
Citation: Li, X.; Zheng, Y.; Chen, B.;

Zheng, E. Dual Attention-Based

Industrial Surface Defect Detection

with Consistency Loss. Sensors 2022,

22, 5141. https://doi.org/10.3390/

s22145141

Academic Editor: Paolo Bellavista

Received: 30 May 2022

Accepted: 4 July 2022

Published: 8 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Dual Attention-Based Industrial Surface Defect Detection with
Consistency Loss
Xuyang Li 1,†, Yu Zheng 2,†, Bei Chen 1 and Enrang Zheng 1,*

1 School of Electrical and Control Engineering, Shaanxi University of Science and Technology,
Xi’an 710021, China; 200611021@sust.edu.cn (X.L.); chenbei@sust.edu.cn (B.C.)

2 School of Cyber Engineering, Xidian University, Xi’an 710126, China; yuzheng.xidian@gmail.com
* Correspondence: zhenger@sust.edu.cn
† These authors contributed equally to this work.

Abstract: In industrial production, flaws and defects inevitably appear on surfaces, resulting in
unqualified products. Therefore, surface defect detection plays a key role in ensuring industrial
product quality and maintaining industrial production lines. However, surface defects on different
products have different manifestations, so it is difficult to regard all defective products as being within
one category that has common characteristics. Defective products are also often rare in industrial
production, making it difficult to collect enough samples. Therefore, it is appropriate to view the
surface defect detection problem as a semi-supervised anomaly detection problem. In this paper,
we propose an anomaly detection method that is based on dual attention and consistency loss to
accomplish the task of surface defect detection. At the reconstruction stage, we employed both
channel attention and pixel attention so that the network could learn more robust normal image
reconstruction, which could in turn help to separate images of defects from defect-free images.
Moreover, we proposed a consistency loss function that could exploit the differences between the
multiple modalities of the images to improve the performance of the anomaly detection. Our
experimental results showed that the proposed method could achieve a superior performance
compared to the existing anomaly detection-based methods using the Magnetic Tile and MVTec
AD datasets.

Keywords: surface defect detection; anomaly detection; industrial security; attention mechanism

1. Introduction

Over recent years, surface defect detection has attracted attention in various fields,
such as transportation [1–3], agriculture [4,5] and biomedicine [6,7], but surface defect de-
tection has been especially extensively studied within manufacturing [8–12]. The process of
industrial production is often accompanied by quality problems among the manufactured
products and not all products can be monitored for quality through appearance observa-
tion. Therefore, surface defect detection plays an important role in industrial production.
However, the surface defect detection of industrial products suffers from two main prob-
lems. First, a lack of defect instances: defective samples are usually rare among industrial
products, while normal samples are common. Thus, it is difficult to collect enough defective
samples and in extreme cases, only normal samples can be obtained. Second, the diverse
types of defects, as shown in Figure 1: there are various types of defects among industrial
products and the appearance of defects is not necessarily uniform on the same product.
As a result, it is difficult to treat all defective products as one valid category. Under these
circumstances, it is more appropriate to view the surface defect detection problem as a
semi-supervised anomaly detection problem.
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Figure 1. Industrial product samples with surface defects: each sub-figure represents a different
industrial product (four in total) and each picture represents a different defect. The area in the red
box contains the surface defect of each product.

Anomaly detection has been widely used in various fields, including cyber secu-
rity [13,14], communications security [15–17], IoT [18–20], video surveillance [21,22], etc. In
general, anomaly detection refers to finding special instances that differ from given normal
instances. Conventional computer vision-based anomaly detection mainly adopts image
processing methods [23,24] and machine learning methods that are based on hand-crafted
feature extraction [25,26]. However, image processing methods are non-learning methods
that do not utilize existing data. The performance of machine learning methods mainly
depends on the quality of the hand-crafted features and few features are specially designed
for anomaly detection, so it is difficult to obtain satisfactory results. Recently, deep learning-
based anomaly detection methods have received extensive attention. There are many
existing methods for industrial product anomaly detection [8,27,28]. Recent studies have
shown that image reconstruction-based methods can be effective in addressing the problem
of the lack of defective samples. However, most image reconstruction-based methods are
only trained on easily accessible defect-free images. Schlegl et al. [29] proposed an anomaly
detection method that was based on a vanilla generative adversarial network (GAN), which
captured the manifold of normal images and reconstructed the pseudo-images that were
closest to the distribution of the normal images. Soukup et al. [30] proposed an autoencoder
(AE)-based network that mapped images on to latent spaces through an encoder network
and created reconstructed images that were similar to the input images using a decoder
network. In the test phases, the above two methods used the differences between the query
image and the reconstructed image to detect surface defects.

