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Abstract: An alternative packaging method, termed built-in packaging, is proposed for single
terminal devices, and demonstrated with an actuator application. Built-in packaging removes the
requirements of wire bonding, chip carrier, PCB, probe station, interconnection elements, and even
wires to drive single terminal devices. Reducing these needs simplifies operation and eliminates
possible noise sources. A micro resonator device is fabricated and built-in packaged for demonstration
with electrostatic actuation and optical measurement. Identical actuation performances are achieved
with the most conventional packaging method, wire bonding. The proposed method offers a compact
and cheap packaging for industrial and academic applications.

Keywords: packaging; wire bonding; actuator application; micro resonator; sensor application;
MEMS; NEMS

1. Introduction

The typical working principle of a sensor is two-fold. First, the system is set into the
sensing state that is sensitive to the target input. Generally, an external signal is required for
this activation, except for self-actuated structures [1]. Second, the output signal containing
detection information is translated into the proper form. The majority of the sensor research
focuses between these two feedthroughs where detection interaction happens by exploring
state-of-the-art sensing concepts [2], functionalizing high-performance materials [3], and
expanding fabrication limits [4]. Developments in these areas enabled a better understand-
ing of the universe by measuring quantized unit of electrical conductance [5] and mass of
Higgs boson [6] or resulted in detecting more practical targets such as the mass of a single
proton [7] or energy of a single photon [8] under ideal conditions. As sensitivity increases,
the signal levels decrease, and feedthrough losses of these tiny messages start to play a
more significant role. Therefore, developments in the sensing state need to be followed
by the ones in feedthrough for keeping the sensing state precisely and reading the output
signal with minimal losses.

Principally, a package is required for interfacing the chip with actuation and readout
circuits, and there are three popular methods for bonding a chip on top of a carrier board.
In wire bonding, the chip is attached to the package with welded fine wire leads, as shown
in Figure 1b. In flip-chip bonding, the top layer of the chip is soldered with the carrier, as
illustrated in Figure 1c. In tape-automated bonding, a thin conductor tape is attached on
top of the metal pads of the device, as demonstrated in Figure 1d. Each of these techniques
introduces design restrictions for compatibility. Although all the components and processes
are well standardized, they introduce additional feedthrough loss, complexity, size, and
cost. In addition, it is known that feedthrough noises and losses play a significant role in the
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electrical actuation and measurements of MEMS and NEMS [9–12]. In addition modeling
of the parasitic effects of these noise sources was attempted, to minimize the damage [13].
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Though only a single-terminal actuator application is illustrated in this work, the 
proposed concept is valid for sensor applications (accelerometer [14], gyroscope [15], mass 
sensor [16], humidity sensor [17], temperature sensor [18], pressure sensor [19], gas sensor 
[20], water sensor [21], magnetometers [22], photoacoustic sensors [23], FET-biosensor 
[24], and permittivity sensor [25]), optical and photonic applications (micromirror [26], 
microswitch [27], LiDAR [28], beam steering [29], bolometer [30], photon detector [31], 
and PeCOD [32]), RF applications (diode [33], transistor [34], antennas [35], switch [36], 
phase shifter [37], filter [38], and tunable capacitor [39]), microfluidics (micropump [40], 
microdroplet generator [41], and microvalve [42]), and other applications (energy har-
vester [43], rectenna [44], gripper [45], etc.). 

2. Actuator Design 
To illustrate the proposed packaging method for an actuator application, a microres-

onator needed to be designed, and this design should be compatible with the actuation 
and characterization setups, and easy to fabricate and package. First, the important crite-
ria were specified and then associated with geometrical and material properties, and fi-

Figure 1. Packaging methods: (a) no packaging, (b) wire bonding, (c) flip-chip bonding, (d) tape-
automated bonding, and (e) built-in packaging.

Instead of putting up with these problems, it is aimed to eliminate the source directly
by proposing a new concept called built-in packaging. Unlike all conventional methods,
in the proposed method, the built-in packaging, a connector is directly attached to the die
without any package or carrier board, as illustrated in Figure 1e. The main goal of this work
is to eliminate all the interconnection components, even wires, and facilitate the device into
a plug-and-play operation.

