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Abstract: Power fault monitoring based on acoustic waves has gained a great deal of attention in
industry. Existing methods for fault diagnosis typically collect sound signals on site and transmit them
to a back-end server for analysis, which may fail to provide a real-time response due to transmission
packet loss and latency. However, the limited computing power of edge devices and the existing
methods for feature extraction pose a significant challenge to performing diagnosis on the edge. In
this paper, we propose a fast Lightweight Fault Diagnosis method for power transformers, referred
to as LightFD, which integrates several technical components. Firstly, before feature extraction, we
design an asymmetric Hamming-cosine window function to reduce signal spectrum leakage and
ensure data integrity. Secondly, we design a multidimensional spatio-temporal feature extraction
method to extract acoustic features. Finally, we design a parallel dual-layer, dual-channel lightweight
neural network to realize the classification of different fault types on edge devices with limited
computing power. Extensive simulation and experimental results show that the diagnostic precision
and recall of LightFD reach 94.64% and 95.33%, which represent an improvement of 4% and 1.6%
over the traditional SVM method, respectively.

Keywords: power transformer; Mel Frequency Cepstrum Coefficient (MFCC); sound signal; fault
diagnosis; spectrogram

1. Introduction

In recent decades, the rapid growth of the global energy industry along with economic
development and continuous social progress has led to an increasing demand for electric
energy [1]. Among the power equipment, power transformers, as the primary source
of changing voltage, are one of the most important components to maintain the robust
operation of power systems. They play an indispensable role in the power transmission and
distribution systems [2]. Transformers are subject to various types of failures throughout
their lifecycle, including production, installation, maintenance, and prolonged operation.
Once a fault occurs, it may not only cause severe damage to the equipment itself, but also
pose a significant threat to the safety of people and the reliability of power supply [3,4].
Therefore, it is an important problem to detect faults and identify their types with high
accuracy in a timely manner. Therefore, appropriate measures can be taken to mitigate the
negative effects.

Existing methods for fault diagnosis largely rely on special equipment such as contact
sensors. Such methods increase the cost of fault diagnosis and, more importantly, may be
affected by high voltage and strong electromagnetic fields and other complex working en-
vironments, hence interfering with the normal operation of the system. The inner winding
and iron core of the transformer realize the important function of electromagnetic exchange.
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The internal vibration of the operating transformer, including the periodic vibration caused
by the magnetostrictive effect of the core silicon steel sheet and the winding vibration gener-
ated by the electric potential, radiates different amplitudes and frequencies of the vibration
signal to the surroundings [5,6]. In particular, in high-voltage and strong electromagnetic
environments, various faults may occur and produce different sounds. Fault diagnosis
through sound signals presents a promising solution with multifold advantages. First of
all, it supports non-contact installation and facilitates signal acquisition with small and
simple equipment. Furthermore, acoustic signals do not generate electromagnetic fields
and do not affect the normal operation of the equipment. In fact, acoustic recognition has
been widely used in sound verification [7,8], healthcare [9–11], fault diagnosis [12–14], and
many other applications.

Acoustic signal-based fault diagnosis typically consists of two steps, i.e., sound feature
extraction and fault type classification. For sound feature extraction, a frequency domain
transformation is typically required to extract feature parameters for recognition. Con-
sidering the similarity between the sound signals of power transformers and the human
voice, commonly used feature parameters include the Mel Frequency Cepstrum Coefficient
(MFCC), Linear Predictive Cepstrum Coefficient (LPCC) [15,16], Cochlear Filter Cepstral
Coefficient (CFCC) [17], and perceptual linear prediction [18]. Sound recognition tech-
nology has been widely used to identify speakers. It creates a feature vector library by
extracting the feature vectors of sound signals of different speakers and then compares
the similarity of the feature vectors to determine the speaker’s identity. Since the sound
signal produced by a working transformer is somewhat similar to the human voice, it
is possible to effectively extract the characteristics of transformer noise using the typical
parameters describing the human voice. Transformer sound signals in operation contain
abundant equipment information and are closely related to the transformer structure and
operation state [19]. MFCC effectively reveals the time domain and frequency domain
features of fault sound signals, so it is applied to the feature extraction of transformer sound
signals in this paper. However, MFCC contains the static information of sound signals, but
during a transformer fault, the relevant parameters constantly change towards the fault
state. Therefore, we also need to extract the dynamic features of sound signals.

An acoustic classifier is a critical component for sound recognition. In recent years,
many machine learning algorithms such as Artificial Neural Networks (ANNs), Support
Vector Machines (SVMs) [20,21], and decision trees have been studied in the literature as
promising solutions to transformer fault detection. Among them, the combination of signal
processing techniques and support vector machines has attracted increasing attention
from researchers due to its ability to tackle challenging problems such as “dimensional
catastrophe”, “overfitting”, and local minima. Although ANNs have strong capabilities
of self-learning and parallel processing, they converge rather slowly and sometimes may
fall into local optima [22]. In contrast, Deep-Learning (DL)-based algorithms enable auto-
matic representation and abstract feature extraction due to fast iterations and GPU-based
parallel implementation.