Although both the GAN-based method and AE-based method could solve the problem
of the small number of defective samples, the GAN training requires expensive computa-
tional resources and the reconstructed images from the AE differ greatly from the input
images, resulting in low defect detection accuracy. To overcome these problems, this paper
addresses the challenge from three perspectives. First, in order to quickly match the latent
vectors that were closest to the normal image distribution, we reconstructed the defect-free
images using an encoder–decoder network, thereby avoiding the process of updating the
input vectors to capture the normal image manifold. Second, to further enhance the rep-
resentation ability of the extracted features, a novel attention mechanism that utilizes the
parallel fusion of channel attention and pixel attention was added to the encoder network
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to enhance the detailed information attention of the network. Third, the latent vector that
was extracted by the network only contained the features of the normal samples and it was
not clear whether the features of abnormal samples were also learned. Therefore, this study
proposed a new consistency loss function that was based on the pixel consistency, structural
consistency and gradient consistency of the images to further improve the ability of the
network to reconstruct normal samples, inhibit abnormal reconstruction and improve the
accuracy of the detection of defective samples.

To summarize, the contributions of this paper are threefold:

• An encoder–decoder generative adversarial network is proposed that directly maps
image spaces on to latent spaces;

• A novel dual attention block is proposed within the encoder network;
• A consistency loss function is proposed to enhance the ability of the network to

reconstruct defect-free images.

This paper is organized as follows. Section 2 presents related work on surface defect
detection and anomaly detection. Section 3 introduces our proposed network structure and
the training strategy for our dual attention-based industrial surface defect detection method
with consistency loss. Section 4 describes the dataset that we used, the training details and
the experimental results. In Section 5, we draw conclusions through experiments.

2. Related Work

At present, surface defects on industrial products seriously affect the quality and
efficiency of production and a number of industrial enterprises have introduced products
that are related to the detection of surface defects. Cognex’s deep learning defect detection
tool can learn to find a variety of unacceptable product defects throughout the manufac-
turing process. This tool inspects the screen, band and back of a smartphone before it is
packaged. It is used to detect any combination of dents, scratches and discolorations any-
where on the smartphone. Zeiss proposed SurfMax, which obtains three different modes of
captured images (grayscale images, gloss images and slope images) based on deflection
measurements using a high-resolution Zeiss optical sensor. It completely captures the
relevant surface features and is then combined with machine learning methods to carry
out surface defect detection in automotive, aerospace, medical and consumer electronics
manufacturing. Creaform designed 3D scanners for the non-destructive inspection of gas
pipelines and aerospace surfaces. Therefore, surface defect detection has become a research
hot spot for some companies at present. In this section, we summarize the related work
within surface defect detection and anomaly detection.

2.1. Surface Defect Detection

According to the extracted features and detection algorithms, the traditional surface
defect detection methods within image processing can be divided into three categories:
the statistical method [31], frequency spectrum method [32] and model method [33]. The
traditional methods are no longer applicable due to their high human costs and their inability
to represent high-dimensional data features. The rapid development of deep learning within
the field of computer vision, especially the strong feature extraction ability of deep networks,
has opened up new possibilities for industrial surface defect detection [34,35].

Industrial surface defect detection can improve the qualified rate and overall qual-
ity of products and it is used in a variety of tasks. Therefore, many defect detection
algorithms have been proposed [36–39]. Due to the variety of defective samples and the
difficulty in collecting them, most of the current surface defect detection methods are
based on unsupervised or semi-supervised image reconstruction methods that rely on
reconstruction errors or other measurement methods (such as latent vector errors, etc.)
to detect defects. The ultimate goal of the AE-based method is to enable the encoder to
learn the good low-dimensional features of a normal input image and to reconstruct the
input image. Youkachen et al. [40] used a convolutional autoencoder (CAE) to reconstruct
an image and complete the surface defect segmentation of a hot rolled strip. Their final
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surface defect segmentation results were obtained from the reconstruction error, following
a sharpening treatment. Bergmann et al. [41] believe that the lp distance measure between
pixels could lead to large residuals in the reconstruction of image edges, so they added
the structural similarity (SSIM) measure to the loss function. Their results showed that the
detection performance was significantly improved compared to the per-pixel reconstruction
error metric.

2.2. Anomaly Detection

Anomaly detection, also known as outlier detection or novel detection [42], refers
to the process in which detected data deviate significantly from normal data. In surface
defect detection, defects in images can be regarded as abnormal instances, so we can apply
anomaly detection to find defect images. The experiments of a large number of researchers
have shown that using anomaly detection methods to detect defects is effective. Nakan-
ishi et al. [43] considered the insufficient reconstruction accuracy of many of the AE-based
methods. Natural images are mostly low frequency, so they introduced a weighted fre-
quency domain loss (WFDL) from the perspective of the frequency domain to improve
the reconstruction of high-frequency components, which made the reconstructed images
clearer and improved the accuracy of the anomaly detection. Recently, many researchers
have completed anomaly detection tasks using the GAN-based method [27,29,44]. The ulti-
mate goal of the GAN-based method is to enable the generator to learn the intrinsic laws of
normal samples and create reconstructed images that are similar to the normal images using
the learned knowledge. In order to reduce computing resources, Akcay et al. proposed the
GANomaly [28] network to reconstruct images by encoding and decoding the input image
without the need to iteratively search for the latent vectors. They defined the anomaly
score by encoding the latent vectors of input images and reconstructed images. Inspired by
the skip connection structure of U-Net [45], Akcay et al. proposed skip-GANomaly [46],
which has a stronger image reconstruction power than GANomaly. The anomaly score
emphasizes the differences between the reconstructed and input images, but this method
still has the problem of inaccurate detection. Tang et al. proposed a dual autoencoder
GAN (DAGAN) [47], which combined the ideas of BEGAN [48] and skip-GANomaly.
The generator and discriminator were composed of two autoencoders to improve the image
reconstruction ability and training stability. Carrara et al. proposed CBiGAN [49], which
introduced a consistency constraint regularization term into the encoder and decoder of
BiGAN [50] to improve the quality and accuracy of the image reconstruction.

3. Proposed Method

In this section, we first introduce the proposed framework for the detection of indus-
trial surface defects (as shown in Figure 2). Then, we describe in detail the dual attention
module structure that we embedded into the generative network, as well as the discrimina-
tive network structure. Next, the training strategy that we employed to train our model
using normal images is introduced. Finally, we define the method that we used to calculate
the anomaly scores for our defect detection.
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Figure 2. The network architecture of the proposed method.

3.1. Network Architecture
3.1.1. Generative Network

As shown in Figure 2, the proposed generative network was based on the autoencoder
structure, which is mainly composed of an encoder GE and a decoder GD. The encoder
network consisted of a convolutional layer, a dual attention block and a batch normaliza-
tion layer. The decoder network was composed of a deconvolutional layer and a batch
normalization layer. The goal of the generative network was to reconstruct the image
that was closest to the defect-free input image. The input image first entered the encoder
network, which acted as the feature extraction process by mapping the image on to the
latent space. The encoding process could be represented as:

z = fe(Iin) (1)

where z represents the feature vector in the latent space, fe represents the encoding process
and Iin is the input image.

The latent vectors were then decoded by the network and reconstructed in the image
space. The decoding procedure could be expressed as:

Irec = fd(z) (2)

where Irec is the reconstructed image and fd represents the decoding process.

3.1.2. Dual Attention Block

In order to improve the quality of the network reconstruction of normal images,
inspired by the methods that were proposed by Zhao et al. [51] and Dai et al. [52], we
combined a pixel attention module (PAM) and a multi-scale channel attention module
(MS-CAM) in the encoder network to form a dual attention block, which was connected to
the convolutional layer. The dual attention block is shown in Figure 3.
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Figure 3. The dual attention block: the parallel fusion of multi-scale channel attention and pixel
attention. ⊕ denotes the broadcasting addition and ⊗ denotes the element-wise multiplication.

