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Abstract: Infrared images are robust against illumination variation and disguises, containing the
sharp edge contours of objects. Visible images are enriched with texture details. Infrared and visible
image fusion seeks to obtain high-quality images, keeping the advantages of source images. This
paper proposes an object-aware image fusion method based on a deep residual shrinkage network,
termed as DRSNFuse. DRSNFuse exploits residual shrinkage blocks for image fusion and introduces
a deeper network in infrared and visible image fusion tasks than existing methods based on fully
convolutional networks. The deeper network can effectively extract semantic information, while
the residual shrinkage blocks maintain the texture information throughout the whole network.
The residual shrinkage blocks adapt a channel-wise attention mechanism to the fusion task, enabling
feature map channels to focus on objects and backgrounds separately. A novel image fusion loss
function is proposed to obtain better fusion performance and suppress artifacts. DRSNFuse trained
with the proposed loss function can generate fused images with fewer artifacts and more original
textures, which also satisfy the human visual system. Experiments show that our method has better
fusion results than mainstream methods through quantitative comparison and obtains fused images
with brighter targets, sharper edge contours, richer details, and fewer artifacts.

Keywords: image fusion; deep residual shrinkage network; channel-wise attention mechanism; auto
encoder and decoder; artificial texture suppression

1. Introduction

Infrared images captured by infrared sensors to record the thermal radiations emitted
by different objects are widely used in object detection and tracking [1,2]. They are robust
to the influence of illumination variation and disguises such as objects in smoke. Infrared
images provide distinct object boundaries, making it easier to locate targets. However,
infrared images usually contain few high-frequency textures, which may be essential in
target classification and tracking. In contrast, visible images provide rich texture infor-
mation, whereas targets in visible images may not be easily observed due to the external
environment, such as objects hidden in darkness. Multi-sensorial data fusion provides an
efficient method in data analysis [3]. Infrared and visible image fusion (IVIF) can signifi-
cantly preserve information from both infrared and visible images, satisfying the needs of
the following CV tasks. Fused images can also provide perceptual scene descriptions for
human eyes.

Recently, IVIF has received much attention, and various IVIF methods have been
proposed in recent years [4,5]. IVIF algorithms can generally be divided into two groups:
traditional methods and deep learning methods. The representative traditional methods
include multi-scale transformation [6–8], sparse representation [9], subspace learning [10],
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and the saliency method [11]. Traditional methods usually exploit different feature ex-
traction algorithms to overcome the variety of external environments. These methods are
dedicated to improving a feature extraction and fusion strategy in manual ways for better
fusion performance. The manually designed feature extraction and fusion strategy make
the fusion methods more and more complex, increasing the time cost of image fusion.
At the same time, traditional methods are less robust than deep learning methods due
to the limitation of handcrafted feature extractors. At the same time, former experience
plays an essential role in selecting the appropriate feature extraction and fusion strategy for
different scenes, which also increases the cost of traditional methods.

Deep learning methods have achieved impressive accuracy and efficiency in IVIF. With
the development of GPUs, IVIF methods based on deep learning can also perform real-time
image fusion, even faster than traditional methods. Deep learning methods can be roughly
divided into two groups: generative adversarial network (GAN)-based methods [12,13]
and encoder–decoder-based methods [14–16].

Ma et al. proposed FusionGAN in [13] to perform image fusion. IVIF methods based
on GANs usually include a generator and a discriminator. They play against each other to
create images with realistic details. It is worth noticing that shortcomings also exist in deep
learning methods. There is a significant difference between GANs performing IVIF and
GANs with other tasks, such as single-image super-resolution [17–19]: no groundtruth ex-
ists in the IVIF task. The discriminator of FusionGAN takes visible images as groundtruth,
comparing the fused images and original visible images. The discriminator of GAN-
McC [20] takes infrared and visible images as inputs at the same time and classifies inputs
into infrared images, visible images, or fused images. However, GANMcC still cannot
solve the absence of groundtruth, which is an obstacle to improving fusion performance in
GAN-based methods.

In contrast to GAN-based methods, encoder–decoder-based methods usually take
deep learning modules as encoders and decoders, extract features and then merge them into
fused images. Li et al. exploited image multi-scale transformation in [14] to perform IVIF.
However, Ref. [14] still took a handcrafted feature extraction module as the encoder. There-
fore, some shortcomings similar to traditional methods also exist in the encoder of [14].
A similar situation also exists in [15], and the detail exposition will be discussed in
Section 2.1. Li et al. proposed DenseFuse [16], which consists of two neural networks:
an encoder and a decoder. The encoder extracts features into high domain maps, and
the decoder reveals the high domain maps into fused images. Zhao et al. proposed
an auto-encoder in DIDFuse [21], which extracts features into backgrounds and details.
The purpose of IVIF is to keep the original information from both infrared images and
visible images, which means that texture information cannot be ignored in IVIF. Hou et al.
proposed VIF-Net in [22] performing unsupervised infrared and visible image fusion. Ma et
al. proposed STDFusionNet in [23], which performs infrared and visible image fusion with
target information. Although DIDFuse exploits a shallow network with four convolutional
layers, some textures in fused images created by DIDFuse are covered with artificial textures.
At the same time, DIDFuse pays the same attention to every channel in features, which
means that objects in original images have the same weights as backgrounds. STDFusion-
Net takes extra segmentation information for image fusion in the training phase, whereas
most aligned infrared and visible image pairs do not offer segmentation annotations.