Deep learning has been widely used in human–computer interaction classification. At
present, most of the existing work focuses on deep learning frameworks and uses a general
network for recognition and classification. The sound-based fault detection methods can be
divided into two categories according to the data processing workflow in the system. The
first category collects signals through sound sensors and transmits them to the server [23,24].
This process may suffer from packet loss and transmission delay as data acquisition and
transfer are subject to wild fluctuations in complex operating environments. This poses a
significant challenge for the accuracy and timeliness of fault diagnosis. The second category
is in situ diagnosis using a lightweight system deployed on low-end equipment to avoid
data transmission. Note that the complexity of a neural network largely determines the
performance of the model. As the network complexity increases with more parameters, the
required computational effort and the demand for training samples also increase. Existing
techniques for parameter compression usually degrade the performance of the model. Since
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low-end edge devices have limited computing power, there is a greater need to design a
lightweight system using a simple model for fast in situ diagnosis on edge devices.

In this paper, we propose to develop a real-time fault diagnosis system with edge
devices for power transformers, referred to as LightFD, for fast fault detection and accurate
type identification. LightFD integrates a Hamming-cosine window to reduce spectral
leakage, a new method for multidimensional spatio-temporal feature extraction. A parallel
dual-layer, dual-channel lightweight neural network would address the issue of the limited
computing power of edge devices. The design of this system faces the following challenges.

How do we design a suitable window function? Before performing feature extrac-
tion of the sound signal, we need to decide an appropriate window function to multiply the
framing signal with the original sound signal in the time domain. This window function
has a great impact on the performance of transformer fault diagnosis. Ideally, the window
spectrum should have a narrow main lobe and a side lobe with a fast decay. We design a
Hamming-cosine window for each frame for further processing.

How do we fully extract the dynamic information of fault sound signals? In gen-
eral, transformers progressively malfunction over a certain period. Therefore, the relevant
parameters are constantly changing towards the fault state. Dynamic features also contain
rich transformer state information, which can be used to improve the accuracy of trans-
former fault diagnosis. It is important to extract and filter dynamic features from different
perspectives to improve the quality of input data for the subsequent lightweight neural net-
work. To address this challenge, we designed a multidimensional spatio-temporal feature
extraction method. Relative-MFCC (the dynamic feature of sound signals) is designed on
temporal feature extraction to fully extract dynamic features.

How do we design a neural network with less complexity? The complexity of a
neural network can directly affect the accuracy of the model. Lightweight structures
(through various techniques such as simplifying the hierarchy, compressing the number of
parameters, etc.) usually degrade the accuracy of the model. Due to the limited processing
power and storage space of edge devices, the neural network deployed on them must be
lightweight. To reduce the network complexity, we design a parallel dual-channel network
to extract spatial features and temporal features. We construct lightweight point-state
convolutional units as the main components of the dual-layer, dual-channel network to
further reduce the complexity of the network. In addition, due to the redundancy of neural
networks, we design a linear variation method to extend the number of features.

We deploy the proposed LightFD system on a Raspberry Pi 4B device and conduct
experiments for performance evaluation. We use non-contact sensors to collect sound
signals emitted by the transformer, solving the interference problem caused by directly
attaching sensors to the exterior surface of the transformer being monitored. The Rasp-
berry Pi device receives sound signals from non-contact sensors and then performs fault
diagnosis of the transformer. Extensive results show that LightFD achieves a recognition
precision and recall of up to 94.64 and 95.33%, respectively, in a relatively short time, which
represent an improvement of 4% and 1.6% compared with the traditional SVM method.
The contributions of our work are summarized as follows:

• Our proposed system identifies six types of faults: large load start-up (Large load
start-up is a special condition in transformer operation, and the frequent occurrence of
this condition will make transformer faults increase. Therefore, we include large load
start-up as a diagnostic object.), severe internal short circuit, internal breakdown short
circuit, poorly grounded iron core, loose silicon steel or coil, and high voltage. When
the system diagnoses a fault, it can generate early warnings about various states of
the transformer in a timely manner.

• We design a multidimensional spatio-temporal feature extraction method to ob-
tain and fuse the dynamic features of faulty sound signals from different angles
in multiple dimensions.

• We design a lightweight network for low-end edge equipment to enable quick identi-
fication of transformer faults.
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The rest of the paper is organized as follows. In Section 2, we review the related
work. In Section 3, we present the system architecture and detail the design of components
techniques. In Sections 4 and 5, we present the implementation details and the evaluation
results. We conclude our work in Section 6.

2. Related Work
2.1. Conventional Approaches

The emergence of acoustic recognition has facilitated the development of transformer
fault detection, which can be monitored by a variety of common methods of sound diagnos-
tics for transformer fault types. The commonly used methods are subjective evaluation and
estimation, acoustical intensity analysis, fast Fourier analysis, wavelet analysis, Empirical
Mode Decomposition (EMD) [25], etc., which can identify some types of transformer faults.
For example, the subjective evaluation and estimation method refers to the use of a person’s
own hearing to determine the type of equipment fault, which is somewhat subjective.
The sound intensity analysis method uses the mutual spectrum method to measure the
sound intensity of the equipment by collecting signals from two sensors simultaneously.
Kendig et al. [26] proposed a new method for sound diagnosis by the “sound intensity
measurement method”. This method can detect the operating condition of transformers in a
certain background environment, but it is difficult to classify the fault type. Sykora et al. [25]
proposed to use the EMD method to decompose the transformer sound signal and obtain
the marginal spectrum by the Hilbert transform, which can compare and contrast the
acoustical signal of the transformer in normal and overload conditions. Considering the
similarity between the acoustic signal of the power transformer and human sound and
the good anti-noise ability of the human auditory system, it is increasingly important to
detect abnormal states of power transformers using acoustic signals. In [27], the MFCC
component of a dry transformer acoustic signal was calculated and optimized. According
to the optimized MFCC characteristic parameters, the transformer core loosening was
identified by the Vector Quantization (VQ) algorithm.

