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Abstract: Effective denoising can ensure fast and accurate target detection. This paper presents an
electric field measurement system based on a high-speed motion platform, which was built to analyze
the characteristics of low frequency electric field noise. An offshore test has shown that it is possible
to detect a low-frequency electric field using a high-speed motion platform. Low frequency electric
field noise was then collected to analyze its characteristics in terms of time and frequency domains.
Based on the noise characteristics, complete ensemble empirical mode decomposition with adaptive
noise (ICEEMDAN) was improved and combined with an adaptive threshold algorithm for denoising
and reconstructing target containing noise signals. As revealed in the results, the proposed algorithm
achieved highly effective denoising to overcome the line spectrum detection failure resulting from a
high-speed motion platform. The detection range had also been improved from the original 853 m to
1306 m, a 53.1% increase.

Keywords: high-speed boat; low frequency electric field; noise; ICEEMDAN; denoising

1. Introduction

Underwater mobile platforms including autonomous underwater vehicles (AUVs),
unmanned underwater vehicles (UUVs) and underwater gliders have been widely applied
in marine environment monitoring and underwater target detection because of their ad-
vantages such as small size, low energy consumption, long endurance, great adaptability
and good maneuverability [1,2]. In terms of underwater target detection, a passive acoustic
detection system based on AUVs, UUVs and other platforms returns low power consump-
tion and great adaptability [3–5]. For this reason, studies in the field of underwater target
detection have currently focused on the use of mobile platform detection devices for target
detection [6,7].

Currently, many underwater mobile platforms are often equipped with sonar [8].
Sonar is an acoustic device capable of emitting a signal and, through the reflected echo,
of identifying an object [9]. It allows for obtaining measurements of distances between
the source and the first object encountered in the direction of emission of the wave [10].
In the time domain, due to the finite speed of propagation of the acoustic perturbation,
the time taken to reach increasingly distant objects is proportional to the distance traveled.
It is therefore possible to go back from time information to distance information. The
signal detected by the receiver in a time interval depends on the medium crossed in the
delimited layer by the distances reached between two consecutive time instants, with
intensity proportional to the volumetric diffusion coefficient [11]. Early studies had been
conducted on the embedding of acoustic sensors into an underwater mobile platform, and
some remarkable findings had been obtained in various countries, particularly in the United
States. Webb proved the feasibility of equipping an AUV with sonar for gathering the
acoustic signals of its target [12]. Moore performed a test with Seaglider [13], an underwater
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acoustic glider developed in the United States, to collect the calls of blue whales, humpback
whales and sperm whales. In this US project, omnidirectional broadband hydrophones
(5 Hz to 30 kHz) were mounted on the wings of the glider. Grund used acoustic sensors
installed on fixed and mobile underwater platforms for coastal surveillance with the aim of
detecting and tracking diesel submarines [14]. UUVs and gliders equipped with acoustic
and environmental sensors are used. Lv studied the random fluctuation of the sea surface
which is a difficult environmental factor to quantify [15]. It is characterized by parameters
such as wind speed, wind direction and water depth in real time. In China, the Ocean
University of China and the Institute of Acoustics, Chinese Academy of Sciences, jointly
developed an acoustic underwater vehicle to achieve its single node detection range no less
than 3 km [16]. The Navy Submarine Academy of the People’s Liberation Army and Tianjin
University developed a prototype following the principles of the Dolphin underwater
acoustic glider [17], which preliminarily offered autonomous target detection.

Silent submarines have been developed to significantly lower the sound source level
of targets, making it more difficult to identify with single acoustic detection. However,
a single passive acoustic detection method was disturbed by a high rate of false alarms
and easy interference from dummy decoys. The electric fields emitted by a ship can be
exploited for underwater detection. Galvanic currents flowing in the water around the
hull generate an underwater electric field. This field is responsible for the extremely low
frequency emission [18]. The electric field emitted by the ships had advantages such as low
frequency (1–7 Hz), long transmission distance and remarkable characteristics of the line
spectrum [19]. In addition to passive sensors, this method has become a reliable source of
signals for tracking underwater weapons and targets. The study of low-frequency electric
field sensing began very early outside of China. Birsan argued that a low frequency electric
field was basically generated by the cyclic rotation of the helices [20]. Zolotarevskii built
a low frequency electric field measurement platform [21]. In underwater environments,
the electric field signal is more stable than the acoustic signal. Furthermore, acoustic
invisibility-based methodologies make electric field sensing techniques preferred for de-
tecting or tracking targets [22–25]. However, few studies on low frequency electric field
sensing systems for underwater mobile platforms have been released to the public. