
Citation: Zhu, X.; Rong, W.; Zhao, L.;

He, Z.; Yang, Q.; Sun, J.; Liu, G. EEG

Emotion Classification Network

Based on Attention Fusion of

Multi-Channel Band Features.

Sensors 2022, 22, 5252. https://

doi.org/10.3390/s22145252

Academic Editors: Mincheol Whang

and Sung Park

Received: 30 April 2022

Accepted: 11 July 2022

Published: 13 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

EEG Emotion Classification Network Based on Attention
Fusion of Multi-Channel Band Features
Xiaoliang Zhu , Wenting Rong, Liang Zhao *, Zili He, Qiaolai Yang, Junyi Sun and Gendong Liu

National Engineering Research Center of Educational Big Data, Central China Normal University, Wuhan 430079,
China; zhuxl@ccnu.edu.cn (X.Z.); rwt_0706@mails.ccnu.edu.cn (W.R.); hzlzero@mails.ccnu.edu.cn (Z.H.);
yql2020113547@mails.ccnu.edu.cn (Q.Y.); sunjunyi@mails.ccnu.edu.cn (J.S.); gendong@mails.ccnu.edu.cn (G.L.)
* Correspondence: liang.zhao@ccnu.edu.cn

Abstract: Understanding learners’ emotions can help optimize instruction sand further conduct
effective learning interventions. Most existing studies on student emotion recognition are based on
multiple manifestations of external behavior, which do not fully use physiological signals. In this
context, on the one hand, a learning emotion EEG dataset (LE-EEG) is constructed, which captures
physiological signals reflecting the emotions of boredom, neutrality, and engagement during learning;
on the other hand, an EEG emotion classification network based on attention fusion (ECN-AF) is
proposed. To be specific, on the basis of key frequency bands and channels selection, multi-channel
band features are first extracted (using a multi-channel backbone network) and then fused (using
attention units). In order to verify the performance, the proposed model is tested on an open-
access dataset SEED (N = 15) and the self-collected dataset LE-EEG (N = 45), respectively. The
experimental results using five-fold cross validation show the following: (i) on the SEED dataset,
the highest accuracy of 96.45% is achieved by the proposed model, demonstrating a slight increase
of 1.37% compared to the baseline models; and (ii) on the LE-EEG dataset, the highest accuracy of
95.87% is achieved, demonstrating a 21.49% increase compared to the baseline models.

Keywords: EEG; learning emotions; emotion recognition; attention; convolutional neural network;
multi-channel band features

1. Introduction

As a high-level psychological state, emotion is composed of many kinds of feelings,
thoughts, and other factors, and has been broadly used in the medical, educational, and
other related fields because of its capability to reflect people’s real psychological reactions to
different things. With the rapid development of artificial intelligence, emotion recognition
research has become a hotspot. Generally speaking, the existing research in the field of
emotion recognition is carried out from one of the two following aspects. The first type of
research is a variety of manifestations (e.g., voice, text, and images) based on external behav-
ior, which is acquired through non-contact methods. For example, in 2005, Burkhardt et al.
established a speech dataset, called the Berlin database, which contained seven emotions [1].
In 2016, Lim et al. converted the original speech signal in this dataset into a spectrogram
by time–frequency analysis and proposed a shallow convolutional neural network (CNN)
and long short-term memory (LSTM) fusion network to identify the seven emotions [2].
Socher et al. built a text dataset containing the five emotions of very positive, positive,
neutral, negative, and very negative [3], while Kim et al. used CNN to learn sentence
feature vectors from this dataset and identify the emotions [4]. Anderson et al. proposed
that facial muscle movements can represent emotional states, in which the support vector
machine (SVM) was used to identify six basic emotions commonly associated with facial
expressions [5]. The second type of research is based on the neurophysiological state, that
is, the acquisition of various physiological signals [6–10], such as electrocardiogram (ECG),

Sensors 2022, 22, 5252. https://doi.org/10.3390/s22145252 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22145252
https://doi.org/10.3390/s22145252
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-8493-1931
https://doi.org/10.3390/s22145252
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22145252?type=check_update&version=2


Sensors 2022, 22, 5252 2 of 18

photoplethysmography (PPG), and electroencephalogram (EEG), among many others. Al-
though this type of research requires subjects to wear certain appropriate physiological
signal acquisition equipment, compared with the former external behavioral research,
focusing on neurophysiological states is a more objective method of representing emotions.
The collected physiological signals address better the problems associated with facial ex-
pression deception, and among them, the EEG signal is a focus of great concern [11]. A
number of researchers previously constructed their own EEG signal datasets to study the
basic emotions (i.e., anger, disgust, fear, happiness, sadness, and surprise) proposed by
Ekman et al. [12]. For example, Petrantonakis et al. developed an EEG dataset in an attempt
to distinguish the six basic emotional states proposed by Ekman et al. [13]. Schaaff et al.
developed an EEG dataset in an attempt to distinguish three emotions (including pleasant,
neutral, and unpleasant) [14]. Duan et al. created the SEED dataset to distinguish between
negative, neutral, and positive emotions in subjects [15]. Koelstra et al. created the DEAP
dataset, which measures two types of emotional states obtained from potentiation and
arousal [16]. D’Mello et al. pointed out that, although the six basic emotions proposed
by Ekman et al. [12] are common in our daily life, most of them do not exist for the study
time of 30 min to 2 h; hence, six learning emotions (i.e., boredom, engagement, confusion,
frustration, delight, and surprise) are defined and further ranked in an ascending order
of persistence on a time scale: (delight = surprise) < (confusion = frustration) < (boredom
= engagement) [17]. Meanwhile, Graesser et al. proposed that, for college students, the
main emotions centered on learning include confusion, frustration, boredom, engagement,
curiosity, anxiety, delight, and surprise [18].