In the past few decades, many hand-crafted features and conventional machine learn-
ing approaches have been proposed. The traditional machine-learning-based approaches
for sound signal classification are shallow models with manually constructed features as the
input. The most commonly used algorithms in classification tasks are Logistic Regression
(LR) [28], Support Vector Machine (SVM) [20,21], Random Forest (RF) [29,30], Bayesian
Network (BN) [31], and K-Nearest Neighbors (KNN) [32]. In addition, researchers often
use hybrid techniques or model integration to enhance the overall model performance.

The most common acoustic feature inputs to these models are MFCC and LPCC-related
features. The input features for these models can be found in [33,34]. These features are
considered to be suitable indicators of short-term and long-term changes in sound signals.

2.2. Deep Learning Approaches

In recent years, the Convolution Neural Network (CNN) has been applied to fault
diagnosis. Compared with traditional manual engineering features, the CNN can auto-
matically extract effective features from input data through multi-level convolution and
pooling operations, which is often more efficient than manually selected features. In view
of the good performance of the CNN, the model is introduced in one-dimensional signal
fields such as speech, voice recognition, and fault diagnosis [35,36]. Zhang et al. [37] pre-
sented a novel transformer fault diagnosis method using an Internet of Things (IoT)-based
monitoring system and ensemble machine learning (EML). This kind of method is more
affected by the network environment and is prone to packet loss and delay. In addition,
the Recursive Neural Network (RNN) has also achieved great success due to the timing of
signals. Do et al. [38] proposed a CNN to classify six kinds of discharge defects in power
transformers. Dang et al. [39] proposed a fault diagnosis method based on the GFCC sound
pattern spectrum and the CNN in order to better identify the normal state of the power
transformer by sound signals.
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Transformers usually fail gradually, not suddenly. Accordingly, the related parameters
change continuously towards the fault state. Time analysis methods can be used to model
the sequential dependence of state parameters with time. Tian and Zuo [40] developed a
gearbox health state prediction method based on an Extended Recursive Neural Network
(ERNN). Experimental results showed that the ERNN method can effectively evaluate the
health status of the gearbox and play a role in fault prediction. Kong et al. [41] proposed a
framework based on the LSTM RNN to solve the short-term load forecasting problem of
an individual electric customer. The Long Short-Term Memory (LSTM) network [42,43],
as an improved structure of the RNN, alleviates the problems of gradient dissipation
and explosion in the long-term modeling process of the RNN to a certain extent and has
attracted the attention of academic circles.

3. System Overview

LightFD is a real-time power transformer fault diagnosis system, whose architec-
ture diagram is shown in Figure 1. It consists of three components: signal pre-processing,
spatio-temporal feature extraction, and parallel dual-layer, dual-channel lightweight neural-
network-based classification. Pre-processing consists of pre-emphasis, framing, and win-
dowing. We used acoustic features obtained from short-term Fourier transformation as
acoustic spectrograms and Filtered-MFCC (FMFCC) by splicing and filtering static features
with dynamic features. Spectrograms and FMFCC are visual features and time-dependent
features, respectively. Finally, we designed a parallel dual-layer, dual-channel lightweight
neural network for edge devices to guarantee the speed and accuracy of diagnosis.

The overview of Transformer monitoring based on acoustical signal analysis
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Figure 1. System overview.

Transformer sound signals have time-varying, non-linear characteristics due to the
influence of load current and some uncertain interference factors. To obtain relatively
smooth transformer acoustic signals, we pre-emphasized the signals to enhance the effect
of high-frequency, frame pre-emphasized sound signals by dividing them into short-time
stable frame segments and designed a hybrid Hamming-cosine window to further process
each frame to reduce spectral leakage [44].

The sound signal generated during transformer operation contains rich information,
which can reflect the working status and fault condition to a certain extent. In this compo-
nent, we implement MFCC-based time sequence feature extraction and spectrogram-based
visual feature extraction of sound signals, respectively. The obtained MFCC reflects only
the static feature of sound signals. To reflect and extract the dynamic features of fault sound
signals, we considered utilizing ∆MFCC, which is the first-order differential MFCC. In
addition, we designed a Relative-MFCC (RMFCC) that reflects the dynamic trend of sound
signals. We observed that the direct superposition of the above features (36 dimensions)
increases the computational effort and some redundant features might be present. There-



Sensors 2022, 22, 5296 6 of 21

fore, we used the Fisher ratio to filter the extracted static and dynamic features to improve
diagnosis performance. We refer to the Filtered-MFCC features as FMFCC.

Deep learning networks involve the heavy computational overhead of convolutional
operations and result in the redundancy of extracted features. To address the problem of
the limited processing power of edge devices and to save transmission time in the process,
we designed a parallel Dual-layer, Dual-channel Lightweight neural network (LightDD) to
learn the visual and time-dependent features of transformer faults. In LightDD, we extract
the features of each channel (note that this channel is not the channel in the dual-channel
network), perform a linear transformation, and finally, use the point convolution method
for multi-channel fusion. In this network, BiLSTM uses acoustic Filtered-MFCC (FMFCC)
feature sequences as the input, while another channel uses the spectrogram as the input.
Finally, the outputs of the parallel neural network are fully connected for feature fusion.
Compared with traditional networks, our lightweight neural network has the advantages
of fewer parameters and less computation.

4. Proposed Fault Diagnosis Method

In this section, we present the design of our proposed method with three major
components: (i) pre-process sound signals of transformer faults; (ii) extract the features
of sound signals and obtain the spatial visual features and time-dependent features of
sound signals, respectively; (iii) design a lightweight neural network to classify transformer
fault types.

4.1. Pre-Processing

Sound signals’ pre-processing is the basis of the entire fault diagnosis system, including
signal pre-emphasis, framing, and windowing.

In fact, the power spectrum of speech, music, etc., decreases with increasing frequency,
and most of its energy is concentrated in the low-frequency range. Therefore, the generated
signal amplitude is caused by the low-frequency components of the signal because there is
a significant attenuation in the high-frequency components of the signal [45]. Pre-emphasis
is a type of processing that compensates for the high-frequency components of the original
signal. The pre-emphasis filter H(Z) increases the high-frequency components of the
sound signal to be transmitted, hence pre-compensating for the attenuation in these high-
frequency components. After the pre-emphasis filtering, random noise can be effectively
suppressed. We used a first-order high-pass filter [46] to implement pre-emphasis in
signal pre-processing:

H(Z) = 1− µZ−1, (1)

where the coefficient µ is typically within the range of (0.9, 1).
The sound signal is a non-stationary signal [47] that usually remains stable between

50 and 200 ms. Therefore, features are extracted for frames whose frame size is within this
range. To achieve a smooth transition between frames, a 50% overlap between consecutive
frames is usually used in feature extraction. In our work, a frame is considered as a
sample. The process of framing is to divide the pre-emphasized signal into multiple
samples. Figure 2 shows the relationship between frame shift and frame length. A window
function [48] is a function used to reduce signal interruption at the beginning and end of
each frame. This is done by considering the next frame and integrating the frequency lines,
thus making each frame smoothly interconnected.

The window function, which is mainly used to reduce spectral leakage and improve
the fence effect [49], transforms the acquired signal block from a non-periodic signal to a
periodic signal by weighting the time domain signal to meet the periodicity requirement of
the Fourier transformation. As windowing is equivalent to convolution in the frequency
domain of the measured signal, the result is equivalent to a weighted superposition of
the window function spectrum after translating it to the original signal spectrum. As the
original frequency domain signal along the window function frequency domain leaks out,
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the window function of the main flap width and side flap attenuation directly affects the
performance of the window function.

Frame shift Frame length

Frame k

Frame k+1

Figure 2. Relationship between frame shift and frame length.

The window function is characterized by its main lobe width and side lobe decay
speed. The main lobe width and the attenuation of the side lobe affect the frequency
resolution simultaneously: the smaller width of the main lobe and the faster the attenuation
of the side lobe, the stronger the resolution of the frequency and the smaller the degree of
leakage [50]. Therefore, to balance the tradeoff between the width of the main lobe and
the width of the side lobe, as shown in Figure 3, we chose the Hamming-cosine window
function [51], which has a wider main lobe than the Hamming window function, but a side
lobe that decays faster.
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Figure 3. Comparison of Hamming and Hamming-cosine window.

Figure 3 shows a comparison of the Hamming window (Hw) and the Hamming-
Cosine window (HCw) in the time and frequency domains. We observed that the main lobe
of HCw is wider than that of Hw, but the side lobe is more attenuated. The experimental
results [51] show that HCw has a better recognition performance.



Sensors 2022, 22, 5296 8 of 21

4.2. Spatio-Temporal Feature Extraction

Feature extraction of sound signals is a key step in the fault diagnosis system and
plays a decisive role in the classification performance. We extracted the temporal (time-
dependent) and spatial visual features of sound signals using the FMFCC and spectrogram,
respectively, as detailed below.

4.2.1. Spatial Feature Extraction

The sensitivity of the human auditory system is unstable and varies with frequency.
The Mel frequency domain describes the nonlinear properties of human ear frequencies [52],
which can be represented by the following sound signal frequency relationship:

fmel = 2595 log(1 + f /700), (3)

where fmel is the Mel scalar frequency and f is the frequency of the actual signal. We de-
signed an MFCC-based feature extraction algorithm, which consists of several major steps.

Fast Fourier Transform (FFT): When the operating state of the transformer changes,
the energy distribution of its sound signals in the frequency domain also changes. A fast
Fourier transform is performed on the pre-processed signal. The obtained spectrograms
are used as the extracted spatial visual feature:

X(k) =
N−1

∑
n=0

x(n)e−j2πnk/N , (0 ≤ k ≤ N) (4)

where X(k) is the spectrogram of the sound signals, x(n) is the windowed signal, and N is
the number of sampling iterations of the Fourier transform.

4.2.2. Temporal Feature Extraction

The steps commonly used to extract the MFCC include power spectrum calculation,
the Mel triangle filter, the logarithmic spectrum, and the discrete cosine transform.

