. The percentage of participants who had an episode of blurred
vision is 44.8%.

• Itching [45]: This feature captures whether the participant had an episode of itch.
The percentage of participants who had an episode of itching is 48.7%.

• Irritability [46]: This feature captures whether the participant had an episode of
irritability. The percentage of participants who had an episode of irritability is 24.2%.

• Delayed healing [47]: This feature captures whether the participant had a noticed
delayed healing when wounded or not. The percentage of participants who had
noticed delayed healing when wounded is 46%.

• Partial paresis [48]: This feature captures whether the participant had an episode of
weakening of a muscle/group of muscles or not. The percentage of participants who
had an episode of weakening of a muscle/group of muscles is 43.1%.

• Muscle stiffness [49]: This feature captures whether the participant had an episode
of muscle stiffness. The percentage of participants who had an episode of muscle
stiffness is 37.5%.

• Alopecia [50]: This feature captures whether the participant experienced hair loss or
not. The percentage of participants who experienced hair loss is 34.4%.

• Obesity [51]: This feature captures whether the participant can be considered obese
or not. The percentage of participants who are considered obese is 16.9%.

• Diabetes: This feature refers to whether the participant has been diagnosed with
diabetes type 2 or not. The percentage of participants who suffer from diabetes type 2
is 61.5%.

All the attributes are nominal except for age, which is numerical.

3.2. Diabetes Risk Prediction

Machine-learning models, more than ever, constitute an important tool for physicians,
clinicians and health carers as they allow them to automate the risk assessment of a disease
occurrence based on several risk factors. Here, the long-term risk of diabetes development
is formulated as a classification task with two target classes c = “Diabetes” (diabetes
occurrence) or c = “Non-Diabetes” (non-occurrence of diabetes). The trained ML models
will be able to predict the class of an unlabeled instance either as Diabetes or Non-Diabetes
based on the input features’ values, and thus the risk of developing diabetes. The main steps
of the adopted methodology include data preprocessing, feature ranking, classification
models training and performance evaluation.

3.2.1. Data Preprocessing

For the development of efficient models suitable for the accurate identification of
Diabetes and Non-Diabetes instances, the non-uniform class distribution was tackled by
employing SMOTE [52]. SMOTE method, based on a 5-NN classifier, was used to create
synthetic data based on 60% of the minority class, i.e., Non-Diabetes, such that the instances
in the two classes are equally distributed (i.e., 50%–50%). This technique is followed to
avoid overfitting as it creates new synthetic similar data from the minority class, which are
not duplicate or replicate of existing minority class data. Then, the synthetic instances are
added to the original dataset.
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3.2.2. Features Importance

Four ranking methods were applied to evaluate the contribution of a feature in the
target class. Their results are summarized in Table 2.

Table 2. Evaluation of feature importance based on the Pearson Correlation, Gain Ratio, Naive Bayes
and Random Forest.

Feature Pearson
Rank Feature Gain

Ratio Feature Naive Bayes
(AUC) Feature

Random
Forest
(AUC)

polyuria 0.7046 polydipsia 0.4317 polyuria 0.3329 polyuria 0.3337

polydipsia 0.6969 polyuria 0.4143 polydipsia 0.3189 polydipsia 0.3189

sudden_weight_loss 0.5017 gender 0.2117 sudden_weight_loss 0.2229 age 0.2537

gender 0.4922 sudden_weight_loss 0.2088 gender 0.2089 sudden_weight_loss 0.2232

partial_paresis 0.4757 partial_paresis 0.1814 partial_paresis 0.2084 gender 0.2092

polyphagia 0.3450 irritability 0.1218 polyphagia 0.1454 partial_paresis 0.2084

irritability 0.3398 polyphagia 0.0895 irritability 0.1174 polyphagia 0.1456

alopecia 0.2771 alopecia 0.0588 alopecia 0.1099 irritability 0.1175

visual_blurring 0.2564 age 0.0533 visual_blurring 0.1098 alopecia 0.1118

weakness 0.2547 visual_blurring 0.0489 weakness 0.1093 visual_blurring 0.1103

genital_thrush 0.1441 weakness 0.0477 age 0.0584 weakness 0.1096

age 0.1124 genital_thrush 0.0209 genital_thrush 0.0468 genital_thrush 0.0471

muscle_stiffness 0.1068 muscle_stiffness 0.0086 muscle_stiffness 0.0324 muscle_stiffness 0.0327