This paper proposes a deep residual shrinkage network for infrared and visible image
fusion (DRSNFuse). Faced with the lack of groundtruth, we propose an encoder–decoder-
based method, which consists of an auto-encoder and an auto-decoder. The encoder extracts
feature maps, and the decoder creates fused images from feature maps. We exploit residual
shrinkage blocks to deepen the encoder while employing a global feature fusion module
to fuse feature maps from different layers. On the one hand, a deeper network indicates
a powerful feature extractor, which means more semantic information in feature maps
and enables our method to be object-aware. On the other hand, residual shrinkage blocks
and the global feature fusion module preserve more texture information from original
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infrared and visible images. Residual shrinkage blocks employed in our method introduce
an attention mechanism into infrared and visible image fusion, which enables the network
to pay weighted attention to objects and backgrounds.

Contributions. The contributions can be summarized as follows: (1) We proposed
an end-to-end deep residual shrinkage network (DRSNFuse) for IVIF, which can perform
object-aware image fusion. We employed residual shrinkage blocks and a global feature
fusion module for encoding, which retains the original textures from infrared and visible
images while extracting more semantic features. To the best of our knowledge, this is
the first deep residual shrinkage network that processes three-domain images rather than
one-domain signals, and our network has a state-of-the-art performance in IVIF. (2) We
introduced an attention mechanism into the IVIF task, which guides our method to focus
on objects in infrared and visible images. DRSNFuse separates objects and backgrounds
apart, and objects in fused images generated by our method have a higher contrast with
backgrounds. (3) We proposed an artificial texture loss to suppress the artifacts generated
in decoding. Our artificial texture loss introduces a penalty for textures generated by
fusion strategies, which imposes a limitation on recovering textures. (4) Experiments on
RoadScene and TNO datasets reveal that our method can perform state-of-the-art infrared
and visible image fusion compared with mainstream image fusion methods. DRSNFuse
effectively fuses sharp edge contours from infrared images and texture information from
visible images. The proposed method can suppress the artificial textures and preserve more
original textures from infrared and visible images. Our method also achieved impressive
performance in the quantitative evaluation.

2. Related Work
2.1. IVIF Methods Based on Deep Learning

In general, deep learning methods can be categorized into two groups: generative
adversarial network-based methods and encoder–decoder-based methods.

Ma et al. proposed FusionGAN in [13], which consists of a generator and a discrimi-
nator. The generator takes infrared and visible images as input and output-fused images.
The discriminator predicts the labels of images and enforces the generator to create im-
ages with more details from infrared and visible images. However, there are no original
fused images serving as groundtruth in the IVIF task. Due to the absence of groundtruth,
the discriminator of FusionGAN takes visible images as groundtruth. This strategy makes
the fused images pay more attention to visible images, whereas the information included
in infrared images may be ignored. Ma et al. enhanced the loss function in FusionGAN
in [24] to keep edge information and details from original images. The optimized loss
function attempts to retain more information from infrared images to reach a balance
between infrared and visible images. Although the edge-enhancement loss function helps
the generator focus on the edge information in infrared images, the discriminator still
compares fused images with visible images. The detail loss function guides the generator
to create images with more textures, which also leads to artificial textures in fused images.
Ma et al. proposed GANMcC in [20], in which the discriminator takes infrared and visible
images as groundtruth. The discriminator of GANMcC does not output true or false but
predicts three labels: infrared images, visible images, or fused images. Infrared and visible
images have equal importance in the discriminator of GANMcC, avoiding the fused images
inheriting more information from one kind of original image without balance. However,
the problem of groundtruth still cannot be ignored in GAN based method. Generally
speaking, the absence of groundtruth is a vital obstruction for GAN-based methods in
generating realistic fused images.

Encoder–decoder-based methods can also be divided into two sub-groups according
to how encoders extract features: traditional encoder based methods and deep learning
encoder based methods. Traditional encoder-based methods usually exploit handcrafted
filters or optimization methods for image decomposition and then generate fused images
with neural networks. Li et al. proposed a multi-scale transformation image fusion
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method in [14]. The encoder in [14] takes an optimization method to transform images
from the spatial domain into base parts and detail content. After that, the decoder-based
on VGG [25] merges features from base parts and detail content into the fused images.
Lahoud et al. introduced an image fusion method exploiting filters in the decomposition
stage [15]. In contrast to [14], Ref. [15] exploited a CNN module for further feature
extraction. Furthermore, then, the feature maps from base parts and details are merged into
the fused images in the fusion stage. In traditional encoder-based methods, the strategies of
the image decomposition stage are still handcrafted, which also suffer from the detriments
existing in traditional methods.

Similarly to traditional encoder-based methods, the deep learning encoder learns
to extract features from original images, while the decoder manages to recover fused
images from feature maps. Li et al. introduced an auto-encoder-based method DenseFuse
in [16], a milestone of deep learning encoder-based methods. DenseFuse consists of two
subnetworks: an encoder and a decoder. The encoder extracts features into high domain
maps, and the decoder reveals the high domain maps into fused images. DenseFuse exploits
a deep learning module as its encoder to replace the handcrafted filters or optimization
methods. Zhao et al. proposed an auto-encoder in DIDFuse [21], which extracts features
into backgrounds and details. The core idea of DIDFuse is to propose a CNN-based encoder,
which can automatically transform images from the spatial domain to the background
and detail domains. In brief, smooth areas in images are classified as backgrounds, while
areas covered with textures are classified as details. Compared with DenseFuse, DIDFuse
proposes an image decomposition loss to separate backgrounds and details from infrared
and visible images. The decoder takes decomposed features as input and achieves better
fusion performance than DenseFuse.