The first-ever demonstration of the proposed concept is performed with a single-
terminal device for the sake of simplicity. A single-terminal resonator is designed, modeled,
fabricated, packaged, and characterized. The one and only electrical terminal is used on
the actuation side, and the mechanical motion is detected optically. Therefore, the actuation
performance of the proposed method is compared with the most conventional method, the
wire bonding, to inspect the packaging performance. The actuation and readout schemes
are illustrated in Figure 2. To examine the performance of the operation, the results are
compared with the most conventional method, wire bonding.
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Though only a single-terminal actuator application is illustrated in this work, the pro-
posed concept is valid for sensor applications (accelerometer [14], gyroscope [15], mass sen-
sor [16], humidity sensor [17], temperature sensor [18], pressure sensor [19], gas sensor [20],
water sensor [21], magnetometers [22], photoacoustic sensors [23], FET-biosensor [24],
and permittivity sensor [25]), optical and photonic applications (micromirror [26], mi-
croswitch [27], LiDAR [28], beam steering [29], bolometer [30], photon detector [31], and
PeCOD [32]), RF applications (diode [33], transistor [34], antennas [35], switch [36], phase
shifter [37], filter [38], and tunable capacitor [39]), microfluidics (micropump [40], micro-
droplet generator [41], and microvalve [42]), and other applications (energy harvester [43],
rectenna [44], gripper [45], etc.).

2. Actuator Design

To illustrate the proposed packaging method for an actuator application, a microres-
onator needed to be designed, and this design should be compatible with the actuation
and characterization setups, and easy to fabricate and package. First, the important criteria
were specified and then associated with geometrical and material properties, and finally, a
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complete design satisfying these criteria was developed. In addition, a mathematical model
was built and numerically solved for optimization and verification. Detailed equipment
information is provided in Table S1.

2.1. Compatibility

While it is possible to make in-plane motion measurements with LDV [46], out-of-
plane motion is easier to catch. In addition, the lowest eigenmode offers the highest
deformation and results in a larger output signal from the LDV. Thus, the main operation
mode of the resonator was chosen as the first out-of-plane mode. Both cantilever and fixed–
fixed structures are appropriate for this purpose and fixed–fixed boundary conditions were
preferred to minimize the curvature.

LDV converts motion into an electrical signal from the Doppler shift in the reflected
laser beam frequency due to the movement of the surface. The laser spot has a finite
diameter, called airy disk, and should fully cover the top surface of the resonator, otherwise
the laser beam might also reflect from stationary parts, causing the output signal to decay.
This can especially affect the calibration between motion and electrical signals and might
cause imprecise results. To eliminate all these complications, the minimum width of the
resonator, bmin, should be larger than the spot size of the beam. The spot size of the beam
is defined as the Airy disk diameter, dairy, in Equation (1) [47].

dairy= 1.22
λ

NA
(1)

λ and NA are the wavelength of the laser beam and numerical aperture of the objective
lens, respectively. Smaller spots can be achieved by using an objective lens with higher NA
or a laser beam with a lower wavelength. In our setup, λ = 633 nm and NA = 0.42 yield a
theoretical limit of dtheoretical= 1.8 µm. On the other hand, imperfect calibration introduces
optical aberration, and the practical spot diameter is around d ∼= 4 µm; hence, the width of
the resonator should be wider than 4 µm.

Electrical conductance is required to both transmit voltage and generate electrostatic
force. Moreover, it is desired to have high reflectance on the resonator surface to obtain a
high output from the LDV. The relationship between optical reflectance, R, and electrical
conductivity, σ, for conductive materials is well-defined with Hagen–Rubens formula in
Equation (2) [48].

R ≈ 1− 4
√

πε0

σλ
(2)

ε0 and λ are the vacuum permittivity and optical wavelength, respectively. This
relation shows that materials with high electrical conductivity also have high optical
reflectivity. Therefore, a conductor material is preferred for the resonating medium. In terms
of fabrication, it should be easy to etch for patterning, compatible with Al wire bonding,
and cheap to deposit. Hence, Al was selected as the structure layer after considering all
these concerns.

Larger actuation force produces a larger output signal and increases the signal-to-noise
ratio. By neglecting the fringing field, the electrostatic force per unit length applying on the
undeflected structure, Fes, is given in Equation (3) [49].

Fes =
ε b V2

2d2 (3)

ε, b, V, and d are the dielectric constant of the gap medium, width of the resonator,
actuation voltage, and gap width, respectively. The actuation voltage is limited by the
function generator. Although decreasing the air gap between the resonator and actuation
electrode increases the electrostatic force, it could introduce additional squeezed film
damping, csf, in Equation (4) [50].
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csf= f
(

b
l

)
µ l4

d3 (4)

f
(

b
l

)
, l, and µ are a geometrical factor, the length of the resonator and the viscosity of the

gap medium, respectively. Moreover, decreasing the air gap width can also produce an
underetch issue, discussed in Section 2.2. As a result, the stiffness of the beam needs to be
as weak as possible to convert limited electrostatic force into the greatest deflection. From a
geometrical point of view, this can be achieved by having a large length-to-thickness ratio
(>100), and the exact ratio was calculated as 160 using the simulations.

The dimensions in MEMS and NEMS tend to scale down, and natural frequencies
increase according to the scaling law [51]. Therefore, it is desired to push the limits
of frequency while designing the actuator to demonstrate the proposed method for the
most updated and future applications. Furthermore, a higher frequency regime offers
better quality factors. Nevertheless, the digital velocity output of our LDV starts decaying
after 1.5 MHz, and the natural frequency should exceed this threshold for equivalent
measurement. Since the geometrical properties, material properties, and residual stress
affect the natural frequency, mathematical models were simulated, and the length and
thickness were determined as 40 µm and 250 nm, respectively.

2.2. Producibility

Standard optical lithography techniques allow patterning of the resonator with the
desired length, and width [52]. The releasing step is critical when etching the sacrificial
layer underneath the resonator because of aggressive etchants and sticking problems due
to surface tension forces. To eliminate these problems, a polymer-based sacrificial layer was
chosen with dry release in oxygen plasma [53]. However, plasma might struggle to reach
underneath the resonator, especially if the width-to-air-gap ratio is high and can cause
saturated underetch. Therefore, a low width-to-air-gap ratio is desired for a smooth release
process. The width was chosen as 4 µm, bmin, and an air gap of 4 µm was chosen to obtain
a unity ratio.

2.3. Simulation

The three main aims of running simulations are (i) to identify the design parameters
by calculating the natural frequency of the beam under the presence of residual stress,
(ii) to perform a failure analysis to define the working regime, and (iii) to obtain the mode
shape to compare with the experimental results. An FEM (Finite Element Model) was
constructed using COMSOL® by following the AC/DC and Structural Mechanics Modules
User’s Guide [54,55]. In addition to that, a ROM (Reduced Order Model) was built [49],
and the details are provided in the Supplementary Materials. In the numerical calculations,
Young’s modulus, density, Poisson ratio, and tensile strength of Al are taken as 69 GPa,
2.71 g/cm3, 0.33, and 90 MPa, respectively [56].