We fused multi-scale channel attention and pixel attention in parallel. By using MS-
CAM to enhance the network’s attention to image channel information, varying the size of
the spatial pooling allowed for channel attention at multiple scales. First of all, the channel
attention of global features performed a global averaging pooling (GAP) operation on the
feature map xin to obtain x1 = GAP(xin) and then used a kernel size of C

r × C × 1× 1
for point-wise convolution (PWC1, where r > 1) to extract the features x2 = PWC1(x1).
After processing with the batch normalization (BN) layer and ReLU activation function,
x3 = ReLU(BN(x2)) was obtained using a kernel size of C× C

r × 1× 1 for the point-wise
convolution (PWC2) operation and the feature map x4 was obtained from the BN layer
x4 = BN(PWC2(x3)). The channel attention of local features also used PWC1 with a kernel
size of C

r × C × 1× 1 and PWC2 with a kernel size of C × C
r × 1× 1 to extract features

that were different from the channel attention for the global features. No global average
pooling operation of the feature map was performed and the feature map x5 was obtained
from the channel attention of the local features. The feature map x4 was broadcast into
C× H ×W dimensions and then added pixel by pixel to the feature map x5 to obtain a
more comprehensive focus on the feature information. The Sigmoid activation function
was used to obtain the attention map x6, x6 = δ(x4 ⊕ x5) (δ denotes the Sigmoid activation
function and ⊕ denotes the broadcasting addition). Then, the pixel attention module
paid more attention to the information of each pixel within the image so it could generate
a 3D (C × H ×W) attention feature matrix, which used a 1 × 1 convolution kernel to
perform the convolution operations on the feature map of the previous layer and used the
convolution results to obtain the attention map x7 using the Sigmoid activation function
x7 = δ(Conv1(xin)). Finally, the attention map was obtained using parallel MS-CAM and
PAM and the results were multiplied pixel by pixel to create the final attention feature map
xout, xout = xin ⊗ (x6 ⊗ x7) (⊗ denotes the element-wise multiplication).

3.1.3. Discriminative Network

The discriminative network consisted of a convolutional layer and a batch normaliza-
tion layer. The network received the real input image and the corresponding reconstructed
image and then output a scalar value. After the Sigmoid function operation, the scalar
value range was limited to between 0 and 1. The discriminator output a large scalar value
(close to 1) for the real input image and a small scalar value (close to 0) for the reconstructed
image. As the reconstructed image became more and more realistic after reaching the
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Nash equilibrium [53], the reconstructed image became realistic enough to deceive the
discriminator. The output of the discriminative network could be represented as:

Ds = fdis(Iquery) (3)

where Ds represents the output of the discriminative network, fdis represents the discrimi-
nant process and Iquery is the query image. The query image could be either the real input
image or the corresponding reconstructed image.

3.2. Training Strategy

In the training phase, the encoder performed feature extraction on the input defect-free
image and mapped the image on to the latent space. The decoder then reconstructed the
extracted latent feature vectors into a pseudo-image. The discriminator distinguished
between the input image and the pseudo-image and output a discriminant score, which
eventually caused the pseudo-image that was reconstructed by the decoder to become
infinitely closer to the input image.

The training process of the entire network could be described as follows:

• First, the generative network weights and the discriminative network weights were
initialized, then the generative network weights were fixed and the discriminative net-
work weights were updated. The discriminative loss adopted the binary classification
cross-entropy loss within the classical GAN;

• After the discriminative network weights were updated, the discriminative network
weights were fixed and the generative network weights were updated. Adversarial
loss and consistency loss were introduced when updating the generative network
weights.

The adversarial loss reduced the GAN’s training instability through feature matching.
The L2 distance in the middle-layer feature representations of the input and reconstructed
images was employed as the loss function of the discriminator, which was expressed
as follows:

Ladv = ‖ f (Iin)− f (Irec)‖2 (4)

To enhance the retention of the pixel and detailed information in the input image,
the introduced consistency loss considered not only the pixels, but also the structural
consistency and gradient consistency between the input image and the reconstructed image.
The pixel consistency exploited the differences between the pixels in the input image
and the reconstructed image to improve the image reconstruction ability. The structural
consistency used SSIM to compare the real input image to the reconstructed image in terms
of brightness, contrast and structure. The gradient of the image could reflect the frequency
of image changes and improve the reconstruction quality of the high-frequency parts of the
image. The consistency loss could be defined as:

Lconsis = L1(Iin, Irec) + Lssim(Iin, Irec) + Lgradient(Iin, Irec) (5)

where Iin represents the input image, Irec represents the reconstructed image and L1(Iin, Irec) =
‖Iin − Irec‖1, ‖·‖1 represents the L1 norm. A larger value of SSIM indicated a higher similarity
between the two images, so it could be used as Lssim(Iin, Irec) = 1 − SSIM(Iin, Irec) to
compute Lgradient(Iin, Irec) = ‖∇Iin −∇Irec‖1, where ∇ represents the gradient operations.