The advantages and open issues of mainstream deep learning methods are summa-
rized in Table 1. In summary, deep learning encoder-based methods exploit convolutional
neural networks to extract features from original infrared and visible images, and then
merge feature maps into fused images with different strategies. Unlike object detection
or tracking, in which semantic information from deep layers plays an important role,
the purpose of IVIF is to merge texture information and edge information in fused images.
Consequently, most deep learning-based extraction networks have shallow architectures to
prevent texture information from vanishing during the broadcast through a deep network.
Due to the encouragement of the detail loss function or adversarial loss function, the fusion
strategies tend to create images with more textures, even though there may be no such
textures either in original infrared images or visible images. These textures may lead to
better IVIF results measured with specific metrics, but they may become drawbacks in
the following tasks, such as object detection [26]. Moreover, they also provide wrong
perceptual scene descriptions for human eyes, leading to wrong judgments.

Table 1. Mainstream deep learning methods summary.

Groups Representative
Methods Advantages Challenges

GAN-based methods FusionGAN,
GANMcC

Unsupervised image
fusion with GANs

Absence of
groundtruth

Encoder–decoder-based methods
Traditional encoders Refs. [14,15] Learnable decoders Handcrafted feature

extraction
Deep learning

encoders
DenseFuse, DIDFuse,

VIF-Net
Learnable encoders

and decoders
Relatively shallow

networks

2.2. Deep Residual Networks

He et al. [27] proposed deep residual networks (ResNets) for image recognition. Image
recognition not only needs semantic information from the deeper layers of the networks but
also evaluates the texture information from shallow layers. Unlike former convolutional
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neural networks, ResNets exploit shortcuts from shallow layers to deep layers, bringing
texture features to the outputs. ResNets are widely used in one-stage object detection
networks [28,29], and two-stage networks [30], in which ResNets perform as an excellent
feature extractor. In ResNets, features are not only propagated layer by layer but also flow
to the output through shortcuts. Generally speaking, the semantic information is extracted
through the procession of backbone layers, while the texture information is maintained by
means of shortcuts. ResNets can provide deeper backbone networks for feature extraction
and, at the same time, maintain high-frequency information through shortcuts.

Zhao et al. proposed deep residual shrinkage networks in [31], which provides an
efficient method for fault diagnosis. In contrast to ResNets, deep residual shrinkage
networks add another sub-branch in residual blocks, generating thresholds to apply soft
thresholding on the outputs of the backbone networks. Deep residual shrinkage networks
are widely used in fault diagnosis [32–34], in which deep residual shrinkage networks
recognize the target signal from noise. Yang et al. [35] introduced a fault diagnosis method
of rotating machinery based on one-dimensional deep residual shrinkage networks, which
significantly improves fault diagnosis accuracy.

In the mentioned methods, deep residual shrinkage networks are employed to process
one-domain signals and achieve excellent performances. However, deep residual shrinkage
networks have not been exploited in three-domain image tasks to our knowledge. Similarly
to fault diagnosis, objects in original infrared and visible images also have more importance
than backgrounds in the image fusion task. Therefore, our method exploits residual
shrinkage blocks, guiding the network to focus on objects in original images.

3. Proposed Method

This paper proposes a deep residual shrinkage network for infrared and visible image
fusion: DRSNFuse. Our method merges objective-aware transformation into the auto-
encoder, with which DRSNFuse can separate the input images into base parts and details.
Base parts represent areas that have similar pixel intensities in infrared and visible images,
while details represent areas with different pixel intensities. Specifically, the objects con-
tained in details are separated from backgrounds channel-wise. After that, we exploit an
auto-decoder to generate images from base parts and details.

As shown in Figure 1, DRSNFuse consists of an auto-encoder and an auto-decoder,
which takes infrared and visible images as inputs and performs end-to-end image fusion.
The residual shrinkage blocks (RSBs) and global feature fusion (GFF) module in our encoder
perform feature extraction on infrared and visible images, outputting infrared and visible
features. The following base extractor and the detail extractor in our encoder separate
the features into base parts and details. The base parts, details, and shallow features are
then delivered to the decoder. The fusion layers in the decoder fuse base parts, details,
and shallow features according to the fusion strategy, outputting fused features. After that,
the decoding layers recover realistic images containing infrared and visible information
from fused features. We enhance the loss function of DRSNFuse to suppress artificial
textures, outputting images with few artifacts. The artificial texture loss helps DRSNFuse
create realistic images and maintain original textures, which may be essential in following
tasks such as object detection and tracking.

In the training phase, the encoder takes the infrared images and the visible images as
inputs, outputting infrared base parts, infrared details, shallow infrared features, visible
base parts, visible details, and visible shallow features. The decoder separately recovers
the infrared images and the visible images from infrared data (infrared base parts, infrared
details, infrared features) and visible data (visible base parts, visible details, visible features).
In the inference phase, the encoder performs the same tasks as in the training phase.
The decoder takes the infrared data and the visible data as inputs, merging base parts,
details, and features from infrared and visible data separately. After that, the decoder
generates fused images from the merged base parts, details, and features.
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Figure 1. Frame of DRSNFuse.

3.1. Network Architecture

The architecture of DRSNFuse is shown in Figure 2. There are four RSBs, one GFF
module, and two convolutional layers working as base and detail extractors in the encoder.
The architectural details of the encoder are shown in Table 2. Our encoder performs object-
aware image decomposition, which separates objects and details into different channels in
the feature map. The detail will be exhibited in Section 4.2.

First, DRSNFuse exploits four RSBs for feature extraction, and then the GFF module
compresses the features from different layers into the infrared and visible feature maps.
After that, the base extractor and the detail extractor separate the base parts and the details
from feature maps. The base parts, the details, and features from RSB 1–2 are delivered
to the decoder to recover fused images. In order to recover images with more realistic
details, we introduced a GFF module to merge features from every RSB. At the same time,
the encoder outputs feature maps from RSB 1–2, the output feature maps of which contain
more texture information than the base parts and details generated by extractors.

The architecture of the mentioned RSBs is shown in Figure 3 and Table 3, which are
similar to the block in [31]. We propose two types of residual shrinkage blocks: resid-
ual shrinkage block with channel-shared thresholds and residual shrinkage block with
channel-wise thresholds. The backbone of RSBs consists of two convolutional layers,
a soft thresholding layer and an activation layer. Additionally, there is a shortcut to bring
features from the inputs to the deep layers and a thresholding branch to generate thresholds
applied in the following soft thresholding. The network in [31] performs fault diagnosis on
one-domain signals, which means it takes tensors in the shape of n× 1 as inputs. However,
in DRSNFuse, the encoder extracts features from original three-domain images, which takes
tensors in the shape of n× H ×W × C as inputs. RSBs can effectively preserve shallow fea-
tures, which contain texture information from infrared and visible images. At the same time,
due to RSBs avoiding the loss of texture information, deeper networks can be employed
in IVIF tasks. Deeper networks perform better feature extraction and provide abundant
semantic information for the following decoder to generate fused images [27]. A residual
shrinkage block with channel-wise thresholds also introduces an attention mechanism into
the IVIF task, which helps our method pay more attention to the object channels.

The decoder consists of four convolutional layers, which merge base parts, details,
and features, recovering fused images. The architectural details of the decoder are shown
in Table 4. The convolutional layer group 4 concatenates base parts and details from
infrared and visible images, outputting feature maps with base and detail information.
The convolutional layer groups 5 and 6 separately merge shallow features from RSB 2 and
RSB 1 into the fused feature maps. The following convolutional layer group 7 employs
reflection padding to generate more realistic edge areas and recover fused images from



Sensors 2022, 22, 5149 7 of 19

feature maps. We exploit a sigmoid layer in convolutional layer group 7 as the activation
function, limiting the pixel intensities of fused images into interval (0, 1).

Unlike the former auto-encoder networks such as DIDFuse, we adapt a deep resid-
ual shrinkage network for feature extraction rather than fully convolutional networks.
In IVIF tasks, shallow features can hardly resist the broadcast of deep, fully convolutional
networks. Consequently, fully convolutional network-based encoders usually employ
shallow architectures, such as the four-layer encoder in DIDFuse [21]. On the one hand,
the residual shrinkage network maintains texture information throughout the network
with minor damage. On the other hand, the deeper network can extract more semantic
information than shallow, fully convolutional networks [27,36]. Our method performs
an object-aware image decomposition, separating objects and backgrounds into different
channels. Our method also exploits an attention mechanism in the image fusion task, which
guarantees objects in fused images a higher contrast with backgrounds.
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Figure 2. Architecture of DRSNFuse.
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Figure 3. Residualshrinkage block. The left figure shows a residual shrinkage block with channel-
shared thresholds. The right figure shows a residual shrinkage block with channel-wise thresholds.
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Table 2. Architecture of the auto-encoder in DRSNFuse.

Block Chl_in Kernel Num. Kernel Size Stride Padding

RSB 1 1 16 3 1 1
RSB 2 16 16 3 1 1
RSB 3 32 16 3 1 1
RSB 4 48 16 3 1 1

Conv 1 64 16 1 1 0
Conv 2 16 64 3 1 1
Conv 3 16 64 3 1 1

Chl_in means the number of the input channel of the residual shrinkage block, which varies in different blocks.

Table 3. Architecture of the residual shrinkage block.

Layer Kernel
Num.

Kernel
Size Stride Padding Chl_in Chl_out

ResidualShrinkage Block with Channel-Shared Thresholds

Conv 1 Chs 3 1 1 - -
Conv 2 Chs 3 1 1 - -

FC 3 - - - - Chs Chs
FC 4 - - - - Chs 1

Residual Shrinkage Block with Channel-Wise Thresholds

Conv 1 Chs 3 1 1 - -
Conv 2 Chs 3 1 1 - -

FC 3 - - - - Chs Chs
FC 4 - - - - Chs Chs

Table 4. Architecture of the auto-decoder in DRSNFuse.