Power spectrum calculation: Taking the signal spectrogram X(k) as the square of its
modulus, the power spectrum P(k) [53] is obtained as:

P(k) =
1
N
|X(k)|2, (5)

Mel triangle filter: The Mel spectrum is obtained from the triangular filter set of P(k).
At each frequency, the product of P(k) and the filter Hm(k) is calculated. M triangular
filters are defined in the filter bank, which are linear in the Mel frequency coordinates. The
span of each triangular filter in the filter bank corresponds to the Mel scale. The frequency
response of the triangular filter Hm(k) [54] is calculated as:

Hm(k) =


0, k < f (m− 1),

k− f (m−1)
f (m)− f (m−1) , f (m− 1) ≤ k ≤ f (m),

f (m+1)−k
f (m+1)− f (m)

, f (m) ≤ k ≤ f (m + 1),
0, k > f (m + 1),

(6)

where m = 1 , 2 , . . . , 24, k = 1 , 2 , . . . , N/2− 1, and f (m) is the center frequency. Here,
we have

M−1

∑
m=0

Hm(k) = 1. (7)

Logarithmic spectrum S(m): In order to make the results more robust to noise and
estimation error, the logarithmic energy spectrum S(m) [9] of each frame is obtained by the
logarithmic operation as:
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S(m) = ln

(
N−1

∑
k=0
|P(k)|2Hm(k)

)
, (0 ≤ m ≤ M), (8)

where Hm(k) is the filter bank, P(k) is the power spectrum, S(m) is the logarithmic spec-
trum, and M is the number of filter banks.

Discrete Cosine Transform (DCT): The DCT is performed on the above logarithmic
spectrum to obtain the Mel frequency cepstrum coefficients C(n) [9]:

C(n) =
N−1

∑
m=0

S(m) cos(πn(m− 0.5)/M), n = 1, 2, . . . , L, (9)

where M is the number of filter banks and L represents the order of the MFCC.
The MFCCs only reflect the static feature of sound signals. Since the human ear is

more sensitive to the dynamic features of sound signals, the dynamic information of the
sound spectrum also contains rich acoustic information, which can be used to improve the
accuracy of the transformer fault diagnosis system.

We used the first-order difference (∆MFCC) [9] of the MFCC and a relative feature
(RMFCC) to represent the dynamic feature of sound signals, which reflects the changing
tendency of the transformer operating state, calculated as:

d(n) =
1√

∑i=k
i=−k i2

i=k

∑
i=−k

i · C(n + i), (10)

r(n) =


C(n), n < k,
C(n)−C(n−i)
C(n+i)−C(n) , others ,
C(n)− C(n− 1), n > L− k,

(11)

where d(n) is the nth first-order difference, C(n + i) is a frame of acoustic parameters, d(n)
is the first difference of the MFCC, and r(n) is the nth order relative MFCC feature. The
value of k was set to 2 in our work.

The above feature parameters characterize different perspectives of sound signals from
a power transformer. Considering the variation of the transformer’s operating state, we
combined both static and dynamic features to describe the transformer’s sound signals. Di-
rectly superimposing the above features (36 dimensions) would increase the computational
effort, as well as the number of dimensions of the feature parameters. Some parameters
may contain less information, and some contain redundant information, which may affect
the result of fault diagnosis if the contribution of these feature parameters is considered
to be equal. Therefore, we should evaluate the degree of influence of each dimensional
parameter on the recognition effect and select the parameters with the greatest influence on
the recognition as the new feature parameters. Specifically, we combined the above static
features and dynamic features together and obtained the contribution of each dimension
by calculating the Fisher ratio of the feature dimensions.

The Fisher ratio [55] is calculated as:

rFisher =
σbetween
σwithin

, (12)

where σbetween is the interclass divergence matrix, which represents the sum of the interclass
variances of the kth-dimensional component between various faults of the transformer,
and σwithin is the intraclass divergence matrix, which represents the sum of the intraclass
variances of the kth-dimensional component of a particular fault.
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The interclass divergence σbetween [56] is defined as follows:

σBetween =
M

∑
j=1

(
u(j)

k − uk

)2
, (13)

where M is the number of transformer fault types, u(j)
k is the mean value of the kth-

dimensional component of transformer fault j, and uk is the mean value of the kth-
dimensional component of all faults.

The intraclass divergence σwithin [56] is defined as follows:

σWithin =
M

∑
j=1

[
1
nj

∑
c∈wj

(
c(j)

k − u(j)
k

)2
]

, (14)

where nj is the number of samples of transformer fault j and c(j)
k is the kth-dimensional

feature parameter of fault j.
A larger Fisher ratio means that the feature parameters in this dimension contribute

more to transformer fault diagnosis. We selected the composed new feature parameters for
transformer fault diagnosis, referred to as Filtered-MFCC (FMFCC). As shown in Figure 4,
we selected 1–4, 7–10, 12–19, 21, 25, 31, and 32 to form a new 20-dimensional parameter
vector V:

V = [S1, S2, S3 . . . S31]. (15)

Feature dimension

F
is

h
er

 r
at

io

Figure 4. Fisher ratio of 36-dimensional parameters.

The reduction of feature parameter dimensions not only removes the redundant
information of feature parameters, but also mitigates the problem of the limited processing
power and storage space of edge devices.

4.3. A Classifier Using a Parallel Dual-Layer, Dual-Channel Lightweight Neural Network

We extracted the temporal (time-dependent) and spatial visual features of sound
signals using the FMFCC and spectrogram, respectively. To enable the quick identification
of transformer fault types, as shown in Figure 5 we designed a parallel dual-layer, dual-
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channel lightweight neural network to achieve the fusion of sound signals in the spatial and
temporal features. Compared with conventional networks, our proposed neural network
has the advantages of fewer parameters and lower computational cost.
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Figure 5. The network structure.

4.3.1. Feature Extraction Layer

The feature extraction layer consists of the spatial channel and temporal channel, using
the depth-separable convolution and recurrent neural-network-based Bidirectional Long
Short-Term Memory (BiLSTM), respectively.