The residual stress gets affected by so many parameters such as growth temperature
and rate [57], material, deposition method, thickness [58], epitaxial mismatch [59], surface
roughness, and contact angle [60]. Therefore, it is not feasible to make an accurate prediction
by a simple calculation. Instead, a reasonable range, ±20 MPa, was defined based on
the literature data [61–63], and the simulations were run in this region. The length and
thickness were determined by keeping the first natural frequency below 1.5 MHz. The
relationship between the residual stress and the first natural frequency of the finalized
design is shown in Figure 3a. It should be noted that compressive stress larger than 10 MPa
might cause buckling during the release step, which is not desired. Additionally, buckling
stress determines the thermal budget to calculate temperature limits. Fortunately, the first
natural frequency of the fabricated structure is obtained at 1.4 MHz, corresponding to
tensile stress around 17 MPa.
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Secondly, failure analyses were run to determine the maximum actuation voltage
limit. While there have been several failure mechanisms that worked in the literature,
only two main mechanisms were considered in this analysis [64]. As the actuation voltage
increases, the beam deflects more, and after some critical deflection, the beam can stick to
the stationary electrode or collapse due to tensile stress. The former phenomenon is called
pull-in and can be either static [65] or dynamic [66]. The dynamic pull-in analysis requires
specific initial conditions and extra effort to generalize. For the sake of simplicity, only the
static case was considered in this analysis. Alternatively, the beam might collapse if von
Mises stress exceeds ultimate tensile stress. The variation of deflection and von Mises stress
with respect to the actuation voltage is shown in Figure 3b. When both failure mechanisms
are considered, collapse happens earlier at a voltage level of around 200 V. To prevent
failure, the maximum pulse voltage, 60 V, was set away from this value.

Finally, mode shape analyses were conducted to verify the experimental results and
are illustrated in Section 6.3.

3. Fabrication

The schematics of the fabrication process are shown in Figure 4 and Table 1 and
4” prime grade p-doped Silicon wafer with a 50 nm-thick thermal oxide was chosen as the
starting substrate.

Table 1. Device fabrication.

Layer Step 1 Step 2 Step 3 Step 4

Actuation electrode PR deposition Lithography Metal deposition Liftoff
Sacrificial layer PR deposition - - -

Structure Metal deposition PR deposition Lithography Dry etch
Dicing and Release Dicing Dry etch - -

A local actuator electrode was preferred for having a better electrical contact in pack-
aging and eliminating excessive parasitic capacitance. It is patterned with a simple bilayer
lift-off process, as shown in Figure 4a [67]. First, HMDS treatment was performed to
promote the adhesion between the substrate and resist layer. The underlayer (PMGI SF7)
and positive-tone UV-resist (Shipley S1805) were spin-coated and soft-baked, sequentially.
The pattern was exposed to 405 nm wavelength light with MLA (maskless lithography
aligner) and developed in MF-319. Then, 150 nm-thick Al film was deposited with e-beam
(electron beam) deposition, and the excessive metal was lifted off.

The sacrificial layer, Figure 4b, was built by spin-coating a negative-tone photoresist (AZ
nLOF 2035) to reach 4 µm thickness and hard-baking under vacuum to prevent outgassing.
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To construct the structure layer illustrated in Figure 4c, firstly, 250 nm-thick Al film
was deposited with e-beam deposition. Then, a positive-tone UV-resist (Shipley S1805) was
spin-coated and soft-baked, and the design was exposed to 405 nm wavelength light with
MLA and developed in MF-319. Excessive Al was dry etched with ICP-RIE (inductively
coupled plasma—reactive ion etching).

The wafer was diced into smaller pieces with an automatic dicing. Finally, the struc-
ture was released by etching the sacrificial layer with a photoresist stripper, as shown
in Figure 4d.
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Optical microscope and SEM images of the fabricated resonator are shown in Figure 5.
The laser spot almost covers the resonator as expected, as shown in Figure 5b.
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Figure 5. Fabricated resonator images from the following: (a) 100× optical microscope, (b) 50×
optical microscope of the LDV with the laser spot, (c) 2000× SEM, and (d) 8000× SEM zoomed
showing the purple area circled in (c). (Yellow: Actuation electrode; Brown: Ground electrode; Red:
Resonator; Gray: Substrate).
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4. Packaging

The images of the die with and without packaging are shown in Figure 6a. The middle
electrode of the die is the actuation electrode, while the rest is the ground electrode. The
experimental setup for the reference measurements with a probing technique from the die
without packaging is shown in Figure 6b. To obtain electrical contact with the chip, a probe
station, micromanipulators, and a relatively larger space are required.
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4.1. Wire Bonding