Layer Kernel Num. Kernel Size Stride Padding

Conv 4 64 3 1 1
Conv 5 32 3 1 1
Conv 6 16 3 1 1
Conv 7 1 3 1 0

3.2. Loss Function

We incorporate the loss functions from some state-of-the-art IVIF approaches [15,16,21]
and propose our loss function that satisfies the needs of IVIF, suppressing artificial textures.

3.2.1. Encoder Loss

In the fusion of infrared and visible images, the areas with similar pixel intensities
in infrared and visible images can be merged with little transformation, while the areas
with different pixel intensities require an effective fusion strategy. We take the areas with
similar pixel intensities as base parts and areas with different pixel intensities as details to
perform image fusion more meticulously. The purpose of the encoder loss is to enforce the
encoder to separate base parts and details apart for the decoder to recover fused images.
Our encoder loss consists of a base part loss and a detail loss. The base part loss encourages
the base extractor to focus on similar areas in infrared and visible images. On the contrary,
the detail loss guides the detail extractor to extract different features from infrared and
visible images.

Base part loss.Base parts are defined as areas with similar pixel intensities in infrared
and visible images, so the infrared base parts should enjoy high similarity to the visible
base parts. The base part loss is computed as (1). We exploit a tanh function to limit the
base part loss to the interval of (−1, 1), which can avoid gradient exploding problems in
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training. As shown in (1), minor base part loss indicates a smaller gap between base part
features from infrared and visible images, which coincides with the definition of base parts.

Lbase = tanh
(∣∣∣Bin f − Bvis

∣∣∣) (1)

Bin f = B
(

E
(

Iin f
))

, Bvis = B
(

E
(

Ivis
))

(2)

Here, Bin f and Bvis denote infrared and visible base parts as shown in (2). Iin f and Ivis

denote infrared images and visible images. E(∗) denotes the residual shrinkage blocks and
the global feature fusion module. B(∗) denotes the base extractor.

Detail loss. Details in infrared and visible images are the critical areas in image
fusion. From the definition of details, we can conclude that the gap between infrared detail
maps and visible detail maps should be distinct, so we exploit (3) to compute the detail
loss. We also exploit a tanh function to limit the detail loss into interval (−1, 1), which
ensures a balance in the training phase between the base extractor and the detail extractor.
As shown in (3), minor detail loss means a more distinct gap between the detail maps from
the infrared and visible images. After that, the encoder loss is computed as (5).

Ldetail = − tanh
(∣∣∣Din f − Dvis

∣∣∣) (3)

Din f = D
(

E
(

Iin f
))

, Dvis = D
(

E
(

Ivis
))

(4)

Lencoder = α1 · Lbase + α2 · Ldetail (5)

Here, Din f and Dvis denote the infrared and visible details, respectively, as shown
in (4). D(∗) denotes the detail extractor. α1 and α2 denote trade-off weights.

3.2.2. Decoder Loss

In the training phase, the decoder learns to recover original images from base parts,
details, and shallow features. The decoder loss consists of pixel-wise loss, structural
similarity loss, gradient loss, and artificial texture loss.

Pixel-wise loss. A natural and straightforward way is to enforce the decoder’s output
to be the original images by minimizing the pixel-wise loss, which has been proven effective
in some state-of-the-art approaches [24]. The pixel-wise loss guides the decoder to recover
images with similar pixel intensities as the original images. The pixel-wise loss is computed
as (6). Minor pixel-wise loss means a higher pixel intensity similarity between the recovered
and original images.

Lpixel-wise =
(

Iin f − Iin f
)2

+
(

Ivis − Ivis
)2

(6)

Iin f = R
(

Bin f , Din f , Fin f
)

,

Ivis = R
(

Bvis, Dvis, Fvis
) (7)

Here, Iin f and Ivis denote infrared and visible images recovered by the decoder as
shown in (7). Fin f and Fvis denote shallow features from infrared and visible images.
R(∗, ∗, ∗) denote images recovered by the decoder.

Structural similarity loss. Wang et al. [37] propose a method of measuring structural
similarity (SSIM) that compares local patterns of pixel intensities between two images.
The structural similarity loss is computed as (8). Minor structural similarity loss means a
higher structural similarity between the recovered and original images.

LSSIM = 2− SSIM
(

Iin f , Iin f
)
− SSIM

(
Ivis, Ivis

)
(8)
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Here, SSIM(∗, ∗) denotes the SSIM calculator.
Gradient loss. Solutions to MSE optimization problems often lack high-frequency

content, which results in images covered with overly smooth textures. Therefore, we adopt
gradient loss to guarantee texture agreement between recovered and original images. Since
visible images are enriched textures, our gradient loss focuses on visible images, forcing
the decoder to pay more attention to recovering textures from visible images. The gradient
loss is computed as (9).

Lgradient =
∣∣∣∇Ivis −∇Ivis

∣∣∣ (9)

Here, ∇ denotes the gradient operator.
Artificial texture loss. The former IVIF methods focus on adding more textures in

fused images without limitation, which may improve results such as spatial frequency.
However, some textures do not exist either in original infrared or visible images: artificial
textures. Artificial textures can significantly improve some IVIF results, such as the average
gradient, whereas they also cover original textures contained in infrared and visible images,
which is against the purpose of IVIF. The gradient loss increases high-frequency content in
fused images, making them sharper. However, the gradient loss without suppression tends
to introduce artificial textures into images. These artificial textures significantly reduce the
gradient loss, but they also obscure the original textures of images, which may be fatal
for following tasks. Artificial texture loss is proposed to suppress the artificial textures
encouraged by gradient loss. The artificial texture loss also focuses on visible images,
similarly to the gradient loss. The artificial texture loss is computed as (10). After that,
the decoder loss is computed as (11).

