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Abstract: A highly polarizable moisture sensor with multimodal sensing capabilities has great
advantages for healthcare applications such as human respiration monitoring. We introduce an
ionically polarizable moisture sensor based on NaCl/BaTiO3 composite films fabricated using a
facile aerosol deposition (AD) process. The proposed sensing model operates based on an enormous
NaCl ionization effect in addition to natural moisture polarization, whereas all previous sensors
are based only on the latter. We obtained an optimal sensing performance in a 0.5 µm-thick layer
containing NaCl-37.5 wt% by manipulating the sensing layer thickness and weight fraction of NaCl.
The NaCl/BaTiO3 sensing layer exhibits outstanding sensitivity over a wide humidity range and a
fast response/recovery time of 2/2 s; these results were obtained by performing the one-step AD
process at room temperature without using any auxiliary methods. Further, we present a human
respiration monitoring system using a sensing device that provides favorable and stable electrical
signals under diverse respiratory scenarios.

Keywords: respiration monitoring; moisture sensor; NaCl/BaTiO3; aerosol deposition; ionization

1. Introduction

Recently, progress in healthcare technology for monitoring human respiration has
received considerable research attention because of its multifunctional applications in
estimating the basic health status of patients [1–3]. The prediction of real-time respiration
patterns is a vital criterion for characterizing various illnesses, such as pneumonia, asthma,
bronchitis, and cardiovascular diagnoses, because these patients have an unstable respi-
ration cycle caused by abnormalities in the respiration rate [4–7]. The respiration cycle
of a healthy adult is 12–20 times per minute during exhalation and inhalation, whereas
that of a patient suffering from a fatal disease was reported to be over 24 times per minute
(in general hospital wards) with scientific exactitude [8,9]. This implies that it is very
important to observe continuous patterns at diverse depths and rates of respiration with
accurate control.

In most clinical settings, such as in an emergency room, the conventional method for
measuring the breath rate is to detect chest constriction when a patient takes a breath [10].
Although this method is considered very simple because it only involves observing the
rising and falling of the chest, it remains challenging to obtain objective and deliberate
information for individual patients in diverse scenarios. Several techniques have been
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developed to observe respiratory activity using multifarious sensing devices. For example,
thermal sensors, which include thermistors, detect the temperature difference in human
airflow between inhalation and exhalation and transduce the respiratory signal [11]. Further,
the respiration signal can be measured using a method in which a pressure sensor attached
to the nares with a nasal cannula mask detects pressure fluctuations induced by inhalation
and exhalation [12,13]. The major drawback of these methods is that they not only require
expensive and cumbersome auxiliary equipment but also are prone to inducing signal
errors, as they need to be rigidly fixed in the nares and are often subject to unintentional
displacement. An airborne ultrasound system has been suggested to observe the rate of
respiration based on the velocity of sound induced by airflow; however, such transduction
makes it difficult to perceive sensing information in a variety of scenarios (e.g., coughing,
sleeping, and sneezing) and noisy environments [14–16].

Alternatively, moisture sensors have been investigated as a means to monitor respi-
ration signals using simple and precise methods [17–19]. The exhaled airflow from the
human nose or mouth always involves a high humidity of over 90 RH%; the inhaled
air induces a dry state with a relatively low humidity range. For sensing humidity, the
device generates different electrical signals with high and low humidity levels in terms of
capacitance, resistance, and conductance in accordance with the Grotthuss mechanism [20].
Based on this theory, protons (H+) dissociated from water molecules (H2O) migrate from
one vapor molecule to another via strong hydrogen bonding, which is also known as proton
hopping. In the high-humidity range required for human exhalation, a sufficient number
of self-ionized protons activate charge transport between neighboring water molecules,
which results in an increase in the electrical conductivity of the inner sensing structure.
However, low humidity (e.g., during inhalation) interferes with charge carrier migration
between adjacent sites of water molecules because of the discontinuous physisorbed H2O
layer; this makes it impossible to generate substantial electrical conductivity. Therefore, the
sensitivity deviation caused by two conductive scenarios can easily generate respiratory
patterns, which implies that the rate and depth of respiration patterns are dominated by
humidity sensitivity and response/recovery time [21–24].

