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Abstract: Robust detection of infrared slow-moving small targets is crucial in infrared search and
tracking (IRST) applications such as infrared guidance and low-altitude security; however, existing
methods easily cause missed detection and false alarms when detecting infrared small targets in
complex low-altitude scenes. In this article, a new low-altitude slow-moving small target detection
algorithm based on spatial-temporal features measure (STFM) is proposed. First, we construct a
circular kernel to calculate the local grayscale difference (LGD) in a single image, which is essential to
suppress low-frequency background and irregular edges in the spatial domain. Then, a short-term
energy aggregation (SEA) mechanism with the accumulation of the moving target energy in multiple
successive frames is proposed to enhance the dim target. Next, the spatial-temporal saliency map
(STSM) is obtained by integrating the two above operations, and the candidate targets are segmented
using an adaptive threshold mechanism from STSM. Finally, a long-term trajectory continuity (LTC)
measurement is designed to confirm the real target and further eliminate false alarms. The SEA
and LTC modules exploit the local inconsistency and the trajectory continuity of the moving small
target in the temporal domain, respectively. Experimental results on six infrared image sequences
containing different low-altitude scenes demonstrate the effectiveness of the proposed method, which
performs better than the existing state-of-the-art methods.

Keywords: infrared image sequences; low-altitude slow-moving small target; spatial-temporal
features; trajectory continuity

1. Introduction

With the popularity and widespread use of unmanned aerial vehicles (UAVs) in recent
years, the effective surveillance of low-altitude slow-moving small targets represented
by UAVs has been a critical problem that needs to be addressed in airspace security [1,2].
Infrared search and tracking (IRST) systems have several merits, such as long-distance
detection, day-and-night monitoring, and better aerosols penetration capability [3]. So, they
are less affected by environmental illumination and weather conditions, becoming one of
the most practical means for low-altitude security [4,5]; however, due to the long imaging
distance and low resolution of the infrared sensor, the small target in an infrared image
only occupies a few pixels (about 0.12% of the total number of pixels in the image) [6], even
one pixel in extreme cases, without a specific shape and detailed texture. Moreover, the low-
altitude background has more intricate background interference with high brightness, such
as vegetation, buildings, and lanes that easily submerges real targets in the background
and results in a low signal-to-noise ratio for infrared images. To keep the observed drones
in the field of view (FOV), the infrared detector would shift following the moving targets,
which causes the background to change slowly; therefore, effective infrared moving small
target detection under complex low-altitude conditions is still a challenging task.
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Up to now, researchers have proposed numerous infrared small target detection
methods. These methods mainly include two categories: single-frame detection methods
and sequential detection methods. The single-frame detection methods only exploit the
features of the small target and background in the spatial domain. The small target is often
modeled using a 2D Gaussian function because of its isotropic gray distribution, and many
local contrast measures using a nine-cell square kernel are proposed to enhance the small
target [7–10]. Moreover, the background properties, such as local consistent and non-local
self-correlation, are widely utilized to estimate the background [11–13]. Then, the target
can be extracted from the difference map between the original image and the estimated
background image. The single-frame detection methods require less memory and are easy
to implement; however, the available information from a single frame is insufficient to
achieve stable infrared small target detection, especially when detecting the point target
from cluttered backgrounds. Temporal cues contained in an image sequence, such as the
motion consistency of the moving target and the high correlation of the background in
adjacent frames, are essential for robust small target detection. Most existing sequential
detection methods [14–16] combine the local contrast in a single frame and the interframe
difference to detect the moving target. The target enhancement ability of these methods
mainly relies on the local contrast measure in the spatial domain. In addition, they just
exploit local information contained in a few successive frames; therefore, they easily ignore
dim targets and are sensitive to random noises. Additionally, these methods would generate
numerous false alarms in the case that the background changes with the moving target. In
conclusion, existing methods cannot obtain satisfactory performance when detecting the
low-altitude slow-moving small target.

To adequately excavate the spatial-temporal information and motion continuity of the
moving target, we propose a new sequential detection method based on spatial-temporal
features measure (STFM). The main idea of STFM is to enhance the detection ability
by integrating the local spatial-temporal features of the small target and improve the
detection precision using a multi-frame confirmation. Since the small target can be regarded
as a compact area of isotropic distribution in the spatial domain, we first calculate the
local grayscale difference (LGD) using a circular kernel and the spatial saliency map is
obtained. Then, interframe registration is applied before exploiting the temporal features
of the moving target. By analyzing the image sequence after registration, we find that the
appearance of the moving target will cause a local variation in the temporal dimension.
Thus, a short-term energy aggregation (SEA) mechanism is proposed to obtain the temporal
saliency map. The SEA module can accumulate the energy of the small target from a short-
term sub-sequence consisting of multiple successive frames, which is essential to enhance
the dim moving target. Next, a normalized fusion mechanism is adopted to integrate the
results of the LGD and SEA modules, and the spatial-temporal saliency map (STSM) is
obtained. Moreover, an adaptive threshold mechanism is utilized to obtain the candidate
targets from the STSM. Finally, a long-term trajectory continuity (LTC) measurement is
designed based on the fact that the position of the slow-moving target will not abruptly
change in a successive image sequence. In summary, the proposed method, consisting of
LGD, SEA, and LTC modules, fully utilizes the spatial and temporal features to detect the
low-altitude slow-moving small target from infrared image sequences. Experimental results
on six real infrared image sequences containing various low-altitude scenes demonstrate
that the proposed method outperforms existing state-of-the-art methods both in detection
ability and precision. The main contributions of our method can be summarized as follows:

(1) A local grayscale difference (LGD) measure based on a circular kernel is proposed to
exploit the spatial feature of the small target;

(2) A short-term energy aggregation (SEA) mechanism is proposed to enhance the dim
target and suppress the stationary background. Furthermore, a long-term trajectory
continuity (LTC) measurement is designed to confirm the real target and eliminate
random noises. They fully excavate the temporal features of the slow-moving target.
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(3) A low-altitude infrared slow-moving small target detection method, namely STFM, is
proposed. Experiments were conducted on six real image sequences—the proposed
method can achieve a detection probability of 97% at a false alarm rate of 0.01% and
performs better than the state-of-the-art methods.

The rest of this article is structured as follows: Section 2 summarizes the related works
in the field of infrared small target detection. Section 3 presents the proposed method in
detail. Section 4 introduces the dataset and evaluation metrics adopted in the experiment
and then analyzes the results. The limitation of the proposed method is discussed in
Section 5. Finally, Section 6 concludes this article.

2. Related Work

In this section, the related works of single-frame detection and sequential detection
methods for infrared small target are briefly reviewed, respectively.

2.1. Single-Frame Detection Methods

Single-frame detection methods only exploit the spatial features of the small target
or background to enhance the small target or suppress the background. Generally, con-
ventional single-frame methods usually assume that background is consistent in the local
spatial domain, i.e., pixels located in the background highly correlate with their adjacent
pixels. Under this assumption, some filter-based methods are proposed, including top-hat
filter [17], max-mean/max-median filter [18], and two-dimensional least mean square
(TDLMS) filter [12]. These methods are sensitive to strong edges and clutters with high-
brightness since these structural backgrounds also disrupt the local consistency as small
targets do. By exploring the non-local self-correlation property of background while re-
garding the small target as an outlier in the infrared image, some methods try to transform
the small targets detection task into a convex optimization problem of recovering low-rank
and sparse matrices that can be solved by principal component pursuit (PCP) [13,19–21];
however, these methods are also ineffective in suppressing salient edges and salt noises.
Since deep learning technology can automatically learn multi-dimensional features of
targets, many deep-learning-based methods have been proposed [22–24]; however, if a
target only occupies one or two pixels or appears in a low signal-to-noise ratio image, its
features is insufficient to be extracted by a deep convolutional network. Recently, another
category of traditional single-frame detection methods based on the contrast mechanism
of human visual system (HVS) has been proposed, and their practical performance has
attracted considerable attention. Chen et al. [7] firstly designed a local contrast method
(LCM) by measuring the difference between the central pixel with its nearby pixels using
a nine-cell square kernel. Afterward, many improved methods based on LCM are pro-
posed in succession, including the novel local contrast method (NLCM) [8], multiscale
patch-based contrast measure (MPCM) [10], variance difference (VARD) measure [25], and
double neighborhood gradient method (DNGM) [26]. These HVS-based methods achieve
better performance by changing the manner of local contrast measurement or combining
other characteristics of the small target. They can effectively enhance the Gaussian-like
small target and suppress regular strong edges; however, they will cause missed detec-
tion when detecting the point targets. In addition, due to the lack of temporal features,
they have a high false alarm rate in case the background contains vary-sized clutter with
high brightness.

2.2. Sequential Detection Methods

Conventional sequential detection methods, such as temporal variance filter (TVF) [27],
temporal hypothesis testing [28], and temporal profiles (Tps) [29], make specific assump-
tions about the velocity and form of target motion. They are purely temporal, i.e., just
operating on the 1-D continuous signal of each pixel in the temporal domain; however,
these methods would misidentify the dynamic background (e.g., moving cloud) as the
real target; therefore, many sequential methods have been proposed to simultaneously use
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the properties of 1-D motion features and 2-D spatial features of moving small targets in
recent years. Gao et al. [30] combined MPCM and TVF to construct a new filter named
temporal variance and spatial patch contrast filter (TVPCF), achieving better performance.
Deng et al. [14] defined a spatial-temporal local contrast filter (STLCF) to detect moving tar-
gets in infrared image sequences. Du and Hamdulla [15] designed a novel spatial-temporal
local difference measure (STLDM) to distinguish target and background by grayscale dif-
ference. Pang et al. [16] presented a novel spatial-temporal saliency (NSTS) method by
fusing spatial variance saliency measure with temporal gray saliency measure. A new
spatial-temporal vector difference measure (STLVDM) was proposed by Zhang et al. [31].
The above methods merge target temporal cues with HVS-based single-frame detection
methods and obtain stable performance; however, these methods easily ignore the small
target with low contrast because they mainly utilize the interframe difference to distinguish
the moving target and the stationary background in the temporal domain. Moreover, they
are sensitive to random noises since they do not identify the trajectory continuity of the
moving target in an image sequence. Some methods extend the optimization problem
on 2-D image patches in the spatial domain to 3-D spatial-temporal tensors (STT) [32–34].
For example, a novel edge and corner awareness-based spatial-temporal tensor (ECS-STT)
model [35] was presented to suppress the strong edge and corner. These algorithms are
more effective, but adopting the cues in the temporal dimension increases the convergence
time of them.

3. Methodology

In this section, we elaborate on how the proposed method fully utilizes both spatial
and temporal features of the infrared small target. Specifically, STFM first calculates the
LGD using a circular kernel in a single frame. Then, the temporal saliency map is obtained
by the SEA measure on the short-term sub-sequence. Next, The STSM is obtained by fusing
the results of the LGD and SEA modules, and the candidate targets are segmented from
it through an adaptive threshold mechanism. Finally, the detection result is confirmed by
the LTC measure on the long-term sub-sequence. The overall processes are depicted in
Figure 1.

Figure 1. Flow chart of the proposed STFM method. Here, Ik denotes the kth frame in the image
sequence. The short-term sub-sequence contains (2s + 1) frames and the long-term sub-sequence
contains l frames (l > s). The candidate targets and the real target are marked using yellow circles
and a red circle, respectively, and the red multiplication sign means that the candidate targets in
adjacent frames are matched unsuccessfully.

3.1. Local Grayscale Difference (LGD) Measure

According to the properties of HVS, the primary basis for human recognition of a
small target from an infrared image is that the target has apparent discontinuity with
its surrounding background [11]. The grayscale distribution reflects the discontinuity of
targets in infrared images. To be general, the small target is regarded as a homogenous
and compact area of isotropic distribution. Figure 2 shows four typical infrared images



Sensors 2022, 22, 5136 5 of 21

captured in various low-altitude scenes and the corresponding 3-D grayscale distributions
of the local areas containing the target.

We can see that the target is brighter than its nearby background, and its intensity
is locally maximal; therefore, the grayscale difference between the target and its nearby
pixels is valuable for detecting the small target. Due to the change in imaging distance
and operation environment, the target size is unfixed in practical application. Using the
reference to the definition of infrared small target by Society of Photo-Optical Instrumenta-
tion Engineers (SPIE) [36], we assume that the size of infrared small targets in low-altitude
scenes ranges from 1× 1 to 7× 7 pixels.

Figure 2. Representative of infrared small targets in various low-altitude scenes. The first row of
(a–d) shows the original images, and the actual target area (less than 7× 7pixels) is marked using a red
box with a close-up version shown in the bottom-left of each image. The second row of (a–d) shows
the grayscale distribution (3D-view) of of the local areas containing the target.

Although square kernels [7,25] are the most commonly used structure to calculate the
local contrast in detecting infrared small targets, it cannot fit local symmetric orientations
of irregular edges. Inspired by the fact that the retinal ganglion cells in the HVS have
roughly concentric receptive fields [37,38], we propose a new circular kernel to measure
the local discontinuity of small targets. The circular kernel consists a central pixel and
some surrounding pixels that are crossed by a circle with radius r. In order to ensure that
the surrounding points of the circular kernel can completely cover the background around
the target, the relationship between the radius r of the kernel and the maximum size of the
target need to meet the following requirement:

r =

√
(

Lmax

2
)2 + (

3
2
)2, (1)

where Lmax is the maximum size of small target to be detected. Here, we let Lmax = 7 as
mentioned above. The circular kernel when Lmax = 7 is shown in Figure 3. It consists the
central pixel T and its surrounding pixels {Bλ, λ = 0, 1, 2, ..., 19}, as shown in Figure 3a. The
coordinate {pλ, qλ} of each surrounding point in the circular kernel is shown in Figure 3b.
The circular kernel is roughly isotropic, which means it can sample uniformly in different
directions over the local region of the original image.

Making full use of the locally maximal and isotropic properties of small target, we
propose an LGD measure based on the circular kernel. Given a pixel point (i, j) in the
original image, the max gray value of its neighboring background covered by the circular
kernel is calculated as follows:

Imax(i, j) = max{g(i + pλ, j + qλ), λ ∈ {0, 1, 2, ..., 19}}, (2)
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where g(i, j) denotes the gray value at the pixel point (i, j) in the original infrared image.
Then, the LGD measure is expressed by Equation (3), and H(x) represents a step function,
which is defined as Equation (4).

ILGD(i, j) = [g(i, j)− Imax(i, j)]2 · H[g(i, j)− Imax(i, j)], (3)

H(x) =

{
1, x > 0

0, x ≤ 0
(4)

LGD can quantify the discontinuity between the target and its surrounding pixels.
Compared with the small target, the grayscale distribution of irregular edges is consistent
in a certain direction. In addition, the homogeneous background is consistent with its
neighborhood. Thus, the LGD measure can effectively suppress edges and the homo-
geneous background, as shown in Figure 4. The quadratic operation is a simple way
to suppress some residual background [39]; however, due to the technology limitation,
infrared sensors may have blind pixels, which causes IR images to contain pixel-sized
noises with high brightness (PNHB). In addition, the low-altitude background has more
intricate background interference similar to small targets, and their grayscale distribution
is isotropic too. It may be hard for people to identify the real target from them just by
utilizing information within a single image. So, only using the information in the spatial
domain cannot obtain reliable performance; next, we explore temporal clues to distinguish
the target from them.

Figure 3. The structure of the circular kernel when Lmax = 7. (a) The central point T and each
surrounding point Bλ in the circular kernel. (b) The corresponding coordinate (pλ, qλ) of each point
in (a).

