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Abstract: Path planning for wheeled mobile robots on partially known uneven terrain is an open
challenge since robot motions can be strongly influenced by terrain with incomplete environmental
information such as locally detected obstacles and impassable terrain areas. This paper proposes
a hierarchical path planning approach for a wheeled robot to move in a partially known uneven
terrain. We first model the partially known uneven terrain environment respecting the terrain
features, including the slope, step, and unevenness. Second, facilitated by the terrain model, we
use A? algorithm to plan a global path for the robot based on the partially known map. Finally, the
Q-learning method is employed for local path planning to avoid locally detected obstacles in close
range as well as impassable terrain areas when the robot tracks the global path. The simulation and
experimental results show that the designed path planning approach provides satisfying paths that
avoid locally detected obstacles and impassable areas in a partially known uneven terrain compared
with the classical A? algorithm and the artificial potential field method.

Keywords: hierarchical path planning; uneven terrain; A? algorithm; Q-learning algorithm

1. Introduction

Mobile robots that are deployed for rescue missions in uneven cluttered terrains
generally need to have the ability of autonomous navigation and path planning. However,
it is challenging to plan a feasible path efficiently for a robot to move in uneven terrains due
to the terrains’ slope, step, and unevenness. In [1], a real-time obstacle avoidance method
is proposed based on trajectory space, which considers the mobile robot’s uncertainty.
However, the uneven terrain modeled in [1] does not reflect a realistic terrain environment
well. Some research has been conducted for robotic path planning on uneven terrains, such
as the path planning for the Chang’e-4 lunar exploration rover Yutu-2 to move through
uneven rough terrain [2]. The Yutu-2 lunar rover can passively adapt to the uneven
terrain on the moon’s far side by using its differential mechanism and rocker arm. This
configuration enables the rover to reduce its pitch angle by half compared with other
vehicles when clearing an obstacle. The Curiosity rover used in the US Mars exploration
mission is a six-wheeled vehicle [3]. It uses a rocker arm steering structure in which
two front wheels and two rear wheels are independent such that the rover can pivot
steering. The Curiosity rover, meanwhile, relies on a six-wheeled primary and secondary
joystick system to navigate over the uneven rocks of Mars. The above work focuses on
vehicles’ adaptation and safe travel over rough terrain through sophisticated mechanical
mechanisms. However, it must be acknowledged that this is a complex and costly approach.
The application of path planning techniques would be much more beneficial if they could
be used to continually identify whether they can be safely navigated to plan safe and
feasible paths in rough environments.
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For the path planning of wheeled mobile robots in uneven terrains, a high-quality
terrain model is the foundation for path planning as the fidelity of the model affects the
applicability of the planned path [4]. A lot of work has been performed on modeling uneven
terrain environments. In [5], Dupuis et al. constructed a three-dimensional (3D) terrain by
using an ILRIS-3D laser scanner to measure the unevenness of the road surface. Vandapel
et al. used a 3D laser radar to obtain the environmental data of uneven terrain, and classified
the uneven terrain by learning rocks’ characteristics [6]. Agrawal et al. equipped a stereo
vision camera on a wheeled mobile robot to map unknown uneven terrain [7]. The wheeled
mobile robot moves to a target position in a new environment, where real-time correction
is made in the map construction process. Huber et al. modeled uneven terrain by collecting
data from three parts: the internal environment map constructed from the depth camera
data, the large-scale topographic map constructed from the aerial data, and the map built
from the stereo data [8]. The above research work shows that the grid-based 3D elevation
map can be used to model an uneven terrain.