The die was fixed to the chip carrier with double-sided tape and wire-bonded with
25 um Al wire using a semi-automatic wedge–wedge bonder (Westbond 4546E), as shown
in the middle of Figure 6a. Then, the chip carrier was mounted on a custom PCB connecting
the chip carrier to the testing equipment, and an image from the experimental setup is
shown in Figure 6c.
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4.2. Built-In

Unlike wire bonding, there is no equipment required for built-in packaging, and
the die can be simply attached to the SMA (SubMiniature version A) connector jack, as
shown in the right side of Figure 6a. A foam tape was placed under the die to tolerate the
thickness difference between the die and connector and encourage assembly. An image
from the experimental setup is shown in Figure 6d, and in contrast with wire bonding, the
built-in package does not require any testing PCB and is ready for connection to the testing
equipment. It also allows temporarily packaging, and the die can be easily dismounted
from the SMA connector jack if required. In this work, the connector was removed after
testing, and the die was stored in its carrier, separately. For long-term applications where
permanent packaging is necessary, the assembly can be promoted with glue or soldering.

5. Characterization
5.1. Purpose

The main aim of characterization is to compare the proposed packaging idea, built-in,
with the conventional one, wire bonding, in terms of actuating performance. It is desired to
test the same die with both types of packaging to prevent any variation. Although built-in
offers temporary packaging and is suitable for this idea, it is destructive and tedious to
remove and package back wire bonding, due to destructing contact pads and wire-bonder
tool requirements. Therefore, two similar dies were packaged separately with each method
and characterized simultaneously. To overcome the slight variation between dies, both
were also characterized under a probe station with micromanipulators as a reference, and
the performance comparison was conducted with respect to this reference.

Initially, frequency sweep measurements were performed for AC analyses. Then, DC
analyses were completed with pulse response measurements. In addition, to demonstrate
the applications inside an isolated chamber, pulse response measurements under vacuum
conditions were prepared. Finally, mode shapes were measured and compared with the
theoretical ones to associate the experimental results with the theory.

The methodology mentioned in Figure 2 was followed for building the experimental
setup for both measurements shown in Figure 7.
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Figure 7. Experimental setup of (a) frequency sweep, and (b) pulse response analysis shown with
blue and red backgrounds, respectively. Equipment configuration in frequency sweep analysis, (a), is
1: Oscilloscope, 2: Vibrometer, 3: F.G. (Function Generator), 4: Microscope, and 5: Resonator, while
in pulse response analysis, (b), the configuration is 1: LDV software, 2: LDV, 3: Amplifier, 4: F.G.,
5: Microscope, and 6: Resonator. Optical, velocity, actuation, ground, and trigger signals are shown
with blue, green, yellow, brown, and red, respectively.
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5.2. Frequency Sweep

The frequency sweep measurement setup is illustrated in Figure 7a. As there are
two different chips, each one was measured with and without micromanipulators. The
actuation signal was applied directly from the function generator in a linearly sweeping
form at 20 V peak to peak and recorded through oscilloscope. The electrostatic force was
related to the square of the actuation signal, so the mid frequency was chosen near half of
the resonance frequency. For sensitive measurements over a wide range, three different
sweeps were performed with 300 kHz, 150 kHz, and 25 kHz spans with 1 ms sweeping
time. The laser beam of the LDV was focused on the center of the beam, and the analog
velocity output signal of the LDV was measured from the oscilloscope in the time domain.
To synchronize the phase of the input signal with the response, a trigger signal with the
sweeping time was applied to perform a direct transformation from the time domain to the
frequency domain.

The data read from the oscilloscope is shown in Figure 8a. Both the actuation and
velocity signals were in the time domain and, firstly, transformed into the frequency
domain. Then, the root mean square of the velocity with respect to the actuation frequency
was obtained and plotted in the following section to obtain the Q-factor and resonance
frequencies. Finally, the phase difference between the force and velocity was obtained in
the frequency domain to phase behavior and obtain the Q-factor. The phase difference in
the time domain is shown in Figure 8b. The calculations related to this part are illustrated
in the Supplementary Materials.
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5.3. Pulse Response

In the pulse response tests, a 4 V peak-to-peak pulse signal with 15x amplification
was applied from the function generator at 0.1% pulse width. Again, the laser beam was
focused on the middle of the resonator, and the digital velocity signal was read from the
vibrometer software in the time domain. The input signal was synchronized with a trigger
signal, and the measured velocity is averaged 500 times to reduce noise.