Figure 4. An example of LGD result. (a) The original infrared image. (b) The saliency map of LGD
measure. (c) The 3D view of (b).
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3.2. Temporal Features Analysis and Measure
3.2.1. Feature Detection and Image Registration

In practical applications, the infrared detector may shift following the moving target to
ensure the target in its FOV, which results in the adjacent frames not being registered. That
will make an impact on estimating the real status of the moving target. With consideration
of the above situation, interframe registration is employed first. Feature detection and
matching is commonly used in image registration. Block matching performs well in [40],
but it is inefficient. Corners are important features in an image and useful for patch
matching; therefore, the Harris corner detection algorithm [41] is applied in this article,
which screens pixels by comparing the eigenvalues of the gradient matrix. The registration
process is described as follows: first, two frames are extracted from an image sequence,
named base frame Xb and test frame Xt, respectively; then, Harris corners in Xb, Xt are
detected; next, the corners are matched [42] and the homography matrix is calculated
referring to the well-matched corners; finally, the test frame is registered to the base frame
using the homography matrix. The test frame after registration is calculated by

X
′
t = fwarp(Xt, Mtb), (5)

where fwarp denotes the geometric transformation, Mtb denotes the homography matrix of
the test frame Xt relative to the base frame Xb.

3.2.2. Temporal Features Analysis

We further analyze the infrared image sequences and sum up two temporal features
of slow-moving small targets: (1) local inconsistency—the appearance of moving targets
will cause a local variation of the grayscale in the temporal dimension, and the grayscale
of target is the local maxima of one pixel’s temporal profile as shown in Figure 5b; (2)
global trajectory continuity—the motion of the slow-moving small target is continuous,
i.e., the position of the target will not abruptly change in a video sequence, and the target
will appear in the FOV of detector for a long period; in contrast, random clutters are
inconsistency.

The improved frame difference (IFD) method has been widely used to obtain TSM
in [15,16], which describes that the intensity curve of the target presents a large wave
in the temporal domain. So, it employs a simple mechanism. First, select two reference
frames from nearby frames of the current frame. Then, the square difference between the
maximum intensity and the minimum intensity in the time dimension is utilized as the
temporal saliency of the target. The process can be expressed as Equation (6):

Imax = max{Ik−s, Ik, Ik+s}
Imin = min{Ik−s, Ik, Ik+s}
IIFD = (Imax − Imin)

2

, (6)

where Ik−s, Ik, Ik+s correspond to the (k − s)th frame, kth frame, and (k + s)th frame in
an image sequence, respectively, and IIFD denotes the TSM calculated by IFD method;
however, since the IFD method does not fully identify the temporal features of the target,
there are three defects: (1) when the target is dim, the difference is slight between Imax and
Imin, so it may cause missed detection; (2) it ignores that the grayscale of target is the local
maxima, so it will cause a ghost phenomenon, as shown in Figure 5c; (3) it is non-robust
because the global trajectory continuity feature is not considered.
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Figure 5. An example of a short-term sub-sequence. (a) The short-term sub-sequence containing
registered images. (b) The grayscale curves of different areas in the local temporal dimension.
(c,d) The detection results of the IFD method and SEA method, and a red box marks the actual target
area with a close-up version and its 3D view shown on the right-top and right-bottom, respectively.

3.2.3. Short-Term Energy Aggregation (SEA) Mechanism

Utilizing the local inconsistency feature of a moving small target, we design a SEA
mechanism to enhance the dim target by aggregating the grayscale difference between the
current frame and its nearby frames. In addition, a truncation measure is adopted to avoid
the ghost phenomenon. First, we select (2s + 1) frames containing the current frame as a
short-term sub-sequence and choose the current frame Ik as base frame, other reference
frames {In, n ∈ k− s, . . . , k− 1, k + 1, . . . , k + s} need to be registered with Ik; then, the dif-
ference maps between the reference frames and the base frame are calculated, respectively,
and the values less than 0 are truncated. Finally, the difference maps are aggregated to
obtain a SEA map. The overall processes are summarized as the following equation:

ISEA =
k−1

∑
n=k−s

max{Ik − fwarp(In, Mkn), 0}+
k+s

∑
n=k+1

max{Ik − fwarp(In, Mkn), 0}, (7)

where ISEA denotes the SEA map, the function fwarp has been introduced in Equation (5),
Mkn denotes the homography matrix between Ik and In.

As shown in Figure 5d, compared with the detection result of IFD method, the SEA
mechanism can eliminate the ghost phenomenon while accumulating more energy from
several different maps to enhance the dim moving target in the current frame. More-
over, the stationary background interference, e.g., PNHB, can be directly suppressed by
image subtraction.

3.2.4. Extract Candidate Targets from STSM

Observing the experimental results of LGD and SEA shown in Figures 4 and 5d, we
notice that the intensity in ILGD and ISEA both increase in the areas with the real target
while weakening in other areas where PNHB and clutters locate. Thus, a normalized fusion
mechanism is applied to obtain the STSM. The fusion mechanism can also suppress the
boundary effect caused by image registration. It is defined as follows:

ISTSM =
ILGD

maxi,j{ILGD}
⊗ ISEA

maxi,j{ISEA(i, j)} , (8)

where ⊗ denotes the pixel-wise multiplication, ILGD and ISEA denote the results of
Equations (3) and (7), respectively. Then, an adaptive threshold mechanism is applied
to segment the candidate targets from STSM. The threshold can be calculated by:

Th = ξ ·max(ISTSM), (9)

where max(·) is used to extract the max value of STSM, and ξ is a scale factor ranging from
0.5 to 1 determined experimentally.
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3.2.5. Long-Term Trajectory Continuity (LTC) Measure

In practice, sometimes, some clutters similar to the target on the morphology appear
randomly, and they vary frequently. Moreover, the image registration may produce a slight
error when just a few corners are detected in an image. These are unfavorable to obtaining
accurate detection results. Although the STSM can help us locate the target well, it still
needs to excavate more information to confirm the final detection results. Inspired by
pipeline filter [5] and graph matching [43], we design an LTC measure to eliminate random
clutters and registration error by utilizing the global trajectory continuity feature further.

As shown in Figure 6, we use a first-in-first-out (FIFO) queue of length l to store a
long-term sub-sequence consisting of the current frame and many historical frames. Each
candidate target segmented from frames in FIFO is assigned a unique identification (ID)
number, e.g., D1, D2, D3 in the current frame. Since the position of the slow-moving target
will not change suddenly, we choose the Euclidean distance between the centers of two
candidate targets in adjacent frames as the association criterion here. The distance can be
calculated as follows:

d{ID1,ID2} =
√
(xk

ID1
− xk−1

ID2
)2 + (yk

ID1
− yk−1

ID2
)2, (10)

where (xk
ID1

, yk
ID1

) and (xk−1
ID2

, yk−1
ID2

) denote the candidate target ID1, ID2 in the kth and
(k− 1)th frame in an image sequence, respectively.

Figure 6. Illustration for LTC measure. Lines of the same color with an arrow mean that candidate
targets in adjacent frames are matched successfully.

Take Figure 6 as a specific example to describe the LTC mechanism in detail. When the
distance between two targets in adjacent frames is less than a specified distance threshold
R, we confirm that they are matched successfully and belong to the same trajectory, e.g., the
trajectory {A2 → B1 → C1 → D2}. Thus, D2 in current frame is considered as a true target.
Moreover, due to the fact that C3 cannot match any candidates in the following frames, it is
viewed as random clutter and will be discarded. Further, to ensure the continuity of a track
whose length is more than 3, we use the two latest targets in the longer trajectory to predict
the position of a missed target in the next frame as follows:{

x̂k
t − xk−1

t = xk−1
t − xk−2

t
x̂k

t − yk−1
t = yk−1

t − yk−2
t

⇒
{

x̂k
t = 2xk−1

t − xk−2
t

ŷk
t = 2yk−1

t − yk−2
t

(11)
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where (x̂k
t , ŷk

t ) is the center of the predicted target of tth trajectory in the kth frame,
(xk−1

t , yk−1
t ), and (xk−2

t , yk−2
t ) are the centers of tth trajectory in (k− 1)th frame and (k− 2)th

frame, respectively. For instance, the position of C2 in Figure 6 is calculated by the positions
of A1 and B2 in the trajectory {T1 → · · · → A1 → B2} whose length is more than three.
Moreover, since C2 matches D1 successfully, we confirm the predicted target C2 and the
candidate target D1 are real targets. Finally, there remains a candidate target D3 in the
current frame that is not matched existing trajectories, we encode it as a start of a new
candidate trajectory. Updating FIFO queue, if D3 can match another candidate target in the
next frame, we confirm it as a true target, such as A2; otherwise, it will be discarded, such
as C3. The details can be found in Algorithm 1.

Algorithm 1 Long-term Trajectory Continuity (LTC) Measure

Input: {Dj}N —candidate targets extracted from the current frame,
{Ti}M —trajectories of the historical frames stored in FIFO queue,

R —distance threshold.
Output: {D′j}N′ —confirmed targets in the current frame,

{T′i}M′ —updated trajectories in FIFO queue.
1: Initialize two boolean vectors VT , VC to store the matching states of each historical

trajectory and each candidate target, respectively;
2: for i = 1 to M do
3: if VT(i) == False then
4: Get the latest target ti in Ti
5: for j = 1 to N do
6: if VC == False then
7: Calculate the Euclidean distance di,j between Dj and ti by Equation (10);
8: if di,j < R then
9: {T′i}M′ ← [Ti, Dj];

10: D
′
j ← Dj;

11: VT(i)← True, VC(j)← True;
12: end if
13: end if
14: end for
15: end if
16: end for
17: for i = 1 to M do
18: if VT(i) == False and length(Ti) > 3 then
19: Get the position of predicted target Dp by Equation (11);
20: {T′i}M′ ← [Ti, Dp];
21: end if
22: end for
23: for j = 1 to N do
24: if VC(j) == False then
25: {T′s}M′ ← [Dj].
26: end if
27: end for

4. Experiments and Analysis

In this section, we first introduce the dataset and evaluation metrics used in this article.
Then, extensive experiments, including qualitative and quantitative experiments, were
conducted to demonstrate the performance of our method. Finally, the ablation study for
each module of the proposed method was designed to analyze their effectiveness. We
conducted all experiments on a computer with a 2.80-GHz Intel i7-9700 CPU processor and
16.0-GB RAM; the code was implemented in MATLAB 2018a.
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4.1. Experimental Setup
4.1.1. Datasets

We evaluated the performance of our proposed methods on a public dataset [44]
collected by the ATR laboratory of National University of Defense Technology (NUDT). All
image sequences contained in the dataset were captured using a mid-wave infrared (MWIR)
camera with a resolution of 256× 256, and the target is a fuel-powered UAV. The dataset
covers low-altitude slow-moving small targets in multiple scenes. Here, we selected six
typical image sequences with different scenes to evaluate the effectiveness and robustness
of our proposed method. The details of each sequence are described in Table 1.