Due to the limitation of the processing power of edge devices, we expect the feature
extraction network to have a speedy inference and fewer computational operations. For this
purpose, we designed a lightweight neural network for edge devices. For multi-channel
(this channel is not the dual-channel network) inputs, most existing work employs general
convolution (all-channel convolution). We performed convolutional feature extraction for
each channel. Since there are three channels of input as shown in Figure 6, the feature
extraction results in some redundant features, causing a waste of computational resources.
Deep convolutional neural networks usually consist of a large number of convolutional
operations, leading to more computational cost. At the convolution operator level, the
general convolution has the inherent property of global spatial and channel feature extrac-
tion. The Depthwise-separable (DW) convolution completely separates spatial and channel
feature extraction. The MobileNet [57,58] family has found the successful application of DW
convolution and has recently made a number of improvements to reduce computational
effort. ShuffleNet [59,60] restricts convolution operations to each group and performs
channel shuffle, and it reduces the channel dimensionality by reducing the concatenation
of computational effort.

Figure 6. The general convolution.
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In fact, the operation for generating 2n feature maps from any convolutional layer can
be expressed as [61]:

Y = X ∗ f + b, (16)

where ∗ is the convolution operation, X ∈ Rn×h×w is the input data (n denotes the number
of input channels, and h and w are the height and width of X, respectively), and b is the
bias term. As shown in Figure 6, the output feature maps of the convolutional layers often
contain a large amount of redundancy. To reduce the redundancy of the convolution opera-
tions, we utilized the redundancy of the existing feature maps. As such, the redundancy is
used to generate similar feature maps to obtain multi-channel (e.g., 2n feature channels)
feature maps (feature maps of n feature channels obtained by some linear operations):

Y′ = Φi(Yi), ∀i = 1, . . . , n, (17)

where Yi is the ith original feature map in Y and Φi is the ith linear operations.
With a linear mapping (Equation (17)), we relatively reduce a large number of oper-

ations while generating the same number of feature maps as the general convolutional
layer. Next, we compare the computational process of linear mapping with that of general
convolution. For example, we set the average kernel size for each linear operation to be d ∗ d
and the convolution kernel size to be k. The format of the input data is defined as n ∗ h ∗ w,
where n is the number of input channels, and h and w are the height and width of the input
data, respectively. For comparison and the ease of deployment in the neural network, we
set the size of the linear kernel to be the same as the size of the convolutional kernel.

The computational effort to obtain a 2n output channel using general convolution is:

Com1 = n× h× w× 2n× k× k, (18)

However, if 2n output channels are implemented using a linear mapping, the required
computation is:

Com2 = n× h× w× n× k× k + n× h× w× d× d, (19)

Com2
Com1

=
n× h× w× n× k× k + n× h× w× d× d

n× h× w× 2n× k× k
=

n× k× k + d× d
2n× k× k

≈ n + 1
2n

≈ 1
2

, (20)

By comparing the computational effort for obtaining 2n output channels by general
convolution and linear mapping, respectively, we conclude that our method reduces the
computational effort by almost 50%.

The spatial channel uses the spectrogram as the input. Firstly, the input obtained by
the spectrogram is generally convolved to enhance the dimensionality of the features in
the process of extraction. Then, the high-dimensional features are convolved into a single
channel, and each feature map corresponds to a convolution kernel for feature extraction.
We generated the same number of feature mappings as the general convolutional layers by
the aforementioned linear mapping to achieve further feature extraction phases with less
computation compared with the general convolution.

However, there is no information exchange between the feature maps extracted from
individual channels, which may generate feature barriers as the depth of the network
increases. We added a channel shuffle layer to solve this problem, which assigns the
features of different channels to the same group and performs feature extraction through a
group convolution operation to facilitate feature exchange between different groups. Finally,
we performed this pointwise on all extracted features to achieve feature dimensionality
enhancement and further realized cross-channel information interaction. The features
obtained by point convolution are the spectrogram features of the sound we extract. The
complete neural network structure is shown in Figure 5.

The temporal channel extracts the FMFCC feature sequence of sound signals.
LSTM [62,63] maps the output sequence or vector, and the hidden layer with self-circulating
weights in LSTM enables the nodes in memory to preserve past information. Thus, LSTM
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can learn time sequence features by continuous input. Wang [64] and Giambattista [65]
proposed the bi-directional LSTM-based sound event detection technique with better perfor-
mance compared with DNN. Unlike acoustic events that occur in a short time, the duration
of sound signals of transformer faults is longer. Therefore, we can improve the performance
of classification by applying neural networks to sound signal fault classification.

Bi-directional LSTM (BiLSTM) is an improved LSTM with a bi-directional flow that
processes sequences forward and backward and feeds them forward to the output layer.
There are two hidden layers in BiLSTM, which compute the hidden sequence in both the
forward and backward directions and update the output layer by the backward layer (from
the last time step to the first) and forward layer (from the first time step to the last time
step). We used the KMFCC feature sequence as the input to the temporal channel. The
input sample dimension is 20, and each sample consists of 398 frames. The dropout of all
layers has a probability of 80%.

4.3.2. Feature Fusion Classification Layer

Now, we obtain the visual features (spectrograms) of the acoustic features extracted by
the spatial channel and the FMFCC sequence features extracted by the temporal channel.
We constructed dual-channels and formed a fully connected layer of 256 cells with 128 as
each of their outputs.