obesity 0.0808 obesity 0.0074 obesity 0.0180 obesity 0.0191

delayed_healing 0.0471 delayed_healing 0.0016 delayed_healing 0.0046 delayed_healing 0.0049

itching 0.0156 itching 0.0002 itching −0.0273 itching −0.0260

As for the first method, namely Pearson correlation coefficient [53], it is used to infer
the strength and direction of the association between the features and the target class
and varies between −1 and 1. More specifically, we observe that a strong correlation of
0.7046 is captured between diabetes and the symptom of polyuria. Furthermore, a moderate
relationship of rank 0.6969, 0.5017 and 0.4922 is noted between polydipsia, sudden weight
loss and gender with diabetes. The same holds for partial paresis feature and diabetes
with a rank of 0.4757. A weaker association is shown to have diabetes with the features
of polyphagia, irritability, alopecia, visual blurring and weakness, while the absence of
correlation occurs with the rest features where the rank is lower than 0.2.

Gain Ratio (GR) method [54] was also employed, which is calculated as GR(x) =
H(c)−H(c|x)

H(x) , where H(x) = −pxlog2(px) (with px denoting the probability of selecting
feature x), H(c) = −pclog2(pc) (with pc be the probability of selecting an instance in
class c) and H(c|x) are the entropy of an instance with feature x, the entropy of class c
and the conditional entropy of feature x given class c, respectively. Gain ratio is used
to determine the relevance of a feature and chooses the ones that achieve the maximal
gain ratio considering the probability of each feature value. Gain ratio, also known as
Uncertainty Coefficient, normalizes the information gain (H(c) − H(c|x)) of a feature
against how much entropy that feature has.

Furthermore, the Naive Bayes and Random Forest classifiers were selected to measure
the importance of the features. Random Forest creates a forest of trees, and per tree
measures a candidate feature’s ability to optimally split the instances into two classes using
the Gini impurity [55]. Naive Bayes calculates the probability of each feature p(x|c) in
order to evaluate their performance at predicting the output variable.

We observe that Naive Bayes and Pearson correlation coefficients assigned the same
order of importance in all features except for the age and genital thrush, which are presented
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in reverse order. Although these methods compute the importance differently, they result
in the same ordering outcomes. The same order may relate to the fact that (i) Naive Bayes
supposes features independence, as their correlation may harm its performance and (ii) the
correlation coefficient measures the strength of each feature’s relationship with the target
class [56].

The features of polydipsia and polyuria are unanimously categorized first while
features of muscle stiffness, obesity, delayed healing and itching are last in the order by
all methods. In the rest features, we observe similarities in the ranking order between
different methods. In conclusion, since all features are among the most common symptoms
for diabetes screening by physicians (including the blood test for verification), the models’
training and validation will be based on all of them.

3.2.3. Features Exploration

In this section, we aim to present the diabetes prevalence in terms of the involved
features. The selected features are among the signs of diabetic patients. The mean age of
participants is 47.7 years, and its standard deviation is 12.2.

In Figure 1, we show the participants’ distribution from both the age group and the
gender perspective. We see that most of the involved women are diabetic (27%) while 22%
of the participants are men with diabetes.

Figure 1. Participants’ distribution in terms of the age group and gender.

In Figure 2, it is shown the participants’ distribution in terms of the features that
capture the signs of polyuria and polydipsia. A total of 38% and 35% of participants who
suffer from diabetes occur these symptoms. Furthermore, a small percentage of 3.28% and
1.6%, respectively, mentioned these signs although they were not diabetics.

Figure 2. Participants’ distribution in terms of polyuria and polydipsia in the balanced dataset.

In Figure 3, we demonstrate the participants’ distribution in terms of the features
that represent sudden weight loss and weakness. A total of 29% and 34% of participants
were diagnosed with diabetes and noted the manifestation of these symptoms, respectively.
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Furthermore, a percentage of 5.47% and a higher portion of 21.41%, respectively, referred
to these signs although they were not diabetics.