The adversarial loss and consistency loss were combined to update the total loss of
the generative network parameters, which was indicated as:

Ltotal = α1Ladv + α2Lconsis (6)

where α1 and α2 indicate the weight coefficients of the adversarial loss and the consis-
tency loss, respectively.
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In the testing phase, since the network could only reconstruct defect-free images,
normal images were reconstructed from unseen defect images. Therefore, the inputs and
outputs of defect images were quite different, especially around the defective areas, so the
anomaly score could be obtained through using the discriminative network.

3.3. Anomaly Score

Assuming that the trained generative network was good enough to reconstruct defect-
free images, we used the absolute value of the pixel-by-pixel difference between the query
image and the reconstructed image as the anomaly score. Given the different thresholds
for the different datasets, the anomaly score was determined as an anomaly when it was
greater than the relevant threshold. The anomaly score was defined as:

S(i) =
∣∣∣I(i)query − I(i)rec

∣∣∣ (7)

where I(i)query and I(i)rec are the ith query image and the reconstructed image, respectively, and
| · | is the absolute value operation.

Using Equation (7), we were able to calculate the anomaly score for each query image.
The anomaly scores of all of the query images formed an anomaly score vector of S, which
was restricted to [0,1] by feature scaling. The final anomaly score could be expressed as:

Si =
S(i) − Smin

Smax − Smin
(8)

where Smax and Smin represent the maximum and minimum values of the vector S, respectively.

4. Experiments

In this section, we evaluate the proposed method in terms of the surface defect detec-
tion problem. We first present the datasets that were used, followed by a discussion of some
of the training details and evaluation metrics that were used in the experiments. Finally, we
compare our method to several existing defect detection algorithms. Using the MVTec AD
dataset [54], we compared the AnoGAN [29], GANomaly [28], skip-GANomaly [46], DA-
GAN [47] and CBiGAN [49] algorithms. Using the Magnetic Tile dataset [55], we compared
the GANomaly and Adgan [27] algorithms.

4.1. Datasets

This experiment used the MVTec AD dataset [54] and the Magnetic Tile dataset [55]
for the defect detection.

MVTec AD is a real-world dataset of industrial surface defects with 5354 high-resolution
images. The dataset contains 15 different industrial product surfaces, each of which is
divided into a training set and a testing set. The training set only contains defect-free
images, while the testing set contains both defect-free images and 70 types of defect images.
The details of the MVTec AD dataset are shown in Table 1.
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Table 1. The MVTec AD dataset: N represents a defect-free sample and P represents a defect sample.

Category Training Set (N) Testing Set (N) Testing Set (P) Resolution

Bottle 209 20 63 900× 900
Cable 224 58 92 1024× 1024

Capsule 219 23 109 1000× 1000
Carpet 280 28 89 1024× 1024
Grid 264 21 57 1024× 1024

Hazelnut 391 40 70 1024× 1024
Leather 245 32 92 1024× 1024

Metal Nut 220 22 93 700× 700
Pill 267 26 141 800× 800

Screw 320 41 119 1024× 1024
Tile 230 33 84 840× 840

Toothbrush 60 12 30 1024× 1024
Transistor 213 60 40 1024× 1024

Wood 247 19 60 1024× 1024
Zipper 240 32 119 1024× 1024

The Magnetic Tile dataset has 1344 grayscale images under multiple illumination
conditions, including 952 defect-free images. We randomly selected 80% as the training set
and the remaining defect-free images and 392 defect images were merged together as the
testing set, which included six defect types: blowhole, crack, fray, break, uneven and free.
All of the images had pixel-level labels, as shown in Figure 4.

Figure 4. The defect-free and defect samples in the Magnetic Tile dataset.

4.2. Training Details

To enhance the robustness of the generative network for defect image reconstruction,
we used Random Erasing [56] data enhancement processing for the training set, with the
Random Erasing probability set to 0.3. The data enhancement is shown in Figure 5. In addi-
tion, considering the different resolutions of the images in each dataset, we resized the input
images to 256× 256. In particular, images from the MVTec AD dataset employed 3-channel
images as the input, while the Magnetic Tile dataset employed single-channel images.
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Figure 5. The Random Erasing data enhancement processing.