The goal of the path planning for a robot operating in a challenging uneven terrain
is to find the optimal feasible path that avoids impassable areas, including obstacles, and
reduces failure risk due to the terrain’s slope, step, and unevenness. Different kinds of
algorithms have been designed for robot path planning, including the Dijkstra algorithm [9],
A? algorithm [10], RRT algorithm [11], artificial potential field (APF) based algorithms [12],
and intelligent algorithms such as genetic algorithm [13], ant colony algorithm [14], particle
swarm optimization algorithm [15], and reinforcement learning based algorithms [16].
Pan and Xu used an improved A? algorithm for path planning in a 3D terrain, where
a penalty function is used to guarantee the robot’s stability [17]. Peng et al. applied
an improved APF method in a 3D space and introduced a tangent point for obstacle
avoidance [18]. The repulsive force generated by the tangential point can guide a robot to
its goal position and reduce the algorithm’s running time. Pan et al. proposed a hybrid
genetic ant algorithm to improve the efficiency of path planning in a 3D terrain [19]. Josef
and Degani proposed a deep reinforcement learning method for local path planning of
a robot in unknown uneven terrain in [20]. In [21], a map-based offline path planning
approach was designed to construct an initial path for quadrotor UAVs, followed by a
vision-based obstacle detection method using optical flow for collision avoidance. Online
and real-time processing experiments demonstrate the feasibility of the proposed method
for path planning and autonomous navigation. A hybrid navigation system was developed
in [22] for a two-wheel differential drive mobile robot that includes static-environment
global path planning and dynamic-environment obstacle-avoidance tasks, where a multi-
agent A-heuristic algorithm was proposed for finding the optimal obstacle-free path and a
weighted-sum model was employed to adapt to the dynamic obstacles.

This paper studies the path planning for a wheeled robot that operates in a partially
known uneven terrain with incomplete environmental information such as locally detected
obstacles and impassable terrain areas. First, the A? algorithm is used for the robot’s global
path planning based on partially known environmental information. Then, an adaptable
Q-learning method is designed for the robot’s local path planning to avoid locally detected
obstacles and impassable terrain areas when the robot tracks the global path. The main
contributions of this paper are as follows. First, we modeled the partially known uneven
terrain considering its slope, step, and unevenness. Second, to avoid the robot colliding
with locally detected obstacles and entering impassable terrain areas, we proposed a
hierarchical path planning approach by integrating the A? algorithm for the robot’s global
path planning with the Q-learning algorithm for the robot’s local path planning. The
proposed approach has satisfying performance compared with the classical A? algorithm
and the artificial potential field method.

The rest of the paper is organized as follows. In Section 2, we model the uneven terrain
environment and formulate the path planning problem. The A? algorithm is presented
as the global path planning algorithm, and the Q-learning algorithm is introduced for the
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local path planning in Section 3. Section 4 shows the numerical and experimental results of
the proposed path planning approach. Section 5 concludes the paper.

2. Environmental Modeling and Problem Formulation

In this section, the 3D digital elevation model (DEM) is first employed to describe
the detailed geological surface information of the uneven terrain as in [23]. The 3D DEM
can digitally represent the surface information of uneven terrains by considering the
terrains’ elevation data. The terrain elevation data can be collected from different types of
sensors, such as LIDAR, depth camera, ultrasonic, and terahertz [24]. Second, facilitated
by the environmental modeling, we formulate the path planning problem and present the
kinematic model of the wheeled robot.

2.1. Digital Representation of 3D DEM

The 3D DEM is a raster data model that stores the elevation information of a set of
terrain positions in digital form to digitally express the morphology of uneven terrain
surfaces. It describes the spatial distribution of an uneven terrain environment by using
a set of 3D vectors {x, y, z}, where x and y represent the plane position of mapping an
environmental feature point of the uneven terrain, and z is the height of the point. Therefore,
geomorphic characteristics such as the slope aspect, slope change rate, step, and unevenness
can be well extracted by 3D DEM [25].

2.2. Information Extraction of a Partially Known Uneven Terrain Environment

This section models the partially known uneven terrain environment considering its
geomorphic features such as slope, step, and unevenness. Slope describes the inclining
degree of the uneven terrain, where a greater slope value implies a more inclining uneven
terrain that is more difficult for a wheeled mobile robot to pass. Step indicates the change
rate of the vertical height of the uneven terrain within a certain horizontal distance. The
larger the step value is, the more likely the wheeled mobile robot will overturn. The
unevenness describes the jitter degree of the terrain’s elevation, where a greater unevenness
value would lead to a more unstable motion of the wheeled mobile robot.

The terrain’s slope actually represents the angle between the terrain plane and the
horizontal plane, which can be calculated by the angle between the vertical Z axis and
the normal vector of the terrain plane. Assume that N2 points are sampled, where the
sampling point located at the i-th row and j-th column of the raster map is (xi,j, yi,j, zi,j),
i, j ∈ S, S = {1, 2, . . . , N}, and zi,j is the point’s elevation value. Then, the equation of the
terrain plane can be defined as

Ax + By + C = z, (1)

where A, B, and C are the coefficients to be solved. Meanwhile, the least squares equation
is obtained as

F = ∑
i,j∈S

(
Axi,j + Byi,j + C− zi,j

)2. (2)

The partial derivatives of F with respect to A, B, and C are respectively zero, where
the equation of the terrain plane can be achieved after calculating A, B, and C using the
least square regression. The normal vector of the terrain plane is~n = (A, B,−1), whereas
for the horizontal plane it is ~m = (0, 0, 1). The angle between the normal vector and
horizontal plane of grid i is defined as ϕ, satisfying the angle formula between a line and
plane as follows

sin ϕi =
~n · ~m
|~n| · |~m| . (3)

The slope angle of the grid i of the terrain plane is

θi =
π

2
− sin−1 ~n · ~m

|~n| · |~m| . (4)
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The unevenness of the uneven terrain dramatically impacts the state stability of the
wheeled robot as the robot might roll over if the terrain’s unevenness is too large. In this
paper, the mean-square deviation of the road elevation is used to quantify the unevenness
information considering the influence of the wheel diameter of the wheeled robot. Then,
the unevenness value of the current grid/point i is

ωi = D−1
√

1
9 ∑

J∈Ui

(z(J)− z̄)2, (5)

where D is the wheel diameter of the wheeled mobile robot, z(J) is the elevation value
corresponding to a plane position J in set Ui, and z̄ is the mean elevation value of all the
plane positions in Ui. Ui contains the plane position information of the current grid i and
its eight neighbor grids.

2.3. Objective Function

The traversability of the i-th grid of the map is indicated as Ti ∈ [0, 1], which represents
the easiness for the robot to pass considering the grid’s slope, step, and unevenness as

Ti = k1 ·
θi

θcrit
+ k2 ·

δi
δcrit

+ k3 ·
ωi

ωcrit
. (6)

The sum of the three non-negative parameters k1, k2, k3 is 1, and θcrit, δcrit, ωcrit respec-
tively represent the maximum unevenness characteristic factors that the robot can pass
through each grid. In particular, the step value δi is the maximum z-direction elevation
difference between the i-th grid and its adjacent eight grids. When any grid i’s slope value
θi, step value δi, or unevenness value ωi reaches its maximum, set Ti = 1, implying that the
grid is impassable.

Let the traversability cost for traveling between the two grids i and j be

Ti,j =
√(

Ti − Tj
)2. (7)

Let the Euclidean distance between two grids i and j be li,j. Then, the objective function
of the path planning problem considers both the distance and traversability cost of the
planned path as

f =
M−1

∑
k=1

(lk,k+1 + w · Tk,k+1). (8)

where w is the parameter used to adjust the weight of the traveled distance and the road
traversability, k is the k-th grid on the planned path, and M is the total number of grids
traversed by the planned path. The second term of Equation (8) considers the traversability
cost of the planned path, which can enable the robot to escape impassable areas. The travel
cost f is positive-infinitely large if any grid i of the planned path satisfies Ti = 1.

2.4. Robot Kinematic Model

As [26], we assumed that the kinematics of the four-wheel mobile robot is ẋ
ẏ
θ̇a

 =

 cos(θa) 0
sin(θa) 0

0 1

[ v
m

]
, (9)

where v, m, x, y, and θa ∈ [−π, π] respectively represent the robot’s tangential velocity,
angular velocity, horizontal displacement, vertical displacement, and yaw angle. In the
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simplified differential car model, the right and left wheel velocities are defined as vR and
vL. Then, v and m in Equation (9) can be calculated as

v =
vL + vR

2
, m =

vR − vL
λ

, (10)

where λ is the distance between the two wheels and v ≤ vmax, |m| ≤ 2vmax
λ . vmax is the

robot’s maximum speed.

3. Path Planning Algorithm for Mobile Robot

Path planning for autonomous mobile robots in a partially known environment gen-
erally contains two procedures: global path planning and local path planning. Global
path planning is a prior planning for a global path for the robot to move from a start
position to a specific goal position based on prior known environmental information. The
applicability of the planned global path depends on the accuracy of the environmental
information. If some initially unknown obstacles and impassable terrain areas are detected
by the robot’s on-board sensors when tracking the global path, local path planning is
needed to dynamically adjust the robot’s path.

3.1. A? Algorithm for Global Path Planning

The classical A? algorithm is a graph search algorithm typically used for global path
planning [27]. It can achieve the shortest path for a robot to move between two prescribed
positions in a known static environment.

To enable the robot to automatically avoid impassable areas due to slope, step and
unevenness, in this paper the cost function of A? considering the traversability cost is
defined as

F(n) = Gs(n) + Hg(n), (11)

where n is the index of the current grid reached by the planned path, Gs(n) is the minimum
accumulated cost for the robot to move from its start grid s to the current grid n, and Hg(n)
is the estimated minimum cost for the robot to move from n to the goal grid g.

The cost function F(n) is applied to the A? algorithm for the global path planning in a
3D uneven terrain. According Equation (8), the accumulated travel cost Gs(n) considering
the influence of the terrain’s slope, step, and unevenness is

Gs(n) = Lsn + w · Tsn, (12)

where Lsn = ∑n−1
k=1 lk,k+1 is the accumulated Euclidean distance for the robot to travel from

the start grid s to the current grid n, and Tsn = ∑n−1
k=1 Tk,k+1 is the accumulated traversability

cost for the robot to travel between the two grids.
To guarantee that the A? algorithm is optimal, the heuristic function Hg(n) can be set

as the Euclidean distance ln,g between n and g.

3.2. Q-Learning Based Local Path Planning Algorithm

In a known static environment, the wheeled mobile robot can safely track the initially
planned global path resulting from the A? algorithm. However, in a partially known
uneven environment, the robot might encounter locally detected obstacles and impassable
terrain areas that can only be detected within the sense distance of the robot. If the wheeled
mobile robot cannot avoid these locally detected obstacles and impassable terrain areas well,
it might fail to reach its destination. In [28], a local path planning method was designed
based on a Q-learning algorithm for a robot to avoid locally detected obstacles.

According to [29], the Q-learning algorithm can optimize the local path of a wheeled
mobile robot whenever an obstacle or impassable area located on the global planned path
is detected through the robot’s interactive exploration and evaluation. The locally planned
path resulting from the collision avoidance maneuver is latched to the nearest state on
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the already computed global path. A higher feedback reward of performing an action in
the environment implies a better action: the action will be performed more in the future,
and vice versa. The feedback of the unknown uneven terrain environment is obtained
through constant trial and error. Inspired by [30], we design the schematic diagram of the
interaction between the robot and the environment in Figure 1.

Figure 1. Schematic diagram of interaction between the robot and environment in reinforce-
ment learning.

Q-learning algorithm is a value-based reinforcement learning algorithm, where Q
denotes the corresponding action value the robot can obtain by taking a specified
action at a certain moment. Inspired by [31], we construct the Q-learning algorithm in
Algorithm 1, which uses a matrix Q to store the Q values resulting from the robot’s action
at at each state/grid. The robot’s action space at each grid contains eight moving directions:
up, down, left, right, upper-left, upper-right, lower-right, and lower-left. The matrix Q is
employed to evaluate the corresponding actions to be taken in each current state: if the Q
value for performing an action at a state is higher, it is better to take action at this state,
and vice versa. For each time step t as shown in Algorithm 1, the robot chooses an action
at ∈ A under its current state st ∈ S based on the ε-greedy strategy. The strategy maps
the relationship between state st and action at. Meanwhile, the robot obtains a reward rt
according to the reward function and evolves to the next state st+1 based on the current
state st and action at. In an episode of Algorithm 1, the robot continues the cyclic process
shown in Figure 1 until one of the robot’s following situations happens: (1) getting to the
goal position; (2) colliding with an obstacle; and (3) moving into an impassable grid. When
an obstacle is detected, the reward for the robot entering the obstacle area is set to −1,
implying a punishment is incurred if the robot encounters the obstacle.
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Algorithm 1 Q-learning algorithm
Initialize Qt(st, at), ∀st ∈ S, a ∈ A(s), maximum training episode number E,
Q(terminal state, ·) = 0

1: for every episode value of {1, 2, ..., E} do
2: Initialize state st=0
3: while the robot does not reach the goal position and does not collide with an

obstacle and does not move into an impassable grid do
4: Use ε-greedy policy to select an action at
5: obtain the corresponding reward rt and new state st+1 based on the current state

st and action at

6: Qt(st, at) = (1− α)Qt(st, at) + α

(
rt + γ max

a∈A
Qt+1(st+1, a)

)
7: t← t + 1
8: end while
9: end for

After the training by using Q-learning algorithm, the Q-value matrix Q can be ob-
tained. Then, the robot’s action with the maximum Q value at each current state can be
chosen until reaching the goal position. Based on the Q-learning algorithm designed in [32],
when the robot performs an action at in state st, the corresponding action value function
Qt(st, at) can be updated as

Qt(st, at) = (1− α)Qt(st, at) + α

(
rt + γ max

a∈A
Qt+1(st+1, a)

)
, (13)

where γ ∈ [0, 1] is the attenuation rate representing the attenuation of future rewards, and
α ∈ (0, 1) is the learning rate. The attenuation rate affects the ratio that the robot replaces
the original Q value with a new value. In addition, the reward function rt in Equation (13)
is defined as

rt =


vreward, if robot gets to the goal position,
vpenalty, if robot collides to an obstacle,
−Gs(n), others.

(14)

where vreward is a positive value indicating a reward, and vpenalty is a negative value
indicating a penalty. When the robot cruises on an uneven terrain, the reward Gs(n) is
calculated according to Equation (12).

The term maxa∈A Qt+1(st+1, a) is the optimal action value of Qt+1(st+1, a) at the next
time step corresponding to all possible actions a, which is denoted as

Q∗t+1(st+1, at+1) = max
a∈A

(Qt+1(st+1, a)). (15)

Q∗t+1(st+1, at+1) can be assumed to remain constant for future determined state st+1 corre-
sponding to the optimal action at+1.

Through a certain number of episodes of learning and training as shown in Algorithm 1,
the robot learns new knowledge by constantly interacting with the environment until the
convergence of the Q values Q∗t (st, at). Based on Equation (13), we can obtain

Q∗t (st, at) =(1− α)nQt(st, at) + (1− α)n−1α
(
rt + γQ∗t+1(st+1, at+1)

)
+ . . . + α

(
rt + γQ∗t+1(st+1, at+1)

)
.

(16)

Then, it is straightforward that

Q∗t (st, at) =(1− α)nQt(st, at) + α
(
rt + γQ∗t+1(st+1, at+1)

) n−1

∑
i=0

(1− α)i. (17)
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When n is an infinite large number, (1 − α)n approaches to zero, and
n−1
∑

i=0
(1 − α)i

approaches to 1/α as (1− α) ∈ (0, 1). Then, equation Equation (17) leads to

Q∗t (st, at) = rt + γQ∗t+1(st+1, at+1). (18)

According to Equation (13), we have

Qt(st, at) = Qt(st, at) + α
(
rt + γQ∗t+1(st+1, at+1)−Qt(st, at)

)
. (19)

Combining Equations (18) and (19), when the learning process converges, we obtain

Qt(st, at) = Q∗t (st, at). (20)

4. Simulation and Experimental Tests

We evaluate the performance of the proposed path planning algorithms through both
simulation and experimental tests. First, the simulation tests are performed on an Intel(R)
Core (TM) i7-6700HQ CPU 2.60 GHz with 8.00 GB RAM, and the algorithms are compiled
and implemented by MATLAB under Windows 10. To distinguish from the classical
A? which only focuses on minimizing the length of the planned path, the A? algorithm
considering the traversability cost of the planned path is simplified as an improved A?

algorithm. The improved A? algorithm is first used to plan a global path for the robot
moving in an uneven terrain based on partially known terrain information. The global
path acts as a reference path for the robot to track. During the path-tracking process, the
Q-learning algorithm is used to avoid locally detected obstacles and impassable terrain
areas. The Q-learning algorithm is triggered whenever an obstacle or impassable area
on the global planned path is detected. The maximum unevenness characteristic factors
that the robot can pass through each grid are respectively θcrit = 30◦, δcrit = 0.04 m, and
ωcrit = 0.025 m according to the robot’s physical structure. The range of the whole terrain
map is 11 m × 11 m, where the size of the single grid is 0.1 m × 0.1 m. In subsequent
experiments, the vreward and vpenalty in Equation (14) are set to 10 and −1, respectively.

4.1. Global Path Planning Based on A? Algorithm

We first test the performance of the classical A? and the improved A? for path planning
in 10 different scenarios of an initially known uneven terrain, where the start position
and goal position of the global path planning are randomly generated in each scenario.
The improved A? algorithm is performed under different weights w of Equation (8). In
Equation (6), we set k1 = 0.2, k2 = 0.4, and k3 = 0.4 since the step and unevenness generally
play a more important role than slope.

Table 1 shows the average performance of the two algorithms, where the improved A?

algorithm achieves feasible paths in all 10 scenarios while the classical A? algorithm fails to
plan a feasible path in 7 out of 10 scenarios. The average path cost of the 3 feasible paths
resulting from the classical A? algorithm is the sum of the initially minimized path length
and the traversability cost of the planned path, which is larger than those resulting from
the improved A? algorithm when w = 1. Furthermore, the travel cost of the planned path
resulting from the improved A? algorithm increases with the increase in the weight w. This
might be because a larger weight w mainly generates a smother path while neglecting the
planned path as shown in Figure 2, which is consistent with Equation (8). The traversability
information of the uneven terrain is reflected by the color bar on the right part of Figure 2:
a brighter color implies that it is more difficult for robot to travel on the uneven terrain,
and a grid is unfeasible for the robot to move through if its associated color corresponds
with value 1.
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Table 1. The algorithms’ average performance on global path planning in the 10 test scenarios.

Algorithm Weight Running Path Feasible
w Time (s) Cost f Times

Classical A? 0 1.42 34.33 3

Improved A?

0.2 1.31 28.12 10
0.5 1.73 31.24 10
1 1.81 32.17 10
2 1.89 35.27 10
4 1.96 38.24 10
5 2.15 39.51 10

Figure 2. Global path planned by each algorithm in one scenario.

In Figure 2, the red-colored path results from the classical A? algorithm, which has
the shortest length. However, the path is not feasible as it passes through the yellow area
(impassable area), where the robot will roll over if tracking the planned global path. The
green-colored path, resulting from the improved A? algorithm under w = 5, has a relatively
smoother path through the uneven terrain compared with the case when w = 1. The
blue-colored path, resulting from the improved A? algorithm under w = 1, has a shorter
path length than the case when w = 5. However, the path passes over more terrain areas
with a higher traversability cost, implying a higher chance of rollover if the robot tracks the
planned global path.

4.2. Local Path Planning Based on Q-Learning Algorithm

For the local path planning, we test the algorithms’ performance under four different
scenarios compared with the artificial potential field method (APF) adapted from [33], the
classical A? algorithm, and the improved A? algorithm proposed for global path planning.
The start position, the goal position of the global path planning, and the position of an
initially unknown obstacle are randomly generated in four scenarios. In Figure 3, the
black-colored path is the global path initially planned by the improved A? algorithm with
w = 1 based on the partially known environmental information in scenario 1. In Figure 3,
an initially unknown yellow-colored cylindrical obstacle, locating on the global path, can
be locally detected when the robot tracks the global path. The obstacle has a radius of 1 m
and a height of 3 m. We assume that the sensing radius of the robot is 0.5 m, and the robot is
driven by a constant speed of 1 m/s. It is straightforward to check that the wheeled mobile
robot would collide with the locally detected obstacle if just tracking the global path.
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Figure 3. The globally planned path and locally detected obstacle in scenario 1.

Table 2 shows that the total path cost f in objective function Equation (8) corresponding
to the local path resulting from the Q-learning algorithm in each scenario is the lowest
compared with the APF, classical A? algorithm, and improved A? algorithm under different
w. However, the payoff is the algorithm’s longer running time. Table 2 also shows that the
total path cost of the planned path resulting from the improved A? algorithm increases
when increasing the weight of w, which is consistent with Table 1. Figure 4 and Table 2 show
that the locally planned path resulting from the Q-learning algorithm has well considered
the terrain’s unevenness when avoiding the locally detected obstacle.

Figure 4. The locally planned path resulting from each algorithm in scenario 1.
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Table 2. Overall performance of the algorithms.

Scenarios
Local Path Weight Running Path
Planning

Algorithm w Time (s) Cost f

Scenario 1

Q-learning 1 3.06 29.95
APF - 1.45 34.76

Classical A? 0 0.26 37.98

Improved A?

0.2 0.22 31.23
0.5 0.24 31.78
1 0.28 32.15
2 0.33 33.45
4 0.45 34.25
5 0.58 35.12

Scenario 2

Q-learning 1 2.31 20.36
APF - 1.25 28.67

Classical A? 0 0.23 32.82

Improved A?

0.2 0.16 23.51
0.5 0.16 24.18
1 0.17 24.97
2 0.19 25.82
4 0.21 26.48
5 0.25 27.69

Scenario 3

Q-learning 1 3.21 35.25
APF - 1.35 42.32

Classical A? 0 0.31 43.58

Improved A?

0.2 0.26 39.51
0.5 0.26 40.24
1 0.28 40.95
2 0.31 41.46
4 0.42 43.65
5 0.49 44.28

Scenario 4

Q-learning 1 2.75 23.59
APF - 1.14 27.18

Classical A? 0 0.28 31.57

Improved A?

0.2 0.19 27.96
0.5 0.20 28.53
1 0.22 29.37
2 0.24 30.92
4 0.28 32.51
5 0.31 33.24

4.3. Experimental Test

This section experimentally tests the performance of the designed hierarchical path
planning approach for guiding a wheeled mobile robot to move in a partially known
uneven terrain. Figure 5 shows the Lidar-built DEM of the uneven terrain, where the
performance of the algorithms is tested on two experimental scenarios Exp 1 and Exp 2, as
shown in Table 3. In the two scenarios, one initially unknown obstacle is locally detected
in Exp 1 as shown in Figure 6, whereas two initially unknown obstacles are consecutively
detected in Exp 2 as shown in Figure 7.

Table 3. Two experimental scenarios.

Exp Start Goal Obstacle Obstacle
Position Position 1 2

Exp 1 (7.5, 7.5, 0) (1.5, 7.5, 0.23) (2.5, 3.5, 0.37) -
Exp 2 (7.5, 7.5, 0) (2.5, 3.5, 0.37) (7, 6.5, 0.02) (5, 5.5, 0.18)
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Figure 5. DEM of the experimental uneven terrain.

Figure 6. The robot’s path in Exp 1 resulting from the integrated improved A? algorithm and
Q-learning algorithm.

Figures 6 and 7 respectively show the robot’s path guided by the integrated improved
A? algorithm and the Q-learning algorithm. The two Supplementary Videos S1 and S2
show how the robot dynamically adjusts the initially planned global path to avoid locally
detected obstacles in Exp 1 and Exp 2. It can be seen in the videos that the robot can move
smoothly from a given start position to a goal position while dynamically adjusting its path
from the initially planned global path to avoid locally detected obstacles.
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Figure 7. The robot’s path in Exp 2 resulting from the integrated improved A? algorithm and
Q-learning algorithm.

Figures 8 and 9 respectively show the globally planned paths resulting from the
classical A? algorithm, the improved A? algorithm, and the robot’s actual path resulting
from the integrated improved A? algorithm and the Q-learning algorithm, which are
complied in MATLAB on experimental scenarios Exp 1 and Exp 2. Figures 8 and 9 show
that the wheeled robot can successfully escape the locally detected obstacles when tracking
the planned global path, which is consistent with Figures 6 and 7, respectively. The above
simulation and experimental results demonstrate that the integrated A? algorithm and the
Q-learning algorithm can enable the wheeled mobile robot to move smoothly in a partially
known uneven terrain while dynamically adjusting its path to avoid locally detected
obstacles and impassable terrain areas.

Figure 8. The planned paths in Exp 1.
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Figure 9. The planned paths in Exp 2.

5. Conclusions

This paper investigates the path planning of a wheeled mobile robot in a partially
known uneven terrain. Based on the initial partially known environmental information,
an improved A? algorithm is first used to achieve a global path for the robot to track
considering the terrain’s slope, step, and unevenness. Then, the Q-learning method is
applied to adjust the robot’s local path dynamically to avoid locally detected obstacles
and impassable terrain areas when the robot tracks the global path. The simulation and
experimental results show the satisfying performance of the integrated improved A?

algorithm and Q-learning method for guiding the robot’s movement in a partially known
uneven terrain compared with the classical A? algorithm and the artificial potential field
method. Future work will focus on improving the Q-learning method’s efficiency for online
obstacle-avoidance path planning.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s22145217/s1, Video S1: Exp 1. Video S2: Exp 2.
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