Figure 3. Participants’ distribution in terms of sudden weight loss and weakness in the bal-
anced dataset.

Figure 4 illustrates the participants’ distribution in terms of the features that denote
polyphagia and obesity. A total of 29.53% and 9.53% of participants are diabetics and de-
clared an increase in appetite and that they are obese. In addition, a moderate percentage of
12.50% and a small portion of 6.56% mentioned excessive hunger and obesity, respectively,
although they are not diabetics.

Figure 4. Participants’ distribution in terms of polyphagia and obesity in the balanced dataset.

In the following, Figure 5 depicts the irritability and alopecia signs in terms of the
involved classes. We see that irritability and alopecia coexist with diabetes in 17.19% and
12.19% of the participants, correspondingly. However, an important portion of 25.63%
noted the occurrence of alopecia although they were not diabetic.

Figure 5. Participants’ distribution in terms of irritability and alopecia in the balanced dataset.

Moreover, Figure 6 presents the occurrence of genital thrush and itching signs in terms
of the two classes. We see that these features coexist with diabetes in 12.97% and 24.06%
of the participants, correspondingly. However, an important portion of 24.84% noted the
occurrence of itching while 7.19% had genital thrush although they were not diabetic.
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Figure 6. Participants’ distribution in terms of genital thrush and itching in the balanced dataset.

Furthermore, Figure 7 focuses on two other diabetes-related symptoms and specifically
partial paresis and muscle stiffness. It is observed that 30% and 21% of the involvers are
diabetic and manifested theses signs, respectively.

Figure 7. Participants’ distribution in terms of partial paresis and muscle stiffness in the bal-
anced dataset.

Finally, Figure 8 shows the prevalence of diabetes in terms of the features that capture
the occurrence of delayed healing and visual blurring. A total of 50% of those who have
been diagnosed with diabetes (or 25% of the total participants) occur visual blurring, which
owes to the quick change of blood sugar levels from normal to high. Similar outcomes hold
for the coexistence of diabetes and the sign that concern the delay in wound healing, which
relate to problems with the immune system activation.

Figure 8. Participants’ distribution in terms of delayed healing and visual blurring in the bal-
anced dataset.

3.3. Machine-Learning Models

This subsection will provide a brief description of the ML classification models we
relied on for the topic under consideration. Specifically, Naive Bayes, Bayesian Network,
Support Vector Machine, Logistic Regression, Artificial Neural Network, K-Nearest Neigh-
bors, J48, Logistic Model Tree, Random Forest, Random Tree, Reduced Error Pruning Tree,
Rotation Forest, AdaBoostM1 and Stochastic Gradient Descent were selected in order to
evaluate their prediction performance. Here, we note that we assume that each instance i

in the dataset is represented by a features vector xi =
[

xi1, xi2, xi3, . . . , xin

]T
, where n is the

number of the features.
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3.3.1. Naive Bayes

Naive Bayes (NB) [57] classifies an instance xi at that class c for which P(c|xi1, . . . , xin)
is maximized (under the assumption that the features are highly independent). The condi-

tional probability is defined as P(c|xi1, . . . , xin) =
P(xi1,...,xin |c)P(c)

P(xi1,...,xin)
, where P

(
xi1, . . . , xin|c

)
=

∏n
j=1 P

(
xij|c

)
is the features probability given class and P(xi1, . . . , xin), P(c) are the prior

probability of features and class, respectively. The estimated class is derived by maximizing
P(c)∏n

j=1 P
(

xij|c
)

, where c ∈ {Diabetes, Non− Diabetes}.