Distinguishing the learners’ emotions in an intelligent educational environment is very
important; thus, in recent years, research on learning emotions has gradually attracted the
attention of scientists. For instance, Tonguc et al. recorded the facial expressions of students
during their speech process and recognized seven different types of learning emotions [19].
Sharma et al. studied students’ engagement states in conjunction with their eye, head, and
facial muscle movements in an online learning scenario [20]. Actually, in a real learning
scenario, students mostly showed their normal emotions, i.e., it is quite difficult to capture
the facial expressions at that moment, due to the fact that the facial muscles possessed
small amplitudes and short durations. In addition, facial expressions showed defects
(such as falsifiability) that cannot truly reflect emotions, bringing challenges to learning
emotion recognition. Therefore, the present study attempts to explore the learning emotion
classification algorithm based on EEG signals. Although EEG causes a lot of inconveniences
due to contact measurement, its ability to capture and represent real learning emotions for
students is quite helpful. In our preliminary research, the six learning emotions proposed
in [17] were taken into account initially; however, considering the time scale and the
probability of emotion occurrence, it was found that the chances of recognizing confusion,
delight, and curiosity are small. Therefore, in this study, a learning emotion EEG dataset
(LE-EEG) is constructed, which only focuses on three emotions (i.e., boredom, neutrality,
and engagement) that can last for a longer time. The main contributions of this study are
as follows:

(1) An EEG emotional classification network based on the attentional fusion (ECN-AF)
of multi-channel band features is proposed, focusing on the relationship among the
frequency bands, channels, and time series features.

(2) An induction experiment of an online learning scenario is designed, resulting in the
self-collected LE-EEG dataset with relatively large sample size (N = 45).

(3) The cross-dataset validation demonstrates that the proposed ECN-AF model outper-
forms the baseline models, showing not only a good performance on the public data
SEED, but also significant advantages on the self-collected LE-EEG dataset.

The remainder of this paper is organized as follows: Section 2 introduces the com-
monly used emotion classification algorithms; Section 3 presents the framework of the
proposed ECN-AF model; Section 4 discusses the experimental design; Section 5 analyzes the
experimental results; and Section 6 makes a summary and lists the future research directions.
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2. Related Works

To realize emotion classification, the key methods of feature extraction based on
EEG signals tend to be developed around the three aspects of time, frequency, and time–
frequency domains [21]. First, the time domain methods focus on the EEG signals’ temporal
information, including the typical features of Hjorth parameters, fractal dimensional fea-
tures, and higher-order crossover features. Second, the frequency domain methods often
convert the collected EEG signals (0–50 Hz) into five sub-bands (i.e., delta (1–4 Hz), theta
(4–7 Hz), alpha (8–13 Hz), beta (13–30 Hz), and gamma (31–50 Hz)) [22] and extract fea-
tures, such as power spectral density, differential entropy and asymmetry, and rational
asymmetry in different frequency bands [15]. Meanwhile, the time–frequency domain
method combines the characteristics of both time and frequency domains, converting the
EEG signals into sub-bands and using the windowing method for emotion classification.

Typical EEG emotion recognition methods tend to extract features and adopt machine
learning, such as Support vector machines (SVM), k-nearest neighbor (KNN), and other
algorithms for classification and recognition [23–25]. For example, Arnau-Gonzalez et al.
conducted emotion classification experiments on the DEAP dataset, where frequency
domain features (e.g., PSD) and mutual information in each frequency band of the channel
were extracted, and a final classification accuracy of 66.7% for valence and 69.6% for
arousal was obtained using the SVM [23]. Li et al. conducted experiments on the SEED
dataset by extracting features (such as peak-to-peak average, alignment entropy, and Hjorth
parameters), and their average classification accuracy using the SVM reached 83.3% [24].
Algumaei et al. used linear discriminant analysis (LDA), achieving an average accuracy of
90.93% on the SEED data set [25].

Compared with traditional machine learning models, deep neural networks show
a more efficient performance [26–29]. They can not only automatically extract effective
features, but also mark key frequency bands and brain regions. Therefore, more and more
researchers use deep learning models to study EEG-based emotion classification. For
example, on the SEED dataset, Zheng et al. proposed an emotion classification model using
SVM and deep belief networks (DBN), and investigated the effect of the combinations
of different frequency bands on emotion classification accuracy. Their final experimental
results showed that the accuracy under the 12-channel combination could surpass that
under the 62-channel combination. In addition, the direct concatenation of the DE features
of five frequency bands under the DBN network led to an average classification accuracy
of 86.08% [30]. Many researchers have improved the emotion recognition accuracy by
developing advanced convolutional networks, such as the self-organizing graph neural
network (SOGNN) [31] and dynamic graph convolutional neural network (DGCNN) [32],
which respectively achieved 86.81% and 90.4% classification accuracy. To be specific,
Li et al. proposed SOGNN, which constructs inter-channel correlations from self-organizing
graphs, and explores the aggregation of these inter-channel connections and time–frequency
features in frequency bands. The final experimental average accuracy (ACC) and the
standard deviation (STD) were 86.81% and 5.79%, respectively [31]. Song et al. proposed
DGCNN, which uses a graph to model the multi-channel EEG features and dynamically
learn the intrinsic relationship between different EEG channels. As a result, they achieved
90.4% highest accuracy and 8.49% STD [32].

By contrast, studying emotion classification by exploring frequency bands and their
correlation has made fruitful achievements. Yang et al. did not distinguish between
the sub-bands on the SEED dataset to study the channel combination, but proposed the
usage of directional RNNs to extract independent features of left and right brain regions.
Consequently, they acquired 93.12% ACC and 6.06% STD [33]. Wang et al. improved the
bidirectional long- and short-term memory network by proposing a similarity-learning
network, achieving a classification accuracy of 94.62% on the SEED dataset [34]. Shen et al.
proposed a four-dimensional convolutional recurrent neural network (4D_CRNN) that
converted full EEG channels into a two-dimensional picture. They superimposed all sub-
bands to convert the features into three dimensions and finally extracted the channel and
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band features using 2DCNN, as well as the temporal features using LSTM. They acquired
94.08% ACC and 2.55% STD [35].

The attention mechanism [36,37] was successfully introduced into neural networks,
which greatly improved the performance of classification models. Researchers in the
field of EEG emotion recognition found that the attention mechanism is like the idea of
focusing on emotion-related brain regions and started to try using this in the field of EEG
emotion recognition to improve the model performance. For instance, Li et al. proposed
the transferable attention neural network (TANN) with 93.34% ACC and 6.64% STD,
which used two directed RNN modules to extract features from whole brain regions
and global attention layer fusion features to highlight the key brain regions for emotion
classification [38].

In summary, existing research faces the following problems: (1) the exploration of
multiple channel combinations for emotion classification fails to combine well the five
sub-band features; and (2) exploring band correlations to synthesize all-channel studies is a
mainstream method; however, not all brain regions of EEG signals contain valid emotion
information, and thus this approach fails to focus on capturing the important emotion
channels. To address these problems, in this study, ECN-AF is proposed, focusing on
specific channels and some frequency bands for the fusion of attention units.

3. Methodology
3.1. Model Framework

Figure 1 depicts the framework of the proposed ECN-AF model consisting of the
following three main modules:
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Figure 1. ECN-AF framework diagram. Figure 1. ECN-AF framework diagram.

(1) Module 1: frequency band division and channel selection module. In this module,
first, the acquired EEG signal were divided into raw segments by a sliding window
with a window size 10 s and a step size 2 s; second, five different frequency bands
were extracted by passing the raw segments through bandpass filters; third, the final
segments were generated, which were the optimal combinations of EEG channels
obtained by multi-channel filtering operation.
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(2) Module 2: frequency band attention feature extraction module. This module com-
prised a multi-channel convolutional backbone network with a frequency band at-
tention fusion unit. First, the EEG sequences output from Module 1 were put into
the multi-channel convolutional backbone network, which extracted not only the
channel and time series features but also the features in different frequency bands.
Second, the features extracted from different frequency bands were further put into a
frequency band attention fusion unit, which performed the fusion of the channels and
time series features across different frequency bands.

(3) Module 3: feature fusion and classification module. In this module, the combined
features obtained from the fusion unit were taken as the input to the classification
network; subsequently, the fused features were extracted using the depth network
and then input to the fully connected layer, giving the final classification results.

3.2. Module 1: Frequency Band Division and Channel Selection Module

After data cleaning, the SEED dataset contained 62 channels of EEG signals from
15 subjects with a sampling rate of 200 Hz [15]. The LE-EEG dataset contained 32 channels
of EEG signals from 45 subjects with a sampling rate of 128 Hz. Both the SEED and LE-EEG
datasets were divided using a window

W = T × C (1)

In Equation (1), W is the segment size, T is the time duration after splitting, and C is
the number of channels. The datasets were all segmented using a sliding window with a
window length of 10 s and a step size 2 s. In the SEED and LE-EEG datasets, W values are
2000 × 62 and 1280 × 32, respectively.

S = {W1, W2, W3, . . . Wi, . . . Wn−1, Wn} (2)

Y = {Y1, Y2, Y3, . . . , Yi, . . . , Yn−1, Yn}, Yi ∈ {−1, 0, 1} (3)

In Equations (2) and (3), S denotes a subject’s dataset, Wi denotes the sequential
segment data, n denotes the total number of samples, Y denotes a subject’s sentiment label
set, and Yi denotes the label of the ith segment data.

Finally, a sample size of 4896 for each subject and a total sample size of 73,440 for all
the 15 subjects were collected in the SEED dataset. Meanwhile, a sample size of one subject
ranging from 1082 to 1650 and a total sample size of 60,376 for all the 45 subjects were
collected in the LE-EEG dataset.

|H(w)|2 =
1

1 +
(

W
W f1∼ f2

)2N f
(4)

H(S) =


Sδ, w ∈ (1, 4)
Sθ , w ∈ (4, 7)

Sα, w ∈ (8, 13)
Sβ, w ∈ (13, 30)
Sγ, w ∈ (31, 50)

(5)

In Equations (4) and (5), a fourth-order Butterworth bandpass filter was used to filter
the EEG signal into five wave sub-bands [39–42]. N f is the order of the filter, i.e., N f = 4. W
is the frequency; W f1∼ f2 is the normalized frequency band; and the range of frequencies
f 1 to f 2 is the passband interval of the bandpass filter. H(S) is the EEG signal filtered by
the fourth-order Butterworth bandpass filter, w is the frequency band, and δ, θ, α, β, and γ

denote the data of the five different frequency bands.