Moisture sensors for respiration systems have been developed to realize beneficial sens-
ing abilities. For example, nano-sized devices with high porosity have been used to achieve
higher sensitivity and rapid response/recovery times based on ceramics and carbon nano-
materials [25–28]. Further, polymer moisture sensors are advantageous for the easy control
of the device structure using a solution process and batch preparation [29,30]. Recently,
two-dimensional (2D) materials such as graphene, reduced graphene oxide, and molyb-
denum disulfide have been widely utilized as humidity-sensing materials [22,24,31,32].
These materials normally facilitate the fabrication of a unique porous structure, which is
advantageous for realizing outstanding sensing properties with large surface reaction sites
for humidity vapors.

However, most moisture sensors fabricated using a single material (ceramic, polymer,
etc.) are limited to realizing visible respiratory patterns in response to both exhalation and
inhalation, which is attributed to low humidity sensitivity, slow response/recovery time, or
poor stability in high-humidity environments [33,34]. Thus, they can easily cause unstable
electrical signals during continuous measurements for a long time, which can result in an
inaccurate analysis in diverse respiratory scenarios. Further, although 2D materials are
significantly beneficial for sensing, they suffer from poor film-forming ability [35]. Another
major issue is the complex processability of the sensing devices. Although these devices
are manufactured by wet-spinning, vacuum filtration, and chemical vapor deposition, it is
essential to use material synthesis processes and many auxiliary fabrication methods to
improve the sensing properties and film-to-substrate adhesion [31,32].

A promising approach to realizing high sensitivity and fast response to moisture can
be achieved by mimicking a natural system. Ionic compounds such as sodium chloride
(NaCl), which are non-toxic and low-cost, have a strong reactivity with water molecules,
and they dissociate into Na+ and Cl− ions because of their natural properties of ionic
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bonding [36]. For a respiration monitoring system, these ions can instantly improve charge
transportation in humid environments and, by extension, the interfacial polarization inside
the sensing structure. The humidity sensitivity of traditional sensors depends only on the
proton hopping mechanism, whereas the NaCl-based moisture sensor can be operated
by a double-charge transportation system induced by H2O proton hopping and effective
NaCl ionization. However, it is difficult to fabricate a single NaCl layer because of its
low stability under long-term humid conditions and its poor film-forming ability. Thus, a
composite structure combined with NaCl and ferroelectric material is considered a good
candidate for a capacitive-type moisture sensor that can effectively utilize the ionization
effect. Respiratory signals were identified by capacitance variations under high and low
humidity levels.

We report an effective, simple, and low-cost NaCl/BaTiO3 moisture sensor for moni-
toring respiration. The sensor is fabricated by a one-step aerosol deposition (AD) process,
which has numerous advantages, such as fast coating speed, film deposition at low vacuum,
full-room-temperature process without any heat treatment, and rigid film-to-substrate adhe-
sion [37–39]. The AD process has considerable advantages over conventional technologies
because a composite film can be easily prepared by simply mixing and loading more than
two materials [40–42]. The AD principle is defined by the hammering effect, wherein
high-speed particles continuously collide with pre-deposited layers; consequently, the
internal density is dominated by the layer thickness and mechanical properties of each
material [43,44]. In this work, we designed a unique NaCl/BaTiO3 moisture sensor for
respiration monitoring by exploring the effect of layer thickness on the sensing properties
and by optimizing the weight fraction of NaCl. After characterizing the humidity sensing
capabilities, a respiration monitoring test was performed on subjects wearing a portable
medical oxygen mask. Considering the facile production method and precise control under
diverse respiratory conditions, the proposed moisture sensor holds great potential as a
promising approach for realizing novel medical monitoring devices.

2. Materials and Methods
2.1. Fabrication of NaCl/BaTiO3 Composite Films via AD Process

BaTiO3 powder (SBT-045B, Samsung Fine Chemical, Ulsan, South Korea) with an
average particle diameter of 0.5 µm was used as the starting composite powder in conjunc-
tion with commercial NaCl powder (Daejung Chemical & Metals Co., Ltd., Gyeonggi-Do,
Korea) with a 3.0 µm diameter. The two powders were weighed in accordance with the
proportions of NaCl-25, 37.5, 50, and 75 wt% (i.e., NaCl:BaTiO3 = 25:75, 37.5:62.5, 50:50,
and 75:25) using a precision balance. Further, the BaTiO3 single layer was deposited to
compare its elemental distribution with that of the NaCl/BaTiO3 composite film, whereas
a single NaCl layer was not employed because of its meaningless capacitance value and
poor film-forming ability.