3.3.2. Bayesian Network

Bayesian networks (BayesNet) [58] are a widely-used class of probabilistic graphical
models. They consist of two parts: a structure and parameters. The structure is a directed
acyclic graph (DAG) over a set of features U that expresses conditional independencies
and dependencies among random variables associated with nodes. The parameters consist
of conditional probability distributions associated with each node. A Bayesian network
classifier calculates arg maxc P(c|x) using pa(x) (the set of parents of x ∈ U) and the
distribution P(U) represented by the Bayesian network, based on

P(c|x) = P(U)/P(x) ∝ P(U) = ∏
x∈U

p(x|pa(x)). (1)

3.3.3. Support Vector Machine

Support Vector Machine (SVM) [59] is used for classification as well as Regression
problems. However, primarily, it is used for classification problems in ML. The goal of
the SVM algorithm is to create the best line or decision boundary that can segregate n-
dimensional space into classes so that we can easily put the new data point in the correct
category in the future. This best decision boundary is called a hyperplane. Support Vector
Machine (SVM) finds the hyperplane that can optimally separate instances into two classes.
The most characteristic Kernel functions are linear, polynomial, radial basis and quadratic.
An instance x′ can be optimally classified based on function:

f (x′) = Sgn

[
M

∑
i=1

αiciK(xi, x′) + b

]
0 ≤ αi ≤ C, ∑ αici = 0, αi ≥ 0, i = 1, 2, · · · , M

(2)

where M is the size of training instances, xi, ci are the training instance feature vector and
its class label, respectively, b is a bias, ci ∈ {1, −1}, K(xi, x′) is the kernel function which
corresponds the input vectors into an expanded feature space.

3.3.4. Logistic Regression

Logistic regression (LR) [60] is one of the most popular ML algorithms, which comes
under the Supervised Learning technique. It is used for predicting the categorical depen-
dent variable using a given set of independent features. Logistic regression predicts the
class output, which can be either Yes or No (0 or 1). The probability an instance to belong
in the Diabetes class is p, thus, 1− p is the probability of an instance belonging to the
Non-Diabetes class. The relationship of log-odds with base b and model parameters βi is
written as:

logb

( p
1− p

)
= β0 + β1xi1 + . . . + βnxin (3)

3.3.5. Artificial Neural Network

A fully connected multi-layer neural network is called a Multilayer Perceptron (MLP) [61].
It consists of three types of layers, such as the input layer, output layer and hidden layer.
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The MLPs are designed to approximate any continuous function and can solve problems
that are not linearly separable. Furthermore, it can use any arbitrary activation function.

3.3.6. K-Nearest Neighbors

The K-nearest neighbors algorithm (KNN) [62] is a non-parametric, supervised learn-
ing classifier that uses proximity to make classifications or predictions about the grouping
of an individual data point.

3.3.7. J48

J48 [63] is a machine-learning decision tree classification algorithm that examines the
data categorically and continuously. It deals with the problems of the numeric attributes,
missing values, pruning, estimating error rates, the complexity of decision tree induction
and generating rules from trees.

3.3.8. Logistic Model Tree

A logistic model tree (LMT) [64] consists of a standard decision tree structure with
logistic regression functions f (xi) = β0 + ∑n

j=1(βixij) at the leaves. LMT produces a
single tree containing binary splits on numeric attributes, multiway splits on nominal ones
and logistic regression models at the leaves, and the algorithm ensures that only relevant
attributes are included in the latter.

3.3.9. Random Forest

Random Forest (RF) [65] is a popular ML algorithm that belongs to the supervised
learning technique. It is used in classification and regression problems. It builds decision
trees on different samples and takes their majority vote for classification and average in
case of regression.

3.3.10. Reduced Error Pruning Tree

Reduced Error Pruning Tree (RepTree) [66] is a fast decision tree learner that builds
a decision/regression tree using information gain as the splitting criterion and prunes it
using a reduced error pruning algorithm.

3.3.11. Random Trees

Random Tree (RT) [67] is an ensemble of multiple decision trees. The Random Trees
node is built on the Classification and Regression Tree methodology. It splits the training
records (through recursive partitioning) into segments with similar output features’ values.
The node initially examines the available input features in order to find the best split
evaluating the impurity index. All splits are binary.

3.3.12. Rotation Forest

Rotation Forest (RotF) [68] is a method for generating classifier ensembles based on
feature extraction. In order to create the training data for a base classifier, the feature
set is randomly split into subsets, and principal component analysis (PCA) is applied to
each subset.