Lartificial =
W−1

∑
x=1

(
Ivis

x+1,∗ − Ivisx,∗
)2

+

H−1

∑
y=1

(
Ivis∗,y+1 − Ivis∗,y

)2
(10)

Ldecoder = β1 · Lpixel-wise + β2 · LSSIM + β3 · Lgradient + β4 · Lartificial (11)

Here, Ivisx,∗ and Ivis∗,y denote the x− th row and the y− th column of the recovered
images, respectively. W and H denote the width and height of the recovered images,
respectively. β1, β2, β3 and β4 denote the trade-off weights.

4. Experiments and Evaluations
4.1. Training Details

We compare our method with other state-of-the-art IVIF methods, including ADF [7],
HMSD-GF [8], VSMWLS [38], FusionGAN [13], DenseFuse [16], GANMcC [20], and DID-
Fuse [21]. We implement our model with PyTorch, and all the following experiments are
performed on a single NVIDIA RTX 3090 GPU (NVIDIA Corporation, 2788 San Tomas
Expressway, Santa Clara, CA 95051, US.) Table 5 shows our system requirements.

Datasets and preprocessing. We experimentally validated our proposed method on
the RoadScene dataset [39] and the TNO dataset [40]. The RoadScene dataset consists of
221 aligned infrared and visible image pairs containing rich scenes such as roads, vehicles,
and pedestrians. These images in RoadScene are highly representative scenes from the FLIR
video. TNO Image Fusion Dataset contains multispectral nighttime imagery of different
scenarios captured with different multiband camera systems, widely used in the evaluation
of IVIF tasks. Table 6 shows details of the datasets used in the following experiments. We
randomly divided RoadScene into the training set (181 pairs), the validation set (20 pairs),
and the test set (20 pairs) according to the classic proportion of 8:1:1. We also randomly
selected 20 image pairs from TNO as the test set, containing several representative scenes
such as smoke, men, and trees. All images are in grayscale. In the training phase, we
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applied random cropping on the original images, which transforms the images into the
shape of 128× 128.

Table 5. System requirements.

CPU Intel 10700K
GPU NVIDIA RTX 3090
OS Ubuntu 20.04

Language Python 3.8 with PyTorch 1.11.0

Table 6. Datasets used in experiments.

Dataset (Pairs) Illumination Average Size

Training RoadScene—train (181) Daylight&Nightlight 514 × 302

Validation RoadScene—validation (20) Daylight&Nightlight 514 × 302

Test RoadScene—test (20) Daylight&Nightlight 514 × 302
TNO(20) Daylight&Nightlight 597 × 450

Training of DRSNFuse. In the encoder, we set the trade-off weights α1 = 1, α2 = 0.5.
Furthermore, in the decoder, we set the trade-off weights β1 = 1, β2 = 2.5, β3 = 10,
β4 = 2× 10−8. The trade-off weights α1 and α2 control the base part loss and the detail
loss within a similar scale in the training phase of the encoder. Furthermore, the trade-off
weights β1, β2, β3 have the same impact in the training phase of the decoder as α1 and α2.
The trade-off weight β4 controls the suppression performance of the artificial texture loss,
avoiding over-smooth fusion images. Our network is trained from scratch. The weights
in each convolutional layer are initialized with a zero-mean Gaussian distribution with
a standard deviation of 0.02, while the biases are initialized with 0. The weights in the
fully connected layers branch are initialized with a zero-mean Gaussian distribution with
a standard deviation of 0.1, while the biases are initialized with 0. We adopted Adam
optimizers for the encoder and the decoder. The learning rates for the optimizers are
initially set to 1× 10−3 and then reduced to 95% after every epoch. There are 0.13 million
trainable parameters in our channel-wise encoder and 0.10 million trainable parameters
in our channel-wise decoder. As for the channel-shared DRSNFuse, there are 0.12 million
trainable parameters in our encoder and 0.10 million trainable parameters in our decoder.
The training is terminated after 150 epochs, and the states of the network are recorded.

4.2. Image Decomposition

Our method performs image decomposition with its encoder, and the deposed features
are shown in Figure 4. The first and the second rows show infrared images and visible
images. The third and the fourth rows exhibit base parts from infrared and visible images.
The fifth and the sixth rows contain details from infrared and visible images.

As mentioned above, base parts represent areas that are similar in infrared and visible
images. Compared with details, the differences between infrared base parts and visible base
parts are relatively small, as shown in the third and fourth rows. The fifth and sixth rows
contain details from infrared images and visible images, and we exhibit two representative
channels from detail feature maps for every image. As shown in the fifth row, objects from
infrared images are separated from the backgrounds. Specifically, the upper images in the
fifth row contain original backgrounds from infrared images, and the lower images focus on
objects and contain few backgrounds. In contrast with former methods, our method adapts
residual shrinkage blocks for the backbone, which applies learnable soft thresholding on
features. On the one hand, residual shrinkage blocks preserve shallow features throughout
the whole net. On the other hand, the learnable soft thresholding guides channels of
features to focus on different areas, which plays a similar role to the attention mechanism.
Consequently, different areas are separated into various channels. Our encoder also applies
a similar decomposition to visible images, as shown in the sixth row. Unlike infrared
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images, there is no distinct pixel intensity difference between the objects and backgrounds
in greyscale visible images. Furthermore, there are no extra target annotations in IVIF
datasets. Objects in visible images can hardly be separated from backgrounds as accurate
as in infrared images.