Table 1. Details of different image sequences.

Seq. Frame Number Target Size Scene Description

1 399 4× 4 Single target from near to far, non-uniform background
2 500 3× 3∼6× 7 Single target from far to near, chaotic ground background
3 1500 1× 1∼2× 2 Single target from far to near, cluttered ground background
4 751 1× 1∼2× 2 Single target, ground background containing man-made buildings
5 399 3× 3∼1× 2 Single target from near to far, non-uniform background
6 500 1× 2 Single dim target, cluttered ground background

4.1.2. Evaluation Metrics

Generally, the detection performance is assessed from two aspects, i.e., detection
ability and detection precision. The SCR gain (SCRG) and background suppression factor
(BSF) evaluate the detection ability by measuring the difference between the saliency map
and the original image. They are the most commonly used metrics in the field of infrared
small target detection. The SCRG can measure the degree of target enhancement, defined
as follows:

SCRG =
SCRsal
SCRori

(12)

where SCRsal , SCRori denote the SCR of the saliency map and the original image, respec-
tively. Moreover, the SCR is defined as follows [13]:

SCR =
|mt −mb|

σb
(13)

where mt and mb denote the average gray of the target area and its nearby background
area, and σb represents the grayscale standard deviation of the nearby background area.
SCR also can describe the difficulty of detection. In general, the lower the SCR of a small
target is, the harder it can be to detect. Assume that the size of a small target is a× b, then
the nearby background area refers to a hollow local region with the width of d as shown in
Figure 7. Here, we set d = 10.

Figure 7. Illustration of target area and its nearby background area.



Sensors 2022, 22, 5136 12 of 21

The BSF measures the background suppression ability by comparing the discrete
degree of the background grayscale distribution in the saliency map and original image,
defined as follows:

BSF =
σori
σsal

(14)

where σori, σsal are the gray standard deviation of the background in the original image and
in the saliency map. The higher the BSF of a method is, the better it can suppress noise and
clutters; however, when the background in the saliency map is very clean, the denominator
in Equation (13) or Equation (14) may equal zero. Then, the values of SCRG and BSF are
infinity (Inf) and unable to quantify the detection ability of methods. To avoid this case, we
also adopt local contrast gain (LCG) [45] to evaluate the detection ability of each method.
The LCG is defined as follows:

LCG =
LCsal
LCori

(15)

where LCsal and LCori denote the local contrast (LC) of the target in the saliency map and
original image, respectively. In addition, the LC is calculated as follows:

LC = |mt −mb| (16)

where mt and mb are the same as those in Equation (13).
Moreover, we employ the receiver operating characteristic (ROC) curve to evaluate

the detection precision of methods. ROC curve describes the relationship between the
detection probability (Pd) and false alarm rate (Fa), which are defined as follows:

Pd =
NDT

NAT
(17)

Fa =
NFA

Np
(18)

where NDT denotes the number of detected true targets, NAT denotes the total number of
actual targets in an image sequence, NFA denotes the number of detected false alarm pixels,
and Np denotes the total number of pixels in an image sequence. Most of the targets in the
dataset are point targets, and the labels provided only contain the coordinate of the target
center without the height and width of the targets; therefore, refer to [44], if the detected
target contains a labeled center and the distance between the center of detected target and
the labeled center within three pixels, the detected target can be regarded as a true target.
Otherwise, it will be regarded as a false alarm target.

4.1.3. Baseline Methods

In order to demonstrate the practical and robust performance of the proposed method,
some classical single-frame detection methods and existing sequential methods were
chosen as the compared baseline methods. The single-frame detection methods include
new white top-hat (NWTH) filter [46], MPCM [10], and RIPT [19]. The sequential detection
methods includes STLDM [15], NSTS [16], and STLVDM [31]. The NWTH filter proposed
a solid circular structure and a hollow circular structure, respectively, and combining the
morphological operation to suppress complex background. MPCM is a popular HVS-
based method using a multiscale nine-cell square kernel. RIPT is an improved IPI-based
method that introduces the local structure prior knowledge to suppressing edges and
enhancing the dim target. STLDM, NSTS, and STLVDM are the excellent sequential
detection methods modifying the IFD method described in Equation (6) and combining
local contrast measurement. The parameter settings of these methods are listed in Table 2,
and all parameters have been adjusted to obtain the best results.
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Table 2. Parameter settings of baseline methods.