3.3.13. AdaBoostM1

Let Gm(xi), for m = 1, 2, . . . , M, be the sequence of weak classifiers. Our objective is
to build the G(x) = sign(∑M

m=1 αmGm(xi)). The final prediction is a combination of the
predictions from all classifiers through a weighted majority vote. At the first step, m = 1,
the weights are initialized uniformly wl = 1/N. The coefficients αm are computed by the
boosting algorithm and weight the contribution of each respective Gm(xi) giving higher
influence to the more accurate classifiers in the sequence. At each boosting step, the data is
modified by applying weights w1, w2, . . . , wN to each training observation. At step m, the
observations that were misclassified previously have their weights increased [69].
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3.3.14. Stochastic Gradient Descent

Stochastic gradient descent (SGD) [70] is an efficient approach to fitting linear classi-
fiers and regressors under convex loss functions, such as linear SVM and LR. The SGD has
been successfully applied to large-scale and sparse machine learning problems.

3.3.15. Stacking

Stacking is a common approach that is utilized to acquire more accurate predictions
than single models’. Stacking uses the predicted class labels of the base models as input
features to train a meta-classifier that undertakes to find the class label [71].

3.4. Evaluation Metrics

In this research work, various metrics, such as the accuracy, precision, recall, F-Measure
and AUC [72], are examined in order to evaluate the performance of the machine-learning
models. Each metric will help us to identify the strengths and weaknesses of the models.
The desired metrics are calculated with the help of the Confusion matrix. The confusion
matrix consists of the elements true positive (TP), true negative (TN), false positive (FP)
and false-negative (FN). Performance metrics are defined as

Precision =
TP

TP + FP
, Recall =

TP
TP + FN

(4)

F-Measure = 2
Precision · Recall

Precision + Recall
, Accuracy =

TN + TP
TN + TP + FN + FP

(5)

Precision indicates how many of those who are labeled as diabetic actually belong
to this class. Recall shows how many of those who are diabetic are correctly predicted.
F-Measure is the harmonic mean of the precision and recall and captures the predictive
performance of a model. The Accuracy illustrates the proportion of the total number of
predictions that were correct.

To evaluate the distinguishability of a model, the Area under curve (AUC) is exploited.
It is a metric that varies in [0, 1]. The closer to one, the better the ML model performance is
in distinguishing diabetes from non-diabetes instances. If AUC equals one, the ML model
can perfectly separate the instances distribution of two classes. In special case where all
non-diabetes (diabetes) are classified as diabetes (non-diabetes), the AUC equals 0.

4. Results and Discussion
4.1. Experiments Setup

The machine-learning models’ performance is evaluated in the Waikato Environment
for Knowledge Analysis (Weka) [73]. It is developed at the University of Waikato, New
Zealand and is free software. Furthermore, it provides a library of various models for
data preprocessing, classification, clustering, forecasting, visualization, etc. The computing
system in which the experiments were conducted has the following characteristics: 11th
Gen Intel(R) Core(TM) i7-1165G7 @ 2.80 GHz 2.70 GHz, 16 GB, Windows 11 Home, 64-bit
Operating System and x64-based processor. For our experiments, 10-fold cross-validation
and percentage split (80:20) were applied to measure the models’ efficiency in the balanced
dataset of 640 instances. In Table 3, the parameters’ settings of the considered models
are shown.

4.2. Evaluation

In this research work, various ML models, such as BayesNet, NB, SVM, LR, ANN,
KNN, J48, LMT, RF, RT, RepTree, RotF, AdaBoostM1 and SGD and Ensemble method
(Stacking), are evaluated in terms of the accuracy, precision, recall, F-measure and AUC.

In Table 4, we illustrate the performance of the models under consideration after
applying SMOTE with 10-fold cross-validation. From the results of the experiments, we
can see that the KNN and RF models present the best prediction accuracy with 98.59%
compared to the corresponding proposed models. Furthermore, the RotF and RF models
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have an AUC of 99.9%. It should be noted that in SMOTE with 10-fold cross-validation,
all our models have an accuracy greater than 88.75% (BayesNet) and an AUC greater than
94.2% (SGD).

Table 3. Machine Learning models’ settings.