For all of the experiments in this paper, we employed five convolutional layers and
used a dual attention block after each layer as the encoder network. The latent vectors
were reconstructed after five deconvolutional layers. For the training of the generator and
discriminator networks, we set the batch size to 64, used Adam [57] as the optimizer with
a learning rate of 1× 10−4 and set the momentum parameters as β1 = 0.5, β2 = 0.999.
The weights for the total loss Ltotal were set to α1 = 1 and α2 = 40. All of the experiments
in this paper used Pytorch 1.8.0, CUDA 11.1 and CUDNN 8.0.5. All of the experiments
were performed on a computer with an Intel Core i9-10900K CPU, 64GB RAM and NVIDIA
GeForce RTX 3090 GPU.

4.3. Evaluation Indicators

To evaluate the performance of the proposed method for defect detection, the AUC [58]
value was utilized (the area under the curve of the receiver operating characteristics (ROC)),
which had a true positive rate on the horizontal axis and a false positive rate on the
vertical axis.

4.4. Experimental Results

In this subsection, we compare several popular reconstruction-based defect detection
methods to verify the superiority of the proposed method for the surface defect detec-
tion problem.

First, we compared the performance of the proposed method to several other defect
detection methods: AnoGAN [29], GANomaly [28], skip-GANomaly [46], DAGAN [47]
and CBiGAN [49]. Among them, AnoGAN generates pseudo-images that are similar to
the probability distribution of the normal samples using random noise and the anomaly
score consists of the difference between the pixel space of the input image and that of
the generated image and the difference between the feature maps of the last layer of
the discriminator network. GANomaly reconstructs images using an encoder–decoder–
encoder process and defines the anomaly score by encoding the differences between the
input image and the generated image to obtain a latent vector. Inspired by the skip
connection structure, skip-GANomaly improves the structure of GANomaly to obtain a
stronger image reconstruction ability and the anomaly score emphasizes the differences
between the reconstructed image and the input image. The generator and discriminator
networks of DAGAN are composed of two autoencoders, which improves the network’s
ability to reconstruct images and its training stability. CBiGAN introduces a consistency-
constrained regularization term within the encoder and decoder, resulting in an improved
reconstruction accuracy. The comparison results are shown in Table 2. From the results,
it can be observed that our method achieved the best performance using the MVTec AD
dataset. Although skip-GANomaly and DAGAN demonstrated a strong reconstruction
ability, they do not have attention mechanisms added into their networks, which resulted in



Sensors 2022, 22, 5141 11 of 18

a lack of attention to detail in the images. Our model showed a more comprehensive feature
extraction ability due to the addition of the dual attention block, which provided a further
supplement to the detailed features. As can be seen from Table 2, the defect detection
performance of our method was greatly improved compared to the other methods. Our
results for the cable and pill categories were 7% and 8% higher than CBiGAN, respectively.
For the capsule category, our result was 13% higher than GANomaly. For the carpet,
leather, toothbrush and zipper categories, our results were 1%, 1%, 5% and 13% higher
than DAGAN, respectively. For the transistor category, our result was 7% higher than
skip-GANomaly. From the mean experimental results of the 15 categories, our method
outperformed the existing methods by 3.3% and achieved the best results.

Table 2. The area under the receiver operating characteristic curve of the MVTec AD dataset. The
results in bold were the best AUC results during the tests and the underlined results were the
suboptimal AUC results.

Category AnoGAN GANomaly Skip-GANomaly DAGAN CBiGAN Ours

Bottle 0.80 0.79 0.93 0.98 0.87 0.94
Cable 0.47 0.71 0.67 0.66 0.81 0.88

Capsule 0.44 0.72 0.71 0.68 0.56 0.85
Carpet 0.33 0.82 0.79 0.90 0.55 0.91
Grid 0.87 0.74 0.65 0.86 0.99 0.94