Since the scale of both features is the same, we can directly fuse the two by the concat
operation. In addition, in order to make further fusion between static and dynamic features
and eliminate feature barriers, we used point convolution to perform feature extraction
on the features after the concat operation. At the same time, since the dimension of the
feature map is too large after performing the concat operation, which increases the excessive
computational requirements, we used point convolution while also performing dimension
reduction to reduce the subsequent computation. Finally, the data dimension is converted
to 1 dimension by a fully connected layer. The output layer contains the same number of
softmax nodes as the number of transformer fault types. The feature fusion classification
layer is shown in Figure 5.

5. Experiments and Performance Evaluation

Hardware. We used a high-sensitivity sensor, Model HYCG-001, with a frequency
response of 20 Hz to 20kHz. The signal-to-noise ratio and impedance are 65 dB (at 40 dB
a meter) and 600–1000 Ω, respectively. In addition, the transducer is powered by a 12 V
1–2 A Direct Current (DC) power supply. We deployed the proposed LightFD system on a
Raspberry Pi 4B device without relying on additional computing devices. The Raspberry
Pi 4B used in our experiments is equipped with a Cortex-A72 CPU (1.5 GHZ ARMv8) with
8 G memory.

Choice of edge computing platforms. Edge devices are pervasive in our daily lives,
as represented by smart watches and smart glasses, both of which are commercial devices
that have become mature. In addition, they come with some boards for development and
testing, which provide rich functions and are small in size for easy deployment. There
are two types of development boards. One is mainly for AI development with hardware
devices dedicated to computing, such as the GPU in NVIDIA TX2 and the VPU in Intel
NCS2. This type of board can meet the requirement for complex AI development, but is
also very expensive and does not represent a common computing edge device. The other
is an ordinary development board, which meets most of the conditions and is relatively
inexpensive for use in a wide range of applications. Such commonly used development
boards include Raspberry Pi and Intel UP Squared. The CPU frequency of UP Squared is
2.5 GHz, while that of Raspberry Pi 4B is only 1.5 GHz, which is comparable in its category.
Therefore, we believe that Raspberry Pi provides a suitable experimental platform for the
deployment and testing of our system. Raspberry Pi 4B [66] was chosen for several reasons:
(i) it is inexpensive and suitable for large-scale deployment in a variety of environments;
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(ii) its performance meets the requirements of an edge device and is representative of
common types of edge devices.

Data collection: The data collection was conducted on a 110 kV three-phase dry-type
transformer. Due to the wide variety of transformer faults, there is no public dataset
available. Before conducting the experiment, we collected data in four workshops, whose
schematic diagram is shown in Figure 7. We collected transformer faults for six common
types of faults, whose specific descriptions are provided in Table 1. Note that both faults
of “severe internal short circuit” and “internal breakdown short circuit” are internal short
circuits, but there is a major difference in audibility. The sound of a severe internal short
circuit is similar to the sound of boiling water. The sound of an internal breakdown short
circuit is similar to a crackle sound and is usually caused by the moisture on the transformer
and other factors creating a short circuit ring. In addition, a severe internal short circuit
is transient, and its condition may lead to an internal breakdown short circuit, which is a
permanent short circuit state, and hence is more critical and complex than a severe internal
short circuit. We considered three locations of the sensors, A, B, and C in Workshop 1
in Figure 7. In addition, we placed sensors at positions D, E, and F in the other three
workshops, respectively.
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Figure 7. The schematic diagram of the transformer workshops. (A–F is the position of the sensor.)
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Table 1. Common transformer body sound anomaly analysis.

Anomaly Fault Description and Causes Number of Collected Signals Serial Number

“Wawa” Large load start-up or internal short circuit 1360 1
Sound of water boiling Severe internal short circuit 1280 2

Crackle Internal breakdown short circuit 1314 3
“Chichi” Poorly grounded iron core 1250 4

“Jiji” Loose silicon steel or coil 1370 5
“Wengweng” High voltage 1154 6

We performed experiments to evaluate the performance of fault diagnosis. The first
experiment tests the overall diagnostic classification effectiveness of our proposed method.
The second experiment shows the performance comparison with different feature extraction
methods. Next, we compared the performance of the dual-channel network in our proposed
classifier. Finally, we compared the effects of different sensor positions and numbers on the
experimental performance.

To evaluate the proposed method, two measurements were used in each experiment:
Precision and Recall, defined as:

Precision =
TP

TP + FP
, (21)

Recall =
TP

TP + FN
, (22)

where TP is the number of true positive results, TN is the number of true negative results,
FP is the number of false positive results, and FN is the number of false negative results.

5.1. System Performance

In order to present the detailed diagnostic classification results, as shown in Figure 8,
we calculated the values of the confusion matrix by extracting the data under normal
and six faults. We used the serial numbers in Table 1 to represent transformer fault types
and 0 to indicate that the transformer works normally. Experimental results showed
that our method achieves good performance in diagnostic classification. In particular, it
performs well for faults such as internal short circuit (Serial Number 1) and severe internal
short circuit (Serial Number 2), but the fault diagnostic effectiveness decreases in internal
breakdown short circuit (Serial Number 3).

Figure 8. The confusion matrix of the related fault.
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We also evaluated the Precision and Recall of LightDD for general convolutional
networks, LightDD, and FMFCC inputs. As shown in Figure 9, LightDD leads to lower
Precision and Recall due to less convolutional operations and a simpler structure. However,
we observed that when using the FMCC as the input of LightDD, the recognition Precision
and Recall of the system can be up to 94.32% and 95.17%, respectively. This result is
similar to that of a general network (with more convolutional operations). Therefore, we
not only improved the recognition effectiveness of the neural network by enhancing the
quality of the input features, but also ensured fast inference for edge devices with better
recognition results.