Models Parameters

BayesNet
estimator: simpleEstimator

searchAlgorithm: K2
useADTree: False

NB useKernelEstimator: False
useSupervisedDiscretization: False

SVM
eps = 0.001

gamma = 0.0
kernel type: radial basis function

loss = 0.1

LR ridge = 10−8

useConjugateGradientDescent: False

ANN
hidden layers: ‘a’
learning rate = 0.3
momentum = 0.2

training time = 500

KNN K = 1
Serach Algorithm: LinearNNSearch

with Euclidean

J48 reducedErrorPruning: False
savelnstanceData: False

subtreeRaising: True

LMT
errorOnProbabilities: False

fastRegression: True
numInstances = 15

useAIC: False

RF maxDepth = 0
numIterations = 100

numFeatures = 0

RT maxDepth = 0
minNum = 1.0

minVarianceProp = 0.001

RepTree maxDepth = −1
minNum = 2.0

minVarianceProp = 0.001

RotF classifier: J48
numberOfGroups: False

projectionFilter: PrincipalComponents

AdaBoostM1 classifier: DecisionStump
resume: False

useResampling: False

SGD
epochs = 500

epsilon = 0.001
lamda = 10−4

learningRate = 0.01
lossFunction: Hinge loss (SVM)

Stacking Base Models: RF, KNN
Meta-model:LR
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Table 4. Performance evaluation after SMOTE with 10-fold cross-validation.

Accuracy Precision Recall F-Measure AUC

BayesNet 88.75 ± 5.04% 88.9 ± 4.8% 88.8 ± 4.9% 88.7 ± 5.1% 95.6 ± 2.1%

NB 88.91 ± 5.02% 89.1 ± 4.7% 88.9 ± 5% 88.9 ± 5.1% 95.5 ± 2.4%

SVM 95.62 ± 2.06% 95.7 ± 1.8% 95.6 2.1% 95.6 ± 2.1% 95.6 ± 2.1%

LR 93.44 ± 2.64% 93.4 ± 2.6% 93.4 ± 2.6% 93.4 ± 2.7% 97.6 ± 1.4%

ANN 96.45 ± 2.00% 97.3 ± 2.40% 97.3 ± 2.40% 97.2 ± 2.30% 99.1 ± 2.60%

KNN 98.59 ± 1.72% 98.6 ± 1.62% 98.6 ± 1.70% 98.6 ± 1.70% 98.9 ± 1.30%

J48 97.19 ± 2.74% 97.2 ± 2.70% 97.2 ± 2.70% 97.2 ± 2.70% 97.2 ± 2.20%

LMT 97.19 ± 1.61% 97.2 ± 1.60% 97.2 ± 1.60% 97.2 ± 1.60% 98.3 ± 1.30%

RF 98.59 ± 1.15% 98.6 ± 1.10% 98.6 ± 1.12% 98.6 ± 1.12% 99.9 ± 0.20%

RT 97.97 ± 2.09% 98 ± 2.10% 98 ± 2.10% 98 ± 2.10% 98 ± 2.10%

RepTree 93.12 ± 3.23% 93.2 ± 3.00% 93.1 ± 3.20% 93.1 ± 3.20% 96.4 ± 2.30%

RotF 98.28 ± 2.01% 98.3 ± 1.17% 98.3 ± 2.00% 98.3 ± 2.00% 99.9 ± 0.20%

AdaBoostM1 90.78 ± 2.59% 91.2 ± 2.40% 90.8 ± 2.60% 90.8 ± 2.60% 97.1 ± 2.10%

SGD 94.22 ± 2.56% 94.3 ± 2.40% 94.2 ± 2.60% 94.2 ± 2.60% 94.2 ± 2.60%

Stacking 98.49 ± 1.10% 98.5 ± 1.10% 98.5 ± 1.11% 98.5 ± 1.11% 99.7 ± 0.20%

Moreover, in Table 5, we summarize related works based on the dataset [36] after
applying 10-fold cross-validation on the same features we relied on but without SMOTE.
Our proposed models after SMOTE and 10-fold cross-validation showed better performance
in terms of accuracy compared to the related works as shown in Table 5.