Hazelnut 0.25 0.87 0.90 1.00 0.77 0.95
Leather 0.45 0.80 0.90 0.94 0.83 0.95

Metal Nut 0.28 0.69 0.79 0.81 0.63 0.69
Pill 0.71 0.67 0.75 0.76 0.81 0.89

Screw 0.10 1.00 1.00 1.00 0.58 1.00
Tile 0.40 0.72 0.85 0.96 0.91 0.80

Toothbrush 0.43 0.70 0.68 0.95 0.94 1.00
Transistor 0.69 0.80 0.81 0.79 0.77 0.88

Wood 0.56 0.92 0.91 0.97 0.95 0.94
Zipper 0.71 0.74 0.66 0.78 0.53 0.91
Mean 0.499 0.779 0.800 0.869 0.766 0.902

To highlight the superiority of the proposed method, we plotted an AUC line chart
for each category of the MVTec AD dataset (as shown in Figure 6). It can be seen more
intuitively from the figure that our proposed method showed a more robust performance
for industrial defect detection than the other GAN-based methods. On the other hand,
the line chart fluctuations for AnoGAN were large because it needed to iteratively search
for the appropriate latent vectors, resulting in unstable training.
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Figure 6. The AUC of our proposed method and five other GAN-based methods, which were tested
using the MVTec AD dataset.

Then, the proposed method was further verified using the Magnetic Tile dataset. Com-
pared to GANomaly and Adgan [27] (Adgan uses a scalable encoder–decoder–encoder
architecture), fine-grained reconstructed images of normal classes could be obtained by ex-
tracting and exploiting the multi-scale features of normal samples. The comparison results
are shown in Table 3. The images from the Magnetic Tiles dataset are under different illumi-
nation conditions that have a great impact on defect detection, so the two methods showed
poor defect detection performances. Our proposed consistency loss enhanced the sensitivity
of our model under different illumination conditions and improved the defect detection
ability. From the experimental results, it can be observed that our model could also be
trained stably using grayscale images under varying illumination conditions, with an 8%
and 38% improvement over GANomaly and Adgan, respectively. GANomaly and Adgan
have similar encoder–decoder–encoder structures and have good reconstruction abilities
under simple conditions, but for complex scenes, their defect detection performances were
poor. We comprehensively considered the characteristics of image pixels, structure and
gradient so that our model could maintain a good reconstruction ability for complex scenes
and obtain an excellent defect detection ability.

Table 3. The area under the receiver operating characteristic curve of the Magnetic Tile dataset. Bold
number represents the optimal result.

Method GANomaly Adgan Ours

AUC 0.76 0.46 0.84

The results of the sample study using the MVTec AD and Magnetic Tile datasets
are shown in Figure 7. This figure shows that our proposed method could reconstruct
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defect images as defect-free images. Using the residual map of the defect image and the
reconstructed image, the defect could be found easily. By comparing the heat maps and
ground truths, it can be observed that our model could accurately detect the location
of defects.

Figure 7. The first four rows of images show the test results from the partial MVTec AD dataset
and the fifth row shows the test results from the Magnetic Tile dataset. Def. represents the defect
image, Rec. represents the reconstructed image and Res. represents the residual image.

4.5. Ablation Studies

In this subsection, we present the results from our ablation studies, in which we
performed a group of experiments to verify the effectiveness of the individual strategies
within our proposed model, mainly from two perspectives: the effectiveness of the dual
attention block and the effectiveness of the consistency loss.

4.5.1. Effectiveness of the Dual Attention Block

We fixed our proposed consistency loss as the loss function of the generative network
by changing the attention in the encoder network and constructing four different structures.
First, the dual attention block was removed from the encoder network to evaluate the
defect detection performance without the attention mechanism, which was named Struc1.
Multi-scale channel attention was introduced into the encoder network to evaluate the
effects of channel attention on the defect detection performance, which was named Struc2.
Then, the channel attention in the encoder network was replaced with pixel attention to
evaluate the impacts of pixel attention on the defect detection, which was named Struc3.
Finally, our proposed method was named Struc4. As can be seen from Tables 4 and 5,
the different structures achieved different results by adjusting the attention mechanism,
although Struc2 and Struc3 had higher AUC values for some categories in the MVTec AD
dataset, the encoder network for the parallel fusion of multi-scale channel attention and
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pixel attention could effectively extract the key information so Struc4 achieved a mean
AUC value of 90.2%. Using the Magnetic Tile dataset, we counted the running speed that
was needed to train and test each image for the different structures. Although Struc4 took
a little longer than the other structures, it achieved the highest result of 84%. As shown
in Figure 8, we used the heat map of the metal nut category to test the ability of the four
structures to detect defects in the same image. By comparison, Struc4 had less noise in the
defect heat map and could detect defects more accurately.

Table 4. The test results from the different attention structures using the MVTec AD dataset. Bold
number represents the optimal result.

Category Struc1 Struc2 Struc3 Struc4

Bottle 0.95 0.94 0.96 0.95
Cable 0.90 0.87 0.87 0.88

Capsule 0.79 0.85 0.85 0.85
Carpet 0.83 0.91 0.88 0.91
Grid 0.87 0.87 0.92 0.94

Hazelnut 0.94 0.97 0.92 0.95
Leather 0.89 0.89 0.95 0.95

Metal Nut 0.63 0.64 0.62 0.69
Pill 0.86 0.87 0.89 0.89

Screw 1.00 1.00 1.00 1.00
Tile 0.71 0.70 0.71 0.80

Toothbrush 1.00 1.00 0.99 1.00
Transistor 0.86 0.87 0.86 0.88

Wood 0.94 0.93 0.94 0.94
Zipper 0.91 0.88 0.89 0.91
Mean 0.872 0.879 0.884 0.902

Table 5. The AUC results from the different attention structures, which were tested using the
Magnetic Tile dataset, and the running speeds (in seconds), which were measured for each image
during training and testing. Bold number represents the optimal result.

Method Struc1 Struc2 Struc3 Struc4

AUC 0.75 0.82 0.79 0.84
Training Speed (s) 0.0931 0.1550 0.1026 0.1557
Testing Speed (s) 0.0276 0.0487 0.0413 0.0511

Figure 8. The heat maps of an image of a defective metal nut using the different attention structures.

4.5.2. Effectiveness of the Consistency Loss

Without changing the dual attention network structure, we considered the loss func-
tion in the network in three ways. First, the loss function in the generative network used
the pixel consistency loss function L1 to evaluate its impact on the image reconstruction
ability. Second, based on the pixel consistency loss function, the structural consistency
loss function was added and the two functions were used as the generative network loss
function to evaluate the generation effects, namely L1 + Lssim. Third, we combined pixel
consistency, structural consistency and gradient consistency to constitute the consistency
loss function, namely L1 + Lssim + Lgradient. The experimental results are shown in Tables 6
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and 7. The results show that the proposed consistency loss achieved the best performance
using the two datasets.

Table 6. The AUC values from the different loss functions using the MVTec AD dataset. Bold number
represents the optimal result.

Category L1 L1 + Lssim L1 + Lssim + Lgradient

Bottle 0.95 0.94 0.94
Cable 0.82 0.86 0.88

Capsule 0.85 0.85 0.85
Carpet 0.88 0.92 0.91
Grid 0.87 0.86 0.94

Hazelnut 0.96 0.94 0.95
Leather 0.91 0.88 0.95

Metal Nut 0.62 0.62 0.69
Pill 0.86 0.90 0.89

Screw 1.00 1.00 1.00
Tile 0.73 0.72 0.80

Toothbrush 1.00 1.00 1.00
Transistor 0.87 0.87 0.88

Wood 0.94 0.93 0.94
Zipper 0.89 0.90 0.91
Mean 0.876 0.879 0.902

Table 7. The AUC values from the different loss functions using the Magnetic Tile dataset. Bold
number represents the optimal result.

Method L1 L1 + Lssim L1 + Lssim + Lgradient

AUC 0.82 0.83 0.84

5. Conclusions

We studied the problem of detecting surface defects during the production process of
industrial products, i.e., the wide variety of surface defects among different products and
the difficulty in collecting defective samples. Therefore, we proposed a semi-supervised
anomaly detection method that was based on dual attention and consistency loss to ac-
complish this task. We used an encoder–decoder structure for the generative network
and introduced a dual attention module into the encoder network, which combined multi-
scale channel attention and pixel attention. The parallel fusion of the two kinds of attention
mechanism improved the performance of key feature extraction and reconstructed higher
quality defect-free images. In addition, the consistency loss made use of the differences
between the pixels, structures and gradients of the defect images and defect-free images
to further improve the performance of the defect detection. Comprehensive experiments
using the MVTec AD and Magnetic Tile datasets showed that the proposed method could
achieve a superior performance over the existing methods.
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