94.51%

90.76%

94.32%
96.02%

92.58%

95.17%

70.00%

75.00%

80.00%

85.00%

90.00%

95.00%

100.00%

General  Network LightDD Network LightDD(FMFCC input)

Precision Recall

Figure 9. System accuracy in three cases.

5.2. Experimental on Feature Extraction for Sound Signals

In the spatio-temporal feature extraction, we extracted acoustic features including
the acoustic spectrogram, MFCC, delta MFCC, and RMFCC. As shown in Figure 10, we
extracted MFCC features for different faults. The experimental results showed that the
MFCC feature profiles of the same fault type are similar. We calculated the delta MFCC
and RMFCC based on the static MFCC with different faults. As shown in Figure 11, we
compared the extracted spectrogram and FMFCC, respectively. The results showed that
using the spectrogram had the lowest Precision and Recall, and the multidimensional
spatio-temporal feature extraction method combining the spectrogram and FMFCC was
more effective. In addition, we increased the overlap rate between frames to 70% and
examined its effect on the diagnostic results before the extraction of acoustic features. As in
the fourth case in Figure 11, we observed that the increase of the rate had almost no effect
on the recognition. However, it would increase the number of frames divided by the sound
signal, leading to an increase in computational effort.

5.3. Recognition Method and Computing Complexity Analysis

In this section, we compare the performance of the proposed classifier with the perfor-
mance of the basic classification methods as shown in Table 2. The Precision and Recall of
our fault diagnosis system are higher than the traditional machine learning method SVM.

In the transformer fault diagnosis system, we need to perform pre-processing, feature
extraction, and construction and calculation of the convolutional recurrent neural network.
The complexity of data pre-processing and feature extraction is almost negligible compared
with the computational effort for constructing a convolutional recurrent neural network.
Specifically, the proposed fault diagnosis method includes an offline training phase and
an online fault diagnosis phase. The average time for the online fault diagnosis phase is
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0.9 s. These results indicate that the computational power of the existing Raspberry Pi is
sufficient to support our system.

(a) (b) (c)

(d) (e) (f)

Figure 10. MFCC of transformer acoustic with different faults. (a) Large load start or internal short
circuit. (b) Severe internal short circuit. (c) Internal breakdown short circuit. (d) Poorly grounded
iron core. (e) Loose silicon steel or coil. (f) High voltage.
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Figure 11. Comparison of different acoustic feature extraction methods.

Table 2. Performance comparison with SVM.

The Fault Serial Number
SVM LightDD

Precision Recall Precision Recall

1 90.12% 92.74% 94.95% 95.57%
2 87.41% 88.02% 94.95% 95.57%
3 92.47% 96.54% 95.76% 94.2%
4 93.30% 94.57% 96.99% 96.23%
5 91.85% 94.97% 94.42% 94.79%
6 87.77% 93.68% 90.78% 95.63%

5.4. Experiments with Different Locations and Numbers of Sensors

We compared the effects of different locations and different numbers of sensors on the
diagnostic results using the two faults collected in Workshop 1. As shown in Figure 7, we
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collected the fault sound signals generated by the transformer at three sensor locations, A,
B, and C, respectively, and also with three sensors present at the same time, as shown in
the last column of Table 3. The results showed that the location and number of sensors
have almost no effect on the diagnostic results. Therefore, in our experiments, we used
one acoustic sensor and collected acoustic signals at Locations B, D, E, and F in different
workshops, as shown Figure 7.

Table 3. Performance comparison with different locations and numbers of sensors.

The Location of Sensors
Internal Breakdown Short Circuit Loose Silicon Steel or Coil

Precision Recall Precision Recall

A 95.65% 94.57% 94.13% 94.67%
B 95.87% 94.38% 94.38% 94.78%
C 95.78% 94.16% 94.39% 94.62%

A + B + C 95.7% 94.47% 94.41% 94.79%

6. Conclusions

In this paper, we used non-contact sensors to collect sound signals of transformer faults
and designed a fault diagnosis system based on a combination of the MFCC, spectrograms,
and lightweight neural networks. The system was able to successfully detect and identify
six types of transformer faults.

The following conclusions were drawn from our work:

• The extracted feature information reflects accurately the operating status of the trans-
former. An improved MFCC feature extraction method was proposed to characterize
the dynamic features of acoustics. A multidimensional feature extraction method
combining temporal and spatial features was proposed by combining the MFCC
acoustic-based features with spectrograms.

• The proposed dual-layer, dual-channel neural network achieved satisfactory recog-
nition performance and reduced computational effort by 50% compared to a generic
convolutional network. This makes it possible to perform fast and high-precision
recognition on low-end devices.

• Compared with the conventional SVM method, the designed fault diagnosis method
improved the Precision and Recall rates by 4% and 1.6%, respectively.
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Abbreviations
The following abbreviations are used in this manuscript:

CNN Convolution Neural Network
LightFD Lightweight Fault Diagnosis
MFCC Mel Frequency Cepstrum Coefficient
LPCC Linear Predictive Cepstrum Coefficient
CFCC Cochlear Filter Cepstral Coefficients
ANNs Artificial Neural Networks
SVMs Support Vector Machines
∆MFCC the first difference of MFCC
RMFCC Relative-MFCC
FMFCC Filtered-MFCC
LightDD a parallel Dual-layer, Dual-channel Lightweight neural network
BiLSTM Bidirectional Long Short-Term Memory
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