In the vacuum tests, the vacuum level was around 7 mTorr. Unfortunately, the
laser beam struggled to focus on the beam, due to additional watch glass between the
microscope and the resonator. Although the relative velocity in the time domain was stable,
the magnitude was dependent significantly on the focus; therefore, it was normalized to
prevent any calibration error.

The data read from the LDV software is shown in Figure 9. Then, the FFT (fast Fourier
transform) was applied in MATLAB® to transform the data into the frequency domain.
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5.4. Mode Shape

The mode shape of the built-in chip was measured with resonance actuation to com-
pare the results with the models.

6. Results and Discussion

The results of the measurements described in Section 5 are presented and discussed in
this section.

6.1. Frequency Sweep

The results of the frequency sweep are plotted in Figure 10. The Lorentzian-like
distributions in both plots represent the RMS velocity, while the rest represent phase
behavior. The horizontal axis is the actuation frequency domain, while the vertical axis for
Gaussian-like behavior curves is velocity and the other is the phase axis. The resonance
frequencies, fr, are determined from the peaks of RMS velocity curves. Then, the quality
factor from RMS velocity, QBW, is found by the bandwidth, BW. Finally, the quality factor
from phase slope, Qφ, is calculated by the phase slope at the resonance frequency, dφ

df |fr .
The exact relationships are given in Equation (5).

QBW =
fr

BW
, Qφ =

fr

2
dφ
df
|fr (5)

Sensors 2022, 22, x FOR PEER REVIEW 10 of 16 
 

 

 
Figure 9. Pulse response measurement: (a) velocity data, and (b) vacuum data. 

5.4. Mode Shape 
The mode shape of the built-in chip was measured with resonance actuation to com-

pare the results with the models. 

6. Results and Discussion 
The results of the measurements described in Section 5 are presented and discussed 

in this section. 

6.1. Frequency Sweep 
The results of the frequency sweep are plotted in Figure 10. The Lorentzian-like dis-

tributions in both plots represent the RMS velocity, while the rest represent phase behav-
ior. The horizontal axis is the actuation frequency domain, while the vertical axis for 
Gaussian-like behavior curves is velocity and the other is the phase axis. The resonance 
frequencies, fr, are determined from the peaks of RMS velocity curves. Then, the quality 
factor from RMS velocity, QBW, is found by the bandwidth, BW. Finally, the quality factor 
from phase slope, Qϕ, is calculated by the phase slope at the resonance frequency, dϕdf |fr. 
The exact relationships are given in Equation (5).  

QBW=
fr

BW   ,  Qϕ=
fr

2
dϕ
df

|fr (5)

The terms shown in Equation (5) for each measurement are listed in Table 2. 

 
Figure 10. The results of frequency sweep measurements for (a) built-in and (b) wire bonding chips. 

  

Figure 10. The results of frequency sweep measurements for (a) built-in and (b) wire bonding chips.



Sensors 2022, 22, 5264 11 of 16

The terms shown in Equation (5) for each measurement are listed in Table 2.

Table 2. The results of frequency sweep measurements.

Device fr [MHz] BW [kHz] dφ
df [rad/MHz] QBW Qφ

Built-in 1.13 29.8 67.0 38.0 38.0
Built-in (Ref) 1.13 30.0 66.9 37.8 38.0

Wire bonding 1.17 30.1 67.4 38.9 39.6
Wire bonding

(Ref) 1.17 28.9 67.8 40.6 39.9

The resonance frequencies, bandwidths, phase slopes, quality factor calculated from
bandwidth, and quality factor calculated from phase slop are in great agreement with the
reference measurement of each chip. In fact, the similarity between different devices shows
the repeatability of the fabrication, while the high-quality factors point out minimal support
and air damping losses with successful fabrication. These measurements clearly indicate
the independency of the interconnection method on the results. Therefore, the built-in
packaging offers the equivalent actuation performance as the wire bonding packaging and
reference measurements with micromanipulators.