Infrared

images

Visible

images

Visible

bases

Infrared

bases

Visible

details

Infrared

details

Figure 4. Base parts and details from infrared images and visible images.

4.3. Subjective Performance Evaluation

Figure 5 exhibits several representative image pairs. The first row shows original
infrared images, and the original visible images are shown in the second row. The fol-
lowing rows contain fused images generated by different methods, including traditional
methods (ADF, HMSD-GF, VSMWLS) and deep learning methods (FusionGAN, DenseFuse,
GANMcC, DIDFuse, our method). The regions in small red boxes are shown in the bigger
boxes, which reveal the performance gap between different methods.
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Infrared

images

Visible

images

ADF

HMSD-GF

VSMWLS

FusionGAN

DenseFuse

GANMcC

DIDFuse

DRSNFuse

Figure 5. Qualitative results for different methods.

In the first column, we can hardly recognize the letters in fused images generated by
some methods. Especially in HMSD-GF, although the fused image generated by HMSD-GF
seems lighter than others, they also lose information contained in the dark areas. The road
sign in fused images generated by our method has better contrast than other methods,
which provides a more precise edge contour, making letters easier to recognize. In the
second column, the fused images generated by ADF and DenseFuse can only provide a dim
shadow of the target, which means the target pixel intensity is significantly lower than other
methods. Although FusionGAN and GANMcC perform better than ADF and DenseFuse,
we still cannot obtain a clear outline of the target. The fused target generated by DIDFuse
is wrapped with artificial textures, which may be fatal in the following tasks, such as object
detection. Compared to other methods, our method provides a brighter fused target with a
more precise edge contour and fewer artificial textures. In the third and fourth columns,
the fused image generated by our method also has more clear details than other methods,
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which means our method may perform better in the following tasks, such as object tracking.
In the third column, we can obtain clearer and richer details in the fused image generated
by our method. In the fourth column, the fused image generated by our method has a better
contour and details than other methods. As shown in the fifth column, the fused images
generated by our method seem a little darker than HMSD-GF. Although the background of
the running man in our method is darker than in other methods, pixels from the running
man have a higher intensity. Lighter images cannot promise better fusion performance,
but higher contrast makes objects clear. The reason is that the soft thresholding residual
shrinkage blocks apply learnable suppression on the feature maps. At the same time,
we exploit a sigmoid layer in our network, as shown in Figure 2, which limits the pixel
intensities of fused images to the interval (0, 1), and enhances images with higher contrast,
as shown in Figure 6. The upper images are original infrared and visible images. Taking
the original images as inputs, the sigmoid layer in our network outputs the images with
higher contrast, as shown in the second row.

Figure 6. Sigmoid layer enhances images with higher contrast.

Generally speaking, our method can generate fused images with higher contrast, brighter
targets, sharper edge contours, richer details, and fewer artifacts than other methods.

4.4. Objective Performance Evaluation

We exploit eight metrics to evaluate the quality of fused images: mutual information
(MI), average gradient (AG), entropy (EN), standard deviation (SD), spatial frequency
(SF), sum of correlations of differences (SCD), structural similarity (SSIM), and visual
information fidelity (VIF). As shown in Table 6, we randomly choose image pairs as the test
set from RoadScene and TNO. Several image pairs in the test set are shown in Figure 7. The
upper images in every row are infrared images, and the lower images are paired visible
images. As shown in Figure 7, the test set contains many different scenes under varying
illumination, such as streets, buildings, and forests. The objective comparison results on the
test sets are shown in Table 7. Furthermore, the test results of each image pair are exhibited
in Figures 8 and 9.

Table 7 indicates that our method has the best MI, AG, EN, SD, SF, SCD, and the
second best VIF on RoadScene. The largest MI suggests that our fused images retain more
information from original infrared and visible images. The largest AG shows that our
method performs sharper image fusion than other methods. The largest EN demonstrates
that fused images generated by our method contain more abundant information than
others. The largest SD indicates that our method can generate fused images with the best
contrast. The largest SF demonstrates that our fused images can provide richer edges
and textures. The largest SCD suggests that fused images generated by our method enjoy
a higher similarity with original infrared and visible images. The second VIF indicates
that our fused images also satisfy the human visual system. The SSIM of our method
slightly falls behind the traditional methods (HMSD-GF and VSMWLS) but also has the
best performance in deep learning methods. As for the test on TNO, our method has the
AG, EN, SF, SCD, and the second best MI, SD, and VIF. The SSIM of our method on TNO
is behind the traditional methods (HMSD-GF and VSMWLS) but also has the second best
performance in deep learning methods. As shown in Table 7, our method has a better
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performance on RoadScene than TNO. Because we only exploit 181 image pairs from
RoadScene as our training set, without any image pairs from TNO. RoadScene contains
221 image pairs, while there are only 42 in TNO. Although both RoadScene and TNO
consist of infrared and visible image pairs, differences still exist in RoadScene and TNO,
such as scene and illumination. At the same time, considering the size of TNO, we only
exploited 181 image pairs from RoadScene but no image pair from TNO, which leads to the
relatively low performance on TNO.