In addition, in Table 6, we depict the performance of ML models in terms of accuracy,
recall, precision, F-measure and AUC after applying SMOTE and percentage split (80:20).
Both in this case, the KNN and RF achieved the best performance in relation to the rest
models with an accuracy of 99.22%. Furthermore, the RF model and the Stacking method
performed an AUC of 100%. Our proposed models have excellent AUC rates greater than
93.7% (SGD) and accuracy greater than 88.28% (BayesNet).

Furthermore, in Table 7, we outline the accuracy of our proposed models, such as NB,
LR J48 and RF, after applying SMOTE and percentage split (80:20). The same table shows
the results of the work [32] after applying a percentage split (80:20) on the same features
we relied on but without SMOTE. We observe that our proposed models showed better
accuracy but with a small percentage gap of 0.22–1.97%.

Table 5. Model comparison in terms of accuracy with 10-fold cross-validation.

Accuracy

Proposed models [32] [33] [34] [35]

BayesNet 88.75% - 86.92% - -

NB 88.91% 87.4% 87.11% 87.1% -

SVM 95.62% - 92.11% 92.1% -

LR 93.44% 92.4% - - -

ANN 96.45% - - 96.3% 96.34%

KNN 98.59% - 98.07% - -

J48 97.19% 95.6% 95.96% - -

RF 98.59% 97.4% 97.5% 97.5% 97.88%

RT 97.97% - 96.15% - -
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Table 6. Performance evaluation after SMOTE with percentage split (80:20).

Accuracy Precision Recall F-Measure AUC

BayesNet 88.28% 88.3% 88.3% 88.3% 95.9%

NB 89.06% 89.1% 89.1% 89.1% 95.8%

SVM 97.66% 97.7% 97.7% 97.7% 97.6%

LR 92.97% 93% 93% 93% 98.5%

ANN 97.66% 97.7% 97.7% 97.7% 99.9%

KNN 99.22% 99.2% 99.2% 99.2% 98.9%

J48 95.53% 95.5% 95.5% 95.5% 96.1%

LMT 96.87% 96.9% 96.9% 96.9% 99.4%

RF 99.22% 99.2% 99.2% 99.2% 100%

RT 97.66% 97.7% 97.7% 97.7% 97.7%

RepTree 92.19% 92.2% 92.2% 92.2% 95.2%

RotF 97.66% 97.7% 97.7% 97.7% 99.9%

AdaBoostM1 92.97% 93% 93% 93% 97.5%

SGD 93.75% 93.8% 93.8% 93.8% 93.7%

Stacking 99.20% 99.2% 99.2% 99.2% 100%

Table 7. Model comparison in terms of accuracy with percentage split (80:20).

Accuracy

NB LR J48 RF

Proposed models 89.06% 92.97% 95.53% 99.22%

[32] 88% 91% 95% 99%

Finally, we note a limitation of this research work. This study was based on a publicly
available dataset. The dataset we relied on does not come from a hospital unit or institute,
which could give us richer information data models with different characteristics, such
as biochemical measurements that record a detailed health profile of the participants.
Acquiring access to such data is time-consuming and difficult for privacy reasons.

5. Conclusions

The habits and lifestyle of the modern world are the results of the growing incidence
of diabetes. Medical professionals now have the opportunity, with the contribution of
machine-learning techniques, to assess the relative risk and provide appropriate guidelines
and interventions for the management and treatment or prevention of diabetes.

In this research article, we applied several machine-learning models in order to identify
individuals at risk of diabetes based on specific risk factors. Data exploration through
risk factor analysis could help to identify associations between the features and diabetes.
Performance analysis showed that data pre-processing is a major step in the design of
efficient and accurate models for diabetes occurrence.

Specifically, after applying SMOTE with 10-fold cross-validation, the Random Forest
and KNN outperformed the other models with an accuracy of 98.59%. Similarly, applying
SMOTE with a percentage split (80:20), the Random Forest and KNN outperformed the
other models with an accuracy of 99.22%. In both cases, applying SMOTE, our proposed
models were superior to the related published research works based on the [36] dataset
with the same features we relied on in terms of accuracy.

In future work, we aim to extend the machine-learning framework through the use of
deep-learning methods by applying a Long-Short-Term-Memory (LSTM) algorithm and
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Convolutional Neural Networks (CNN) in the same dataset and comparing the results in
terms of accuracy with relevant published works.
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