Methods Parameter Settings

NWTH M(∆B) = 4, S(Bi) = 7
MPCM Cell size: 3× 3, 5× 5, 7× 7, 9× 9
RIPT Patch size: 30× 30, sliding step: 10, L = 0.7, h = 1, ε = 0.01, ε = 10−7

STLDM Subblock size: 3× 3, l = 5
NSTS Internal cell size: 3× 3, middle cell size: 7× 7, external cell size: 11× 11, n = 5

STLVDM p = 3, l = 4
STFM (proposed) Lmax = 7, s = 4, l = 10, R = 7

4.2. Qualitative Comparison

Figures 8–10 show the representative frames in Seq.1–Seq.6, and the corresponding
saliency maps processed by different methods. The real and detected target regions are
marked with red boxes; in contrast, the missed targets are marked with yellow boxes.

Figure 8. The saliency maps obtained by different methods on 14th frame in Seq.1 and 366th frame in
Seq.2. For the sake of clarity, the target regions are marked with red boxes, and a close-up version is
shown on each map.
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The NWTH filter can suppress flat background, but it is sensitive to clutters resembling
the small target in size and brightness. The MPCM can effectively detect the Gaussian-like
targets, as shown in Figure 8; however, MPCM adopted a nine-cell square structure, so it
cannot sample uniformly in different directions. There are some residual edge clutters in
its saliency map when the background, such as Seq.4 and Seq.5, contains irregular edges.
Moreover, it is easy to ignore the pixel-sized target due to the mean operation. The RIPT
introduced edge features as prior information to suppress edges and preserve the dim
target, so it suppresses edges better than MPCM; however, the results processed by RIPT
shown in Figure 8 are hollow due to the uniform grayscale distribution inside the target.
The RIPT is also sensitive to target-like clutters, and the residual clutters are even more
prominent than the actual target in its saliency maps, which will cause a high false alarm
rate. Compared with single-frame detection methods, STLDM and NSTS obtain relatively
better performance. The enhancement effects of STLDM on targets with low SCR are
unsatisfactory because it only considers the local gray differences in the spatial-temporal
domain but does not accumulate the energy of targets in successive frames. Although
STLVDM is a sequential detection method, it is ineffective under the slowly changing
background and has noticeable ghost phenomenons. In contrast, the proposed method can
not only detect the target with tiny size and low SCR, but also suppress various background
clutters and obtain stable performance against the slowly changing background.

Figure 9. The saliency maps obtained by different methods on 40th frame in Seq.3 and 14th frame in
Seq.4. For the sake of clarity, the real and detected target regions are marked with red boxes, and a
close-up version is shown on each map. The yellow boxes denote missed detection.
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Figure 10. The saliency maps obtained by different methods on 21th frame in Seq.5 and 11th frame in
Seq.6. For the sake of clarity, the target regions are marked with red boxes, and a close-up version is
shown on each map.

4.3. Quantitative Comparison

To further demonstrate the detection performance of the proposed method, we use
SCRG, BSF, and LCG to quantitatively analyze the results of different methods on Seq.1–6.
The detailed results are listed in Table 3, and the SCRG, BSF, and LCG represent the
averages of the abovementioned metrics on an image sequence, respectively. We can
observe that the SCRG and BSF values of the proposed method on Seq.1, Seq.3, and Seq.4
are Inf, which means that the background clutters near the actual target are completely
suppressed. The NWTH filter obtains the saliency map by subtracting the predicted
background map from the original image, so its LCG values are less than 1 when the
target has high brightness. The MPCM has a relatively weak ability to suppress various
low-altitude background clutters since its BSF values are the lowest. Moreover, the LCG
values of the RIPT on Seq.1 and Seq.2 are smaller mainly due to the hollow effect, as
shown in Figure 8. In contrast, the sequential detection methods simultaneously use the
information in the spatial and temporal domains, thus achieving better results. Although
STLVDM achieves the highest LCG on Seq.1, Seq.2, and Seq.4, it has poor background
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suppress performance. The reason is that there are many residual background clutters in
its saliency maps because of the ghost phenomenon. Compared with the baseline methods,
the proposed method has the largest values of SCRG and BSF on all sequences since it
can almost suppress the background clutters completely. In general, the quantitative
experimental results demonstrate the proposed method has better target enhancement
ability and background suppression ability.

Table 3. Quantitative comparison of different methods on Seq.1–6.

Seq. Metrics NWTH MPCM RIPT STLDM NSTS STLVDM Proposed

1
SCRG 21.34 20.45 6.98 40.84 282.74 6.30 Inf
BSF 20.11 1.42 35.90 25.39 90.05 4.75 Inf
LCG 0.86 0.82 0.18 1.64 0.81 1.79 1.48

2
SCRG 17.5486 12.01 4.22 32.20 182.49 4.22 350.63
BSF 34.40 1.29 26.66 21.36 Inf 4.10 401.66
LCG 0.54 0.87 0.17 1.24 1.00 1.57 1.31

3
SCRG 37.02 4.28 17.40 9.19 44.82 19.67 Inf
BSF 50.20 1.64 31.18 6.35 58.82 20.97 Inf
LCG 1.41 1.53 0.50 3.15 3.06 4.30 5.64

4
SCRG 23.93 2.38 6.68 4.04 33.58 5.54 Inf
BSF 23.75 1.23 10.37 24.77 14.53 10.75 Inf
LCG 0.89 0.30 0.54 1.85 1.24 1.13 1.97

5
SCRG 20.44 3.95 18.15 19.31 31.94 16.97 325.77
BSF 29.81 1.46 19.96 9.5 16.92 7.19 261.93
LCG 0.66 0.75 0.72 2.37 3.68 4.04 2.08

6
SCRG 11.87 7.79 26.76 15.51 31.80 17.6547 278.18
BSF 10.96 1.12 21.19 4.54 3.52 2.6264 282.64
LCG 1.06 0.82 2.11 2.28 2.30 3.22 3.56

The maximum value of each line is highlighted in bold.