At resonance, the power supplied by the driving force (i.e., the product of the elec-
trostatic force and velocity) is always positive, and hence, the system response (i.e., the
amplitude of the velocity) is maximal.

6.2. Pulse Response

The pulse response results are shown in Figure 11a. Again, the horizontal axis is
the actuation frequency domain, while the vertical axis represents the RMS velocity. The
resonance frequencies, fr, are determined from the peaks of RMS velocity curves. Then,
the quality factor from RMS velocity, QBW, is found by the bandwidth, BW, as illustrated
in Equation (5).
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The resonance frequency, bandwidth, and quality factor obtained from the bandwidth
of each measurement are listed in Table 3.
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Table 3. The results of pulse response measurements.

Device fr [MHz] BW [kHz] Qv

Built-in 1.17 30.1 38.7
Reference 1.16 30.2 38.4
Vacuum 1.36 2.58 529

Wire bonding 1.12 30.3 37.0
Reference 1.11 30.4 36.4
Vacuum 1.23 2.82 436

The outcomes of pulse response match with the frequency sweep measurements. In
addition to air tests, very high-quality factors obtained under vacuum conditions indicate
very low structural losses. It should be noted that the vacuum resonance frequencies and
quality factors tended to increase with time. Unfortunately, the wire bonding chip stayed
under the vacuum for a shorter time, causing lower resonance frequency and quality factor.
Therefore, it is not fair to compare the vacuum performances of devices. The main purpose
of the vacuum test is to illustrate the application of built-in packaging inside isolated
environments, and that was achieved by calculating the vacuum quality factor.

6.3. Mode Shape

The experimental mode shape obtained with built-in packaging is shown in Figure 12,
as well as the theoretical mode shape.
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The matching mode shapes demonstrate the similarity between the experiment and
models. The slight variation between the theory and experiment around the edges could be
sourced from the finite spot size of the laser beam causing an average measurement instead
of a point measurement.

7. Conclusions

The main aim of this work is to propose the built-in packaging idea by illustrating
its application on a single terminal device. Thus, a single-terminal actuator is designed,
fabricated, packaged, and characterized with a detailed procedure.

To compare the performance of the proposed package, an actuator was designed, and
a set was fabricated. Two structures were modeled with different mathematical models,
FEM and ROM, for design purposes and failure analysis. Afterward, two similar actuators
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were packaged with the proposed method and a conventional method, wire bonding.
The slight variation between devices was removed with reference measurements using
micromanipulators. First, frequency sweep analysis was conducted with each device to
characterize frequency response and phase behavior. Then, to consolidate the results, pulse
response behavior in the frequency domain was analyzed. Outcomes of both measurements
offer identical actuation performance between built-in and wire bonding packaging types.
The matching results and high-quality factors obtained under air and vacuum verify the
repeatability and success of the fabrication. Additionally, the compatibility of built-in
packaging for operations inside an isolated chamber was demonstrated with vacuum
tests. Finally, a mode shape measurement was executed using built-in packaging to justify
the mathematical models. Consequently, the built-in packaging can be considered an
alternative method in single-terminal device applications.

The main advantage of built-in packaging is simplicity. Primarily, no necessity for
packaging equipment makes the process easy, cheap, and accessible. In addition, no chip
carrier requirement gives freedom in chip design and offers immediate characterization
after fabrication. Furthermore, it is a standalone packaging allowing connection to testing
equipment without any PCB or cable. In addition, built-in packaging can revolutionize
regular chips into plug-and-play devices. When all these benchmarks are considered, the
proposed conception can catch industrial and academic attention.

Feedthrough losses and noises have a noteworthy role in the electrical actuation and
measurements of MEMS and NEMS. These can be minimized by eliminating all possible
interconnection elements and wires. The continuation of this work will be followed by
the demonstration of single or multiple terminals to show equivalent or improved device
performances.
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