The AD apparatus comprises vacuum pumps (rotary pump and mechanical booster
pump), a deposition chamber, an aerosol chamber, a moving X-Y stage, and a mass flow
controller (MFC). After percolating the prepared composite powders with a fine sieve net,
100 g of the powders was placed in the aerosol chamber. They were vigorously aerosolized
by controlling the MFC controller with nitrogen gas at 8 L/min (purity: 99.99%). The blown
aerosol was transferred through a Teflon tube to a stainless-steel nozzle at high speed.
Then, the aerosol was accelerated by pressure diffusion into the deposition chamber, which
was evacuated by vacuum pumps in advance. The accelerated particles impinged on the
interdigital electrode (IDE) substrate were located 5 mm away from the nozzle, and they
formed a composite film with strong film-to-substrate and particle-to-particle cohesions.
Consequently, we successfully obtained AD-prepared NaCl/BaTiO3 composite films in a
short time of approximately 2 min per sample. All samples were fabricated under the same
experimental conditions. The geometric parameters of the IDE substrate were confirmed in
our previous research [45].
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2.2. Characterizations

A humidity-sensing setup was used to observe humidity-sensing properties and to
monitor respiration. The setup comprised a humidity chamber (TH-ME-025, Jeiotech
Co., Ltd., Seoul, Korea), impedance analyzer (4192A, Agilent Co., Ltd., Santa Clara,
CA, USA), micro vacuum probe station, and computer. The capacitance was continu-
ously measured in real time using an impedance analyzer when the humidity changed
from 35 RH% to 85 RH%, and vice versa. The humidity sensitivity (S) was calculated as
S = ∆C/∆RH, where ∆C denotes the capacitance deviation at 85% and 35% RH. The re-
sponse/recovery time was measured under a drastic humidity change from/to atmospheric
humidity to/from relatively high humidity (75 RH%) while recording the capacitance per
second. Real-time respiration monitoring was conducted with the consent of all subjects.
X-ray diffraction (XRD, X’Pert PRO diffractometer, PANalytical, New York, NY, USA)
was performed to confirm the crystallinity and crystallite size of the composite films us-
ing Cu Kα radiation (~1.54056 Å) over a 2θ range of 20–80◦. Surface microstructures
of the NaCl/BaTiO3 composite films were observed using field-emission scanning elec-
tron microscopy (FE-SEM; S-470, Hitachi Ltd., Tokyo, Japan) at 5 kV. Energy-dispersive
spectroscopy (EDS) was used to confirm the elemental distribution on the NaCl/BaTiO3
composite film surface.

3. Results and Discussion
3.1. Sensing Properties via Layer Thickness Control

A NaCl/BaTiO3 composite film with a NaCl content of 50 wt% (NaCl-50 wt% film) was
fabricated on the IDE substrate using the AD process to confirm the deposition feasibility
of the proposed sensing layer. The deposition range was 4 mm × 9 mm, which is the
actual sensing area for moisture. As shown in Figure 1a, the chemical composition of each
element was uniformly distributed over the surface; it forms organically tight connections
between particles via the continuous impingement of high-velocity aerosols on the pre-
deposited layers.
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Figure 1b depicts the comparative XRD patterns of NaCl-50 wt% and BaTiO3 single
films employed on a platinum (Pt) substrate, which exhibits intrinsic phases (BaTiO3
and NaCl) with no transformation and a peak shift attributed to the room-temperature
fabrication method. Further, we analyzed the crystallite size of the two types of films
because NaCl has different mechanical properties from those of BaTiO3 ceramic. The
crystallite size was calculated from the full width at half maximum (FWHM) values at a
peak position (2θ) of ~45◦. The size of the BaTiO3 single film was ~7.83 nm, whereas that
of NaCl-50 wt% film was ~9.89 nm and ~294 nm for BaTiO3 and NaCl, respectively. The
major difference between the BaTiO3 and NaCl crystallite sizes can be inferred from the
intrinsic mechanical properties of each material, i.e., Mohs hardness and density. Effective
particle pulverization in the AD process is predominantly influenced by hardness and
density because film formation and resultant densification can occur because of the severe
hammering effect of high kinetic-energy particles [40,46,47]. Thus, the loading powder in
the AD process is preferred for ceramic materials. Compared with BaTiO3 particles, NaCl
has a lower hardness and lower density [48,49]. The pulverization of BaTiO3 particles is
attributed to their high bombardment energy with the substrate, whereas NaCl particles
cannot be pulverized well because of the low collision force. Thus, the reduction in the size
of BaTiO3 and NaCl is approximately 50 times and 10 times, respectively, in comparison
with the initial particle size.

Inspired by the successful deposition of NaCl/BaTiO3 composite films, we attempted
to employ NaCl/BaTiO3 composite films with different layer thicknesses (0.5, 1.0, and
1.5 µm) to find the optimal thickness suitable for sensing capabilities. Figure 2 shows the
humidity sensitivities and response/recovery times, which are considered to be crucial
factors for respiration monitoring, for the three types of samples. Humidity sensitivity
was repeatedly measured to define the stability; however, it showed no degradation per-
formance or NaCl dissolution after the test because NaCl is not only physically stable
in the gas phase of H2O but also protected by the BaTiO3 matrix [50]. In addition, the
humidity sensitivities are the mean values of repeatability tests, and the measured data
had minor error rates. Remarkably, NaCl/BaTiO3 sensing layers showed a high sensi-
tivity of over 250 pF/RH% despite the one-step room-temperature process, whereas the
aerosol-deposited BaTiO3 single layer demonstrated only 1.39 pF/RH% [51]. The previous
BaTiO3 moisture sensor essentially required an auxiliary method such as post-annealing
to improve the humidity sensitivity; however, NaCl-based ionization has a considerably
more efficacious potential for charge separation than any other treatment. Thus, massive
interfacial polarization is generated in the inner structure, which leads to a drastic increase
in sensitivity under humid conditions.

The 1.0 µm-thick film had the highest sensitivity of 1413 pF/RH% among the three
samples, whereas the others were measured with similar sensitivity values. The cause
of the discrepancy in these sensitivities can be ascribed to the amount of NaCl and the
AD densification mechanism. The densification of the surface and internal microstructure
rapidly progressed with an increase in thickness because NaCl/BaTiO3 particles contin-
uously accumulated on the pre-deposited layer. However, a humidity sensor requires
a porous structure to allow moisture to effectively permeate into the inner film, which
means that high densification due to increased thickness has a negative effect [52–55].
This indicates that the amount of NaCl embedded in the composite film proportionally
increases with layer thickness, and this can lead to a higher sensitivity due to substan-
tial NaCl ionization-based interfacial polarization. Thus, there is a trade-off relationship
between layer densification (negative effect) and charge transportation (positive effect)
with increasing film thickness with respect to humidity sensitivity. The high sensitivity
of the 1.0 µm-thick film was predominantly controlled by the ionization effect, but it was
less influenced by the layer densification up to 1.0 µm thickness. Although a 1.5 µm-thick
film has plenty of NaCl molecules that can induce charge separation, further densification
blocks the open pores on the surface for moisture absorption. As shown in Figure 3a,c,
the 0.5 µm-thick film contains large amounts of nanopores over the surface, whereas the
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surface microstructure of the 1.5 µm-thick film displays strong bonding between particles,
which forms few pores.
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A short response/recovery time was achieved in the lower thickness range despite
the high sensitivity of the 1.0 µm-thick film. The response time was measured under
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a sudden change in humidity: from ambient humidity (~25 RH%) to 75 RH%. Then,
the response time was calculated when the capacitance at 75% RH was saturated to a
similar value with an error rate below 0.1% for several seconds. The 0.5 µm-thick film
showed the shortest response/recovery time (3/5 s) among the three samples, whereas
composite layers with thicknesses greater than 1.0 µm had a slow time in both cases.
In the aerosol-deposited NaCl-based sensing layers, the response/recovery time was
affected by the structural surface and inner density. The 0.5 µm-thick film is prone to
effectively absorbing and desorbing moisture despite drastic changes in humidity because
it involves a large quantity of open pores and a large pore volume on the outside and
inside of the structure [56,57]. Accordingly, the absorbed moisture can rapidly react with
NaCl particles and thus generate immediate electrical conductivity, whereas the desorbed
moisture can be effectively evaporated through the capillary structure. Consequently,
the final capacitance quickly stabilizes even if the humidity is abruptly changed. We
verified that the response/recovery time of the 1.0 µm-thick film is 4 s/14 s. The recovery
speed steadily decreased until the test was completed, and it showed no steep signal
changes during the measurement. This proves that films with over 1.0 µm thickness
cannot completely desorb moisture from the inner structure because of the relatively high
densification; however, NaCl rapidly reacts with moisture. The 1.5 µm-thick film is formed
with surface flatness and a resultant high internal density, as shown in Figure 3c; therefore,
the reduction ratio of both the response and recovery times becomes too slow to stabilize
the capacitance at ambient humidity.

Further, the response time is shorter than the overall recovery time. This result
demonstrates that in the case of H2O adsorption, moisture can instantly react with NaCl,
which forms Na+ and Cl− ions, and then it can activate interfacial polarization by charge
transportation. However, the recombination of Na+ and Cl− ions is considerably slower
than the NaCl ionic reaction with H2O when moisture is desorbed from the sensing layer.
Proton hopping based on the Grotthuss mechanism is ineffective for rapidly decreasing the
chemical potential energy to achieve an equilibrium state from the disequilibrium state.

The normal respiration of a volunteer was monitored using a portable medical oxygen
mask to confirm the influence of each layer thickness on the respiration signals with the
three types of sensing films (NaCl 50 wt%) in the range of 0.5–1.5 µm thickness. The sensing
device was placed in the ventilation holes of a medical oxygen mask. Then, a volunteer
put on the mask and breathed at a constant speed, simultaneously recording real-time
capacitance signals. The respiration cycle includes the same periods of exhalation and
inhalation. First, respiration monitoring with a period of 8 s was performed to confirm the
feasibility of the signal variations. As shown in Figure 4a–c, the 0.5 µm-thick film detected
the features of respiration, whereas the 1.0 and 1.5 µm-thick films could not identify fine
fluctuations from either exhalation or inhalation.

This discrepancy in signal variations can be inferred from the response/recovery
time rather than humidity sensitivity. The 0.5 µm-thick film exhibited a relatively fast
response/recovery time, and it could quickly react to changes in the amount of moisture.
Although the 1.0 µm-thick film had a similar response time to that of the 0.5 µm-thick film,
it is not effective for an immediate signal drop in inhaled air because of the slow recovery
time of 14 s. Further, the response/recovery speed is significantly degraded in the case of
the 1.5 µm-thick film in Figure 2, which makes it difficult to achieve a capacitance variation
in 4 s/4 s of exhaled and inhaled air, which indicates poor respiratory patterns. All sensors
exhibited consistent capacitance variations during the test when a longer respiratory cycle
of 16 s was applied to the three sensing devices. Since the 1.0 µm-thick film had the
highest humidity sensitivity among our samples, its normalized capacitance variation
showed the highest value, even though the recovery time was slow. Although the 0.5 and
1.5 µm-thick films had an almost identical humidity sensitivity, the former had a higher
capacitance dynamic range, which is attributed to the large gap in their response/recovery
time. Further, the capacitance decreased slowly from the inhaled air compared to the
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increasing rate in exhalation, which is confirmed by the recovery tendency of the films with
over 1.0 µm thickness.
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The effect of aerosol-deposited layer thickness on sensing capabilities and breathing
detection clearly confirmed that the 0.5 µm-thick sensing layer could effectively detect res-
piration signals in diverse breathing situations because of its favorable humidity sensitivity
and response/recovery time due to the NaCl ionization effect and its nanoporous structure.

3.2. Optimization of NaCl Ratio for Real-Time Monitoring

Although the 0.5 µm-thick NaCl/BaTiO3 composite film could realize better res-
piratory signals compared to other samples with over a 1.0 µm-thickness, it still has a
considerable limitation in terms of observing the signal of abnormal breath because the
response/recovery time of 3/5 s makes it difficult to cover fast respiration cycles shorter
than 4 s. Further, it is essential to monitor a rapid breath rate for up to 2 s to detect stable
respiratory patterns for most patients with a fatal illness. We attempted to fabricate four
types of 0.5 µm-thick NaCl/BaTiO3 composite films by changing the content of NaCl from
25 wt% to 75 wt% with a constant gap, considering that (1) the recovery speed of Na+ and
Cl− is considerably delayed until they reach the equilibrium state (NaCl), as shown in
Figure 2, and (2) structural porosity is influenced by NaCl in the AD mechanism. Then, we
evaluated the sensing capabilities.

Figure 5 depicts the comparative sensing capabilities involving the humidity sensitivity
and response/recovery time for sensors with different NaCl ratios. The humidity sensitivity
was significantly improved by increasing the NaCl ratio in the composite film. The sensitiv-
ity of sensing layers containing less than NaCl-50 wt% was enhanced at a constant rate of
approximately 4 times, whereas the NaCl-75 wt% film showed an extremely high sensitivity
of 4535 pF/RH% compared to the NaCl-50 wt% film (approximately 18 times). Simulta-
neously, both the response and recovery times decayed with an increasing NaCl ratio,
which implies that the NaCl filler in the composite film resulted in a trade-off relationship
between the sensitivity and humidity reaction time.
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The unique structural variation controlled by NaCl played a dominant role in promot-
ing the humidity sensitivity of the AD-prepared NaCl/BaTiO3 composite films. Figure 6
shows that even though NaCl-0, 25, 50, and 75 wt% films with 0.5 µm thickness were
fabricated under the same experimental conditions, they were classified into different
growth mechanisms as a transitional density structure with an increase in the NaCl ratio.
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The surface morphology of the BaTiO3 single layer shows high densification with no
pores and a flattened shape (Figure 6a), whereas the NaCl-25 and 50 wt% films presented
a relatively rough surface forming plenty of non-fractured particles (Figure 6b,c). We
observed a large quantity of both pores and agglomerated sizable NaCl particles on the
surface when NaCl-75 wt% NaCl was contained in the composite films. The surface
microstructure in the AD process can be elucidated based on the hammering effect, which
generates a dense structure via the consecutive impact of high-kinetic-energy particles onto
the pre-deposited films [58–60]. Thus, a reasonable hammering effect is ascribed to the
mechanical hardness and intrinsic density of the starting particles [58,61]. NaCl, with low
density and low hardness, is not sufficient to affect the effective pulverization of particles
despite its brittleness. However, ceramics such as BaTiO3 with high mechanical hardness
and suitable density can severely impinge on the substrate and the pre-deposited layers,
which can contribute to the high structural densification. Previous researchers showed the
influence of soft PTFE with low density and hardness on the growth of aerosol-deposited
ceramic-based composite films [62–65]. Their results revealed that PTFE was sufficient
to interfere with the strong impaction and particle pulverization, and it consequently
formed a large quantity of pores and debris, as well as a rough surface. Fortunately, in the
field of moisture sensors, these structural properties induced by insufficient hammering
effects are beneficial for increasing humidity sensitivity because they provide moisture
reaction sites through numerous open pores and large pore sizes on the surface and internal
film, respectively. Thus, a high NaCl content can elevate the humidity sensitivity in our
composite films. However, NaCl contents in the range of 0–50 wt% cannot be considered
the dominant cause of the degraded quality of the layer structure, which means that NaCl
ionization is a key factor for increasing the sensitivity rather than structural variation in
this NaCl range. This is because there are no large differences in surface structure among
the three samples, as shown in Figure 6a–c, except for non-fractured particles. Accordingly,
humidity sensitivity steadily increased with the NaCl ratio. In this range of the NaCl
content, the response/recovery time steadily decays from 1/2 s to 3/5 s in Figure 5a–c,
which indicates that dissociated Na+ and Cl− ions in a highly humid environment require
considerable elapsed time to return to the equilibrium state of NaCl.

In the case of the NaCl-75 wt% film, the sensing capabilities were strongly affected
by a dual effect, i.e., NaCl ionization and porous structure. Compared to other films with
NaCl-50 wt%, the NaCl-75 wt% film formed a unique surface morphology with a vivid
micro-porosity as if it were deposited using different materials or fabrication processes. The
surface was composed of a large amount of sizable NaCl (2.0–3.0 µm in Figure 6d), which
was almost similar to the initial particle size. This growth mechanism can be interpreted
as excessive levels of NaCl in the composite film, which considerably hinder the effective
pulverization of both NaCl and BaTiO3. Although film densification is controlled by the
hammering effect, it is significantly influenced by particle-to-particle collisions [66,67].
However, it is difficult for NaCl particles to receive high kinetic energy from BaTiO3 during
the AD process because the NaCl-75 wt% film contains a small amount of BaTiO3 with
high hardness. In addition, the pre-deposited layer is composed of NaCl, and therefore,
NaCl-to-NaCl collisions predominate over BaTiO3-to-NaCl collisions, which give rise to a
porous structure. The humidity sensitivity increased significantly compared to that of the
NaCl-50 wt% film, whereas the response/recovery speed became very slow because of the
large amount of NaCl.

Respiratory patterns were observed by changing the exhalation/inhalation cycle with
the four types of NaCl/BaTiO3 composite films containing different NaCl ratios. Consider-
ing that the respiratory rate and depth are critical factors for evaluating the physiological
and physical conditions of patients with breathing diseases, various respiration states were
monitored for 2 to 12 s. As shown in Figure 7a, NaCl-25 and 37.5 wt% films detected stable
respiratory signals even at an exhalation/inhalation rate of 1/1 s.
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Since the NaCl-37.5 wt% film has a higher sensitivity than the NaCl-25 wt% film, its
signal variation is more distinct despite the slightly slow response/recovery time. These
variation rates are in line with the excellent data recently reported on moisture sensors
focused on respiratory patterns (Table 1) [33,68–73]. In addition, although the humidity
sensitivities of the NaCl-50 and 75 wt% films are significantly high, fast respiratory patterns
cannot be observed due to their slow response/recovery times. The respiratory patterns
of the NaCl-50 wt% film are observed when the respiratory cycle is increased up to 12 s
(Figure 7b,c); the NaCl-75 wt% film, with the highest sensitivity among our samples, does
not show a clear signal variation despite a longer breathing period of 12 s. In addition,
although the NaCl-25 wt% film had a very fast response/recovery time of 1/2 s, respiration
monitoring was not observed in the case of a longer breathing period because of its low
sensitivity, which easily causes unstable signals under sudden humidity changes. This
result demonstrates that humidity sensitivity is important for realizing real-time respiration
monitoring; however, the electrical conductivity under a sudden humidity change should
have a quick response/recovery time.
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Table 1. Comparing previously reported signal variation rates and fabrication processes.

No. Material Process Type of Signal Signal Variation Rate [%]

1 GO [33] Chemical vapor deposition Resistance 3
2 PEDOT-PSS [68] Spin coating Resistance 6
3 PMDA-ODA PAA [69] Laser writing Resistance 1
4 Graphite [70] Solution Current 2
5 Cellulose and CNT [71] Solution Current 65
6 Si nanocrystals [72] Co-sputtering Current 2.2
7 Cellulose [73] Pencil drawing Capacitance 30
8 NaCl/BaTiO3(This work) AD process Capacitance 54

Consequently, the aerosol-deposited NaCl/BaTiO3 moisture sensor with a NaCl con-
tent of 37.5 wt% and 0.5 µm thickness showed outstanding feasibility for real-time res-
piration monitoring, highlighting its sensing capabilities and ability to monitor diverse
breathing states.

4. Conclusions

We present an ionically polarizable moisture sensor that comprises a NaCl/BaTiO3
composite film fabricated solely by the aerosol deposition process; this leads to outstanding
sensing performance and the stable detection of respiratory signals. We confirmed that
NaCl-induced interfacial polarization is beneficial for increasing humidity sensitivity by
comparing the NaCl/BaTiO3 composite film and BaTiO3 single film. From the effect of
layer thickness on sensing capabilities, a 0.5 µm-thick film exhibited both high sensitivity
and fast response/recovery time because of the formation of a nanoporous structure by
a unique AD growth mechanism, which resulted in an immediate moisture reaction to
human breath. We demonstrated the correlation between the weight fraction of NaCl in
the composite film and sensing capabilities by optimizing the NaCl ratio of the device.
Although the high content of NaCl led to a drastic rise in humidity sensitivity because of
the increase in the ionization effect, the response/recovery time became very slow and
unsuitable for detecting abnormal breathing patterns. The 0.5 µm-thick film containing
NaCl-37.5 wt% even reacted to a quick exhalation/inhalation of 1 s, whereas others were
not favorable for observing fast or slow respiratory cycles because of their insufficient
response/recovery time and sensitivity.

We believe that this research may provide a more suitable method for operating
ionization-based moisture sensors with high sensitivity and fast response compared to
previous moisture sensors.
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