Figure 7. Infrared and visible image pairs in the test set.

Table 7. Results of quantitative evaluation on TNO and RoadScene. The bold values are the best
results. And the underline values rank second.

Method ADF HMSD-
GF VSMWLS FusionGAN DenseFuse GANMcC DIDFuse DRSNFuse_CS DRSNFuse_CW

RoadScene

MI 2.252 2.410 2.274 2.614 2.412 2.407 2.317 2.636 2.458
AG 6.668 9.044 9.190 4.800 8.324 3.977 4.720 9.604 9.630
EN 6.948 7.447 7.282 6.841 7.386 7.034 7.297 7.595 7.682
SD 9.349 10.217 9.844 9.242 10.732 9.975 9.925 11.400 10.624
SF 0.065 0.089 0.091 0.047 0.082 0.038 0.042 0.097 0.093
SCD 1.556 1.612 1.624 1.579 1.780 1.416 1.752 1.793 1.863
SSIM 0.866 0.938 0.920 0.869 0.892 0.659 0.811 0.884 0.901
VIF 0.619 0.758 0.678 0.611 0.657 0.517 0.618 0.704 0.687

TNO

MI 1.712 1.825 1.899 1.954 2.194 1.995 2.098 2.101 1.977
AG 3.881 5.229 4.989 2.888 4.774 2.614 2.493 5.508 5.011
EN 6.432 7.075 6.800 6.371 7.187 6.370 6.576 7.283 7.180
SD 8.754 9.448 8.874 8.702 9.896 8.080 9.048 9.694 9.338
SF 0.038 0.053 0.050 0.030 0.047 0.027 0.024 0.056 0.049
SCD 1.579 1.658 1.739 1.598 1.807 1.421 1.696 1.824 1.877
SSIM 0.856 0.898 0.885 0.891 0.859 0.791 0.832 0.871 0.879
VIF 0.624 0.870 0.738 0.623 0.799 0.629 0.627 0.824 0.788
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Figure 8. Fusion results of pairs in RoadScene.

Figure 9. Fusion results of pairs in TNO.

In summary, DRSNFuse can generate sharper images with more high-quality informa-
tion. At the same time, fused images created by DRSNFuse also contain richer details and
satisfy the human visual system.

The average inference time of different methods is provided in Table 8. The traditional
methods (i.e., ADF, HMSD-GF, and VSMWLS) are tested on a desktop with a 5.10 GHz
Intel Core i7 CPU. The deep learning methods (i.e., FusionGAN, DenseFuse, GANMcC,
DIDFuse, and our method) are also tested on the mentioned desktop with an NVIDIA
Geforce RTX 3090. Our method performs the second best image fusion speed. Even though
DenseFuse has a shorter inference time compared with our method, the fusion result of
DenseFuse is far from ours. At the same time, our method can satisfy the need for real-time
infrared and visible image fusion.
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Table 8. Average inference time. The bold values are the best results. And the underline values rank
second.

Method ADF HMSD-GF VSMWLS FusionGAN DenseFuse GANMcC DIDFuse DRSNFuse_CS DRSNFuse_CW

RoadScene

Inference time 0.114s 0.164s 0.301s 0.212s 0.007s 0.456s 0.017s 0.015s 0.014s

TNO

Inference time 0.219s 0.337s 0.603s 0.396s 0.012s 0.851s 0.099s 0.028s 0.027s

5. Conclusions

In this paper, we proposed DRSNFuse, a novel object-aware infrared and visible image
fusion method based on a deep residual shrinkage network. We exploited residual shrink-
age blocks in our network, which introduces an attention mechanism in the IVIF task. Our
method can separate objects and backgrounds into different channels, improving the image
fusion performance. At the same time, the deep residual shrinkage network maintains
a shallow texture information throughout the whole network, which also extracts more
semantic information with a deeper backbone compared with other deep learning methods
based on fully convolutional networks. We introduced artificial texture loss into the auto-
decoder, with which the decoder can create fused images with fewer artifacts. The artificial
texture loss helped the decoder balance original features and fusion textures. The experi-
mental results showed that, compared with some state-of-the-art methods, DRSNFuse has
a better performance according to the qualitative and quantitative comparison. DRSNFuse
also satisfies the human visual system which generates fused images which contain higher
contrast, brighter targets, sharper edge contours, and richer details.

In future work, we will further investigate the segmentation of objects and back-
grounds. Precise segmentation and elaborate fusion strategy separately adapted for objects
and backgrounds may achieve better performance, especially for the following tasks, such
as object detection and tracking. We will also focus on dataset processing. From the gap
between the results on the test sets from RoadScene and TNO, we can conclude that the
variety of training sets plays an essential role in the performance of deep learning methods.
Unlike object detection tasks with large-scale datasets such as COCO and VOC, the limita-
tion of datasets is the main obstacle in the IVIF tasks. In order to broaden the IVIF datasets,
we will also investigate the methods of infrared images and visible image alignment.
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Abbreviations
The following abbreviations are used in this manuscript:

IVIF Infrared and visible image fusion
MI Mutual information
AG Average gradient
EN Entropy
SD Standard deviation
SF Spatial frequency
SCD Sum of correlations of differences
SSIM Structural similarity
VIF Visual information fidelity
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