Furthermore, the ROC curves on Seq.1–6 are given in Figure 11 to demonstrate the
advantage of the proposed method in detection precision. ROC curve is a common means
for visualizing the detection performance. In addition, the curve near the upper-left
means the method can maintain high Pd with low Fa. It is obvious that the proposed
method achieves better detection precision than other baseline methods on different image
sequences; therefore, it is reasonable to conclude that the proposed method has robust
performance in various scenes. Moreover, the ROC curves of MPCM on Seq.3–6 are close
to the horizontal axis since the MPCM is ineffective in detecting the point target.

4.4. Ablation Study

The proposed method contains three modules: LGD, SEA, and LTC. Here, we design
ablation experiments to analyze the contribution and practicality of each module to the
detection performance. We test different combinations of modules in the proposed method
on all test image sequences containing Seq.1–6. The ROC curves are shown in Figure 12,
and the Pd, Fa denote the average detection probability and the average false alarm rate
of all test image sequences, respectively. Moreover, we also compare their performance
via the Pd with a constant false alarm rate [47], and the details are listed in Table 4. Note
that all experiments were conducted after image registration described in Section 3.2.1.
We can find that each module of the proposed method contributes to promoting detection
performance, and all modules together bring the optimal result. The LGD measure using
the circular kernel shown in Figure 3 preserves the point target as much as possible in
the spatial domain. The SEA module effectively enhances dim targets by accumulating
multiple interframe differences in the temporal domain. Significantly, the LTC mechanism
can further eliminate many random false alarms based on the trajectory continuity of the
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slow-moving target; therefore, the proposed method obtains a higher Pd with lower Fa.
This also demonstrates that our method fully excavates the features of the low-altitude
slow-moving small target both in spatial and temporal domains, and achieves a more
satisfactory detection precision.

Figure 11. (a–f) ROC curves of different methods on Seq.1–6, respectively.

Figure 12. ROC curves of different combinations of modules in the proposed method on all test
image sequences containing Seq.1–6.

Table 4. Ablation study on different combinations of modules in the proposed method (Fa = 0.01%).

Modules
Pd(%)

LCG SEA LTC

X X 95.65
X X 94.72

X X 93.52
X X X 97.11
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5. Discussion

The qualitative and quantitative experiments both demonstrate the advantage of the
proposed method in detecting the low-altitude infrared moving small target. However,
it still has limitations in detecting the target submerged by high-brightness background
clutter for a long period or the target under blurry background. Figure 13 gives two
examples in which the target is submerged by high-brightness background clutter, and
the background is blurry due to the fast movement of the detector, respectively. Since
the grayscale difference between the target and its surrounding background is tiny and
even equal to zero, as shown in Figure 13a, it is also difficult for human to distinguish the
position of the actual target area. In this case, the LGD measurement is invalid and the
target is missed in ILGD. Moreover, since the target is submerged for a long period, the
association mechanism in LTC measurement is ineffective; thus, our method fails to detect
it. In another case, as shown in Figure 13b, the rapid movement of the target or the detector
FOV will blur the images. This causes the size of the target to exceed the definition of an
infrared small target, leading to the missed detection in the ILGD map. Moreover, there
are not enough feature points in the blurry background to complete the image registration
between the adjacent frames, which results in numerous residual background clutters in
the ISEA map. In future work, we explore an effective position prediction mechanism to
track the target submerged in background for a long period and introduce a practical image
deblurring algorithm to enhance image registration performance.

Figure 13. Two examples of missed detection. The original image, ILGD map, and ISEA map are
shown in turn, and the actual target area is marked with a red box, the missed target is marked with
a yellow box. (a) The target submerged by the high-brightness background. (b) The target under
blurry background.

6. Conclusions

In this article, we propose an effective low-altitude infrared slow-moving small target
detection method, namely STFM. The main idea of it is to promote the target enhancement
ability and background suppression ability by integrating the results obtained in the
spatial and temporal domains, and improve the detection precision through multi-frame
confirmation; therefore, we first construct a circular kernel to calculate the LGD in a single
frame. Then, a SEA mechanism is proposed to accumulate the energy of the moving
target in several successive frames. Finally, we design an LTC module to confirm the
real target and eliminate false alarms. Moreover, the interframe registration technique is
introduced to eliminate the interference of background motion. Our method fully excavates
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the spatial-temporal features and trajectory continuity of the slow-moving target. Extensive
experiments were conducted on six image sequences containing various real low-altitude
scenes. The results demonstrate that our method has satisfactory performance both in
detection ability and detection precision, and outperforms the existing excellent single-
frame and sequential detection methods.
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The following abbreviations are used in this manuscript:

IRST Infrared search and tracking
STFM Spatial-temporal features measure
LGD Local grayscale difference
SEA Short-term energy aggregation
STSM Spatial-temporal saliency map
LTC Long-term trajectory continuity
UAVs Unmanned aerial vehicles
FOV Field of view
HVS Human visual system
PNHB Pixel-sized noises with high brightness
IFD Improved frame difference
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