S f =
H(S)− AVG(H(S))

STD(H(S))
, f ∈ {δ, θ, α, β, γ} (6)
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In Equation (6), Sf is the normalized EEG segment data; f is one of the five sub-bands;
H denotes the five different frequency band EEG signals of one subject; AVG is the average
value; STD is the standard deviation.

Previous studies have found that, a combination of frequency channels can improve
the recognition performance. For example, Zheng et al. used six channel combinations of
“FT7,” “FT8,” “T7,” “T8,” “TP7,” and “TP8” for emotion classification [43]. Zheng et al.
designed four different electrode placement patterns based on the peak characteristics
of the weight distribution and the asymmetry of the emotion processing, finally “FT7,”
“T7,” “TP7,” “P7,” “C5,” “CP5,” “FT8,” “T8,” “TP8,” “P8,” “C6,” and “CP6” were used,
achieving the best result of 86.65% classification accuracy. This confirmed that it is possible
to achieve better experimental results with fewer channel combinations than full-channel
recognition [30]. Combining the abovementioned studies, we obtain the following setting:

X f
C =

{
S f

C1

S f
C2 f ∈ {δ, θ, α, β, γ} (7)

In Equation (7), X f
C is the EEG signal at f frequency under the Cth channel combi-

nation; C is the channel combination method; and in our study, C1 and C2 are taken as
C1 = {“FT7,” “FT8,” “T7,” “T8,” “TP7,” “TP8”} and C2 = {“FT7,” “T7,” “TP7,” “P7,” “C5,”
“CP5,” “FT8,” “T8,” “TP8,” “P8,” “C6,” “CP6”}, respectively.

3.3. Module 2: Frequency Band Attention Feature Extraction Module

This section presents the combination of two sub-modules, a multi-channel convolu-
tional backbone network and a band attention fusion unit.

3.3.1. Multi-Channel Convolutional Backbone Network

The backbone network was built using two layers of CNN, AvgPool1D, BatchNormal-
ization, and SpatialDropout1D, with the parameters shown in Table 1. We used the X f

C in
Module 1 input to the multichannel convolutional backbone network to extract channel
and time features.

FC
f = ReLU

(
( f ∗ g)×2

(
XC

f

))
, f ∈ {δ, θ, α, β, γ} (8)

FC =
{

FC
f

}
, f ∈ {δ, θ, α, β, γ} (9)

Table 1. Multi-channel convolutional backbone network construction.

Stage Stage Setting Output

Conv-1 32, strides = 2, activation = “relu” (1000,32)
Conv-2 64, strides = 2, activation = “relu” (498,64)
Pool_1 2, AvgPool (249,64)

Batch_norm1 BatchNormalization (249,64)
Drop_1 Dropout1D (249,64)

In Equations (8) and (9), FC
f is the feature of the output of the convolutional network in

the f -band under the Cth channel combination, and FC is the set of different band features
extracted by the convolutional backbone network under the Cth channel combination.

3.3.2. Frequency Band Attention Fusion Unit

The feature FC was used as the input of the band attention fusion unit. First, the
bands were selected from the feature FC for combination. Next, the attention weights
were generated by the sigmoid function using the feature vector. Finally, the weights were
attached to the corresponding features to finally obtain the channel, time, and band fusion
features. This three-step process is expressed as follows, also see Figure 2:
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Weightk = Sigmoid
(

qT Mult
(

Select
(

FC
)
×n

))
(10)

F′ = Mult
(

Select
(

FC
)
×n

)
× Weightk (11)
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3.4. Module 3: Feature Fusion and Classification Module

After the band attention feature extraction module, we input the fused features F′

into the classification network built by CNN, AvgPool1D, BatchNormalization, Spatial-
Dropout1D, GlobalAvgPool1D, Dropout, and Dense. Table 2 lists the specific parameters.
We used convolution to extract the depth features in the upper layers of the classification
network. The fully connected layer output the triple classification results. We set the
BatchNormalization behind the convolutional network to normalize the segment data and
transform the features in a state with zero mean and a variance of 1. It not only sped up the
convergence speed but also effectively prevented gradient explosion and disappearance.

Table 2. Classification network construction.

Stage Stage Setting Output

Conv-1 128, strides = 2, activation = “relu” (245,128)
Conv-2 128, strides = 2, activation = “relu” (245,128)
Pool_1 2, AvgPool (122,128)

Batch_norm1 BatchNormalization (122,128)
Drop_1 Dropout (122,128)
Conv-3 256, strides = 2, activation = “relu” (118,256)
Conv-4 256, strides = 2, activation = “relu” (118,256)
Pool_2 GlobalAvgPool (256)
Drop_2 Dropout (256)
Dense Activation = “softmax” (3)

4. Experiments
4.1. Experimental Materials

We want to control the following variables: take a graduate student majoring in big
data artificial intelligence as the subject’s educational background; ensure that the video
duration is not much different; and select popular courses and the knowledge points of the
selected courses which cover multiple disciplines.

4.1.1. Sources of Emotional Materials

At this stage, no standardized learning emotion induction course video is available
in China. Hence, we used the well-known domestic learning websites https://www.
icourse163.org/ (accessed on 21 March 2021) (Chinese University MOOC Network) and

https://www.icourse163.org/
https://www.icourse163.org/
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https://www.bilibili.com/ (accessed on 21 March 2021) (Learning section in Bilibili). The
lessons were selected from these two sites according to the learners’ comments about en-
gagement and boredom-related vocabulary. With computer-related courses as the academic
background, 50 learning videos of computer majors and science-, literature-, history-, and
philosophy-related learning courses were finally selected to induce learning clips with
focused and boring emotional labels. Note that the China University MOOC is the largest
online classroom in China. Its course categories are classified according to the students’
professional background (e.g., computer, foreign language, and science). Bilibili.com is a
popular video platform used by young people in China to learn knowledge, exchange ideas,
and spread culture. The website contains many excellent user-uploaded learning resources.

4.1.2. Emotional Material Clipping

Fifty videos were collected through the abovementioned means, among which 18 videos
were marked as engaging, 17 videos were marked as boring; and 15 videos were marked as
neutral. To clip a knowledge point in the videos, all acquired course videos were edited
using Cut Screening for Windows Professional, which ensured that the content of the clip
was complete, and the video length was not excessively long. The clipped video clips
were edited into MP4 format video files, with a resolution of 1920 × 1080 px (30 fps). The
clipping video duration was 76–293 s, with an average of 166 s. The emotion-inducing
materials mainly consisted of Chinese materials and explanations. A few of them were
English clips with Chinese subtitles.

4.1.3. Evaluation of Emotional Materials

In this study, 49 graduate students were recruited as subjects for the emotional material
assessment experiment. The participants were 23 male students and 26 female students
aged 20–25 years, with an average of (22 ± 1.19) years. All subjects were physically healthy,
right-handed, and free of significant emotional problems and mental illness. Forty-nine
subjects were taking majors in computer and science technology, electronic information,
educational information technology, and educational technology. To avoid the subjects’
prior knowledge from interfering with the emotion induction results, those who previously
participated in rating the emotion material did not participated in the current data collection
experiment.

For the experiment, all subjects were given a “Self-assessment of Learning Status”
questionnaire. After each video clip was shown, the subjects were asked to report their
actual feelings and score the questionnaire. Each question was scored using a 5-point scale:

◦ 0: really boring, I don’t want to listen at all;
◦ 1: a little boring;
◦ 2: average;
◦ 3: not boring, can keep up with the teacher’s rhythm;
◦ 4: not boring, very focused.

According to careless/insufficient effort (C/IE) detection (see Appendix A), finally
44 valid questionnaires were collected in this study. All data were imported into SPSS
27.0 statistical software according to the required SPSS format. The data were statistically
analyzed by descriptive statistics, correlation analysis, reliability analysis, group analysis,
and analysis of variance.

Figure 3 shows the 5-point scoring of 22 video clips marked as boredom and en-
gagement by 44 subjects. The X-axis depicts 22 target videos. The Y-axis represents the
ratings of the 44 subjects for each target video. The set of red dots indicates the rating
of the 14 engaging emotional clips, while the set of green dots implies the rating of eight
boring clips. Lighter scatters represent fewer subjects giving a score with the y-axis value,
and darker scatters represent more subjects giving a score with the y-axis value. Figure 4
represents the mean scores of 44 subjects after the 5-point scoring for the 28 selected target
video clips. The X-axis shows 28 target videos. The Y-axis is the mean score of 44 subjects
for each target video. The blue bars indicate the mean scores of the 14 engaging emotion

https://www.bilibili.com/
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clips, while the red bars illustrate the mean scores of six neutral clips. The orange bars
show the mean scores of eight boring emotion clips.
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Gross et al. pointed out that the indicators for judging the success of emotion in-
duction include the intensity and discreteness of emotion induction [44]. Intensity refers
to the average score of different emotional segments. The greater the intensity of the
emotional response, the higher the average score. The discreteness was judged by the hit
rate (hit rate = the type of video discriminated by the subjects/the number of all emotions
discriminated). The higher the hit rate, the better the singleness of the emotions induced
by the emotional video clips. Figures 3 and 4 depict the dispersion and the intensity of
the subject’s response induced by the target video clip. According to the discrete scoring
points in Figure 3, the hit rate of the engaging emotion was 79.48 ± 4.54%, while that of
the boredom emotion was 81.73 ± 16.03%, proving that the singleness induced by the
two emotions was good. In Figure 4, the average score of the input emotion was 2.873,
while those of the boredom emotion and the neutral segments were 1.256 and 2.036, re-
spectively. These results proved that the intensity of the induced emotional response was
high. Finally, according to 44 valid questionnaires, 28 videos were effectively distinguished
from the three emotions. We had 14 engaging segments, 8 boring emotional segments, and
6 neutral segments.

4.2. Experimental Procedure and Signal Pre-Processing
4.2.1. Experimental Procedure

In the experiment, we selected seven each of the engagement and boredom clips and
six neutral videos as the target emotions from the 28 induced emotion materials. After each
video clip was shown, all subjects were asked to answer the questionnaire, report their
actual feelings, and rate the questionnaire. The questionnaire consisted of nine questions,
each of which was scored on a 5-point (0–4) scale, except for the first two questions. The
more intense the subject’s concentration, the closer the question score was to 4. The more
intense the boredom, the closer the question score was to 0.

We used a pseudo-randomized approach to play the induction video to prevent the
boredom caused by the subjects watching the same emotional video for a long time. After
the researcher played a video clip, the subjects were given 1 min to fill out the questionnaire
and take a short break. The process was repeated for 20 times, with a 10 min break until all
video clips had been studied.

The hardware device used to collect the data in this experiment was the EPOC Flex
Saline Sensor Kit. The software device was EmotivPRO v2.0. During the experimental
acquisition, we asked the subjects to keep their limbs still and try to avoid continuous
blinking to minimize the presence of artifacts. The final experiment collected 940 segments
of EEG data and 940 assessment questionnaires, of which 777 questionnaires were identified
as valid data based on the subjects’ completion and the researcher’s screening. All valid
questionnaires were labeled as boredom, neutrality, and engagement. The EEG data
collected for the sentiment classification contained 745 segments because of the equipment
acquisition failures and other reasons.

4.2.2. Signal Pre-Processing

The pre-processing and removal of artifacts from the EEG signals are a demanding
step in the EEG processing process. In Figure 5, the LE-EEG dataset was preprocessed
using MATLAB R2020b, eeglab toolbox [45], ICLab [46–49], and adjusted [50] for bandpass
filtering and automatic artifact processing of EEG signals. After the artifacts were processed
using the automatic toolkit, some of the bad data were manually removed by visual
inspection to finally obtain relatively clean EEG data.
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5. Results and Analysis

We trained the model on an NVIDIA GTX 1080 GPU. The model learning rate was set
to 0.001. The learning rate decay was set to 0.00001. The optimization function was set to
Adam optimization. The loss function was set to categorical_crossentropy. The number of
multi-channel convolutional backbone network settings depended on the number of band
combinations. We conducted experiments on the SEED and LE-EEG dataset separately.
The ACC and the STD were used as the evaluation criteria for all subjects in the dataset,
dividing the data into training and test sets in a ratio of 8:2 in each fold of cross validation.
On the SEED dataset, we performed the subject-dependent experiments, we performed
a comparison with several baseline models using cross-validation to assess the model
performance. On the LE-EEG data, we cited the paper containing the code for comparison
with the model in this paper. In contrast to the approach to the SEED dataset prediction,
we fused all subject data for data partitioning.

5.1. Ablation Study

We conducted two sets of ablation study experiments on the SEED dataset to validate
the effectiveness of the combined band and attention fusion units in the model for sentiment
classification. One experiment explored the effects of split-band prediction and combined
band prediction on emotion classification to validate the importance of integrating the
band features. Another experiment discussed multiple fusion approaches to validate the
need for attentional fusion units.

5.1.1. Sub-Band Prediction and Combined Band Prediction

In our experiments, we compared the emotional classification accuracy in two cases:
one uses a single-channel backbone network to extract the sub-band features, while the
other uses a multi-channel backbone network combination to extract the sub-band features.
Table 3 shows the experimental results on the two datasets. First, on the SEED dataset, C1



Sensors 2022, 22, 5252 12 of 18

and C2 are different channel combination methods, as described in Section 3.2. We recall
that C1 represents the combination of “FT7,” “FT8,” “T7,” “T8,” “TP7,” “TP8,” and C2
represents the combination of “FT7,” “T7,” “TP7,” “P7,” “C5,” “CP5,” “FT8,” “T8,” “TP8,”
“P8,” “C6,” and “CP6.” Second, on the LE-EEG dataset, All_band indicates that all available
EEG channels are used instead of C1 and C2. This is because the number of available EEG
channels from the two datasets are not consistent, which are 64 and 32 for the SEED and
LE-EEG datasets, respectively. Furthermore, in Table 3, in order to ensure the consistency of
the algorithm migration benchmark and further make a fair comparison, C3 was proposed
as the combination of “T7,” “P7,” “CP5,” “T8,” “P8”and “CP6,” as shown in Figure 6. In
Figure 6a, the scatter points shown are all 62 electrode points used in the seed data set, of
which the blue scatter points are C1 combined electrodes; In Figure 6b, the scatter points
shown are the electrical poles used in the LE-EEG data set, and the blue scatter points
are C3 combined electrodes. Notably, the channels involved in C3 (see the blue points in
Figure 6b) aimed to match the locations of the channels involved in C2 (see the blue points
in Figure 6a) as closely as possible.

Table 3. Accuracy comparison (i.e., ACC/STD) of different frequency bands (average 5-fold cross
validation results).

Frequency Band
SEED LE-EEG

C1 C2 C3 All_Band

δ 83.18/2.42 84.23/2.85 93.69/0.40 95.22/0.49
θ 67.05/7.71 69.88/7.52 93.06/0.45 94.64/1.15
α 77.55/6.82 82.68/5.58 93.09/1.11 94.64/0.63
β 81.46/7.27 87.09/4.17 93.56/0.44 94.97/0.51
γ 83.60/4.91 90.90/4.38 93.83/0.48 95.52/0.62

β + γ 84.14/6.12 92.10/4.02 - -
β × γ 91.30/4.56 93.39/2.42 - -

Attention (β, γ) 90.03/3.40 94.20/2.38 - -
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Table 3 shows the classification accuracy of the five sub-bands (i.e., δ, θ, α, β, and γ) in
the SEED. β+γ means the add fusion method. β × γ means the multiply fusion method.
These two operations have been widely used in deep learning network design. Specifically,
the add fusion method is described as having the corresponding elements of the feature
matrix (which outputs from the multi-channel convolutional network) for each sub-band
be added together. Similarly, the multiplicative fusion method is described as having the
corresponding elements of the feature matrix for each sub-band be multiplied. Attention
(β, γ) indicates that the attention fusion unit is used for the feature-level fusion. Take C2
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(see the third column of Table 3) as an example. Based on the experimental results of the
single-channel network, on the SEED dataset, we found that the β and γ bands performed
a better prediction than the other bands, the accuracy of these two bands were 87.09% and
90.90%, respectively. Therefore, we combined the β and γ frequency bands, input them to
the multi-channel backbone network to extract features, and adopted three feature-level
fusion methods for emotion prediction. The final experimental results showed that the
fusion of the frequency band information (i.e., Attention (β, γ)) could improve the model
accuracy; the resulting accuracy was 94.20%.

Furthermore, on the LE-EEG dataset, the emotion classification accuracy in each
sub-band was high. We believe that the possible reasons for this phenomenon include
(i) compared with the SEED dataset (N = 15), the LE-EEG dataset had relatively larger
sample size (N = 45); (ii) after data fusion, the training samples (of the LE-EEG dataset)
became even larger, which results in better model performance after the training. In
addition, from the comparison between the last two columns in Table 3, we can see that
the performance of All_band has higher classification accuracy than the C3 combination
of channels in each sub-band, so the channel selection does not yield better classification
results. We believe that the reason for this phenomenon is that the types of emotions on
the two datasets were different. To be specific, the SEED data were designed to explore
three basic emotions containing negative, neutral, and positive, while the LE-EEG dataset
explored three learned emotions of engagement, neutrality, and boredom. Therefore, the
relevant channels for studying basic emotions may not be applicable to the study of learning
emotions, and at this stage, there is no past reference literature regarding learning emotion
channel studies, so in future work, learning emotion-related channel exploration should be
the research focus. In this paper, the optimal combination of channels for learning emotions
will not be discussed for the time being.

5.1.2. Comparison of the Results of Fusion Methods

In this subsection, we verified the effectiveness of combining frequency band features
to improve the model performance. This subsection focuses on analyzing the impact of
multiple fusion methods on the model accuracy and verifying the necessity of attention
fusion units. We compared three fusion methods, namely feature summation fusion, feature
multiplication fusion, and attention weight fusion, which are denoted as Add, Mult, and
Attention in Table 4, respectively. Table 4 shows the classification accuracy of the five
sub-bands (i.e., δ, θ, α, β, and γ) in the SEED dataset after inputting different frequency
band combinations into the multi-channel backbone network to extract features.

Table 4. Accuracy comparison (i.e., ACC/STD) of various fusion methods validated on SEED dataset
(average 5-fold cross validation results).

Method
C1 C2

Add Mult Attention Add Mult Attention

α, β 72.34/10.70 72.54/11.50 72.75/7.54 83.16/4.84 87.63/7.67 89.80/4.13
α, γ 69.48/12.10 78.84/10.22 79.26/7.10 80.56/8.80 95.04/3.80 90.77/4.59
δ, β 94.81/2.20 77.62/11.56 93.77/2.27 94.68/3.45 95.36/3.96 87.40/4.41
δ, γ 95.03/2.45 82.41/8.30 95.63/1.92 92.00/2.26 95.60/2.75 95.70/3.67
β, γ 84.14/6.12 91.30/4.56 90.03/3.40 92.10/4.02 93.39/2.42 94.20/2.38

δ, α, β 94.79/3.22 95.11/3.60 94.95/2.73 94.24/3.32 96.09/3.00 95.87/4.17
θ, β, γ 94.10/4.50 92.23/4.99 92.46/6.92 95.44/2.35 95.77/3.90 94.89/4.06
α, β, γ 92.70/5.52 95.17/4.27 93.84/3.63 95.31/3.21 94.66/5.43 96.02/5.54
δ, β, γ 95.17/2.17 95.13/3.67 95.32/3.53 95.78/3.45 96.15/2.13 96.45/3.56

δ, α, β, γ 94.28/5.46 87.07/12.96 77.0/16.81 94.68/2.72 80.99/14.82 86.49/17.90
Notably, Add means to directly add and fuse the features; Mult means that the features are multiplied and fused;
Attention means that the attention fusion unit is used for feature-level fusion, and Bold indicates the best accuracy
achieved using different fusion methods (for a given channel combination, C1 or C2).
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Our experiments revealed that first, the proposed attention fusion unit pair model has
a better performance on more frequency band combinations in general; however, more
frequency band combinations cannot always guarantee a higher performance of emotion
classification. For example, compared with the sub-band combinations shown in the other
rows of Table 4, in the case of the sub-band (δ, α, β, γ) shown in the last row of Table 4, (i) the
model performance using the fusion mode of Add decreased (see the 2nd and 5th columns
of the last row in Table 4), but remained relatively stable; (ii) the model performance using
fusion mode of either Mult or Attention (see the 3rd and 6th columns or the 4rd and 7th
columns of the last row in Table 4) was seriously degraded. The reason for this might
include that when the model was trained, the fusion method of Mult and Attention made
the model training parameters exponentially increase, resulting in severe overfitting caused
by model overtraining.

Second, we can see that, the best performance obtained by C2 (see the 5th–7th columns
of Table 4) was always higher than that of C1 (see the 2nd–4th columns of Table 4). For
clarification, let us take the sub-band (δ, γ) as an example. From the 4th row in Table 4,
we can see that, (i) regarding C1, the best performance with 95.63% was achieved using
the fusion method of Attention; (ii) regarding C2, the best performance with 95.70% was
achieved again using the fusion method of Attention, i.e., compared with C1, 0.07% accuracy
improvement was achieved by C2.

Third, regarding C2, the top two performances were achieved by the sub-bands
(α, β, γ) and (δ, β, γ) using the fusion method of Attention, which were 96.02% and 96.45%,
respectively (see the 2nd and 3nd last rows of the last column in Table 4). Take the sub-
band (δ, β, γ) as an example. Compared with Add and Mult, 0.67% and 0.30% accuracy
improvements were obtained by the fusion method of Attention. This demonstrated that
the classification performance can be improved using the fusion method of Attention, due
to those more important features were assigned by attention weights.

5.2. Comparison

Based on above experiments, we take δ, β, and γ bands and attention fusion to
complete comparison. On the SEED dataset, the model herein was compared with the
baseline models. Table 5 presents the results. Compared with that of the optimal baseline
model (see the row of “DCCA [39]” in Table 5), the performance of our model was improved
by 1.37%.

Table 5. Accuracy comparison (i.e., ACC/STD) versus baseline models (average 5-fold cross validation results).

Method SEED LE-EEG

SVM [24] 83.30/— —
DBN [30] 86.08/— —

SOGNN [31] 86.81/5.79 74.38/1.50
LDA [25] 90.93/— —

DGCNN [32] 90.40/8.48 —
BiHDM [33] 93.12/6.06 —
TANN [38] 93.34/6.64 —

3DCNN-BiLSTM [27] 93.38/2.66 —
4D_CRNN [35] 94.08/2.55 67.48/0.39

RGNN [51] 94.24/5.95 —
DE-CNN-BiLSTM [26] 94.82/— —

DCCA [39] 95.08/6.42 —
ECN-AF (C1) 95.32/3.53 —
ECN-AF (C2) 96.45/3.56 —
ECN-AF (C3) — 94.80/0.57

ECN-AF (All_band) 95.7/4.71 95.87/0.38
Dotted line (i.e., “—”) indicates that data was not provided; and bold indicates the best accuracy achieved for a
given dataset.
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Referring to the baseline models on the SEED dataset, two baseline models 4D_CRNN [35]
and SOGNN [31] that can be reproduced with the shared code were selected for compar-
ison when validating on the LE-EEG dataset. Table 5 presents the comparison with the
baseline models. Compared with that of these two baseline models, the performance
of our model was improved by 28.39% and 21.49% (see the 3rd column of the rows of
“4D_CRNN [35],” “SOGNN [31],” and “ECN-AF(All_band)” in Table 5), confirming that
the network was robust across datasets. Figure 7 shows the validation set accuracy of the
three different models during the training process. We still find that the ECN-AF model
yields a better performance.
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Dotted line (i.e., “---”) indicates that data was not provided; and bold indicates the best accuracy 

achieved for a given dataset. 
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6. Conclusions

In this study, we collected the EEG signals of 45 subjects while they were watching
learning materials. We established the LE-EEG dataset and tried to use the EEG signals
to recognize learning emotions. The proposed ECN-AF first extracted the frequency band
features through a multi-channel backbone network, and then fused the frequency band
features with attention, which could effectively improve the model performance. Using
the complementarity of the frequency band combination effectively improved the model’s
accuracy and robustness and yielded better results compared to a single sub-band. This is a
conclusion similar to that of previous studies [30,31]. The ablation experiments performed
herein also demonstrated the necessity of multi-channel backbone blocks and attention
blocks. The experiments on the SEED and LE-EEG datasets showed that the proposed
model outperforms baseline models with a better cross-dataset performance.

Our future work will focus on the expansion of the LE-EEG dataset and on the
construction of a physiological signal dataset for multimodal learning emotion recognition.
At the same time, the learning of emotion-related frequency bands and related brain regions
and channels must be continuously explored and optimized, e.g., to further improve the
performance by exploring the optimal combination of EEG channels on the LE-EEG dataset.
The accuracy of the proposed model still needs improvement in across-participant research.
The generalization ability and robustness of the algorithm must also be further improved.
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Appendix A

Referring to [52–57], a questionnaire is taken as invalid if one or more than one of the
six factors in Table A1 is/are involved.

Table A1. Summary of methods of careless/insufficient effort (C/IE) detection.

Index Method Type Description

1 bogus or infrequency [52–55] check items Odd items placed in scale to solicit particular responses.

2 long-string analysis [52–55] invariance Length of longest sequential string of the same response

3 self-report data [52–55] self-report Items which ask the participant how much effort they
applied or how they judge the quality of their data

4 semantic antonyms/synonyms [52–55] consistency Within-person correlations on sets of semantically matched
pairs of items with opposite or similar meaning

5 instructional manipulation checks [52–55] check items Items with extended instructions which include instructing
participant to answer in unique manner

6 polytomous guttman errors [52] consistency
Count of the number of instances where a respondent

broke the pattern of monotonically increasing response on
the set of survey items ordered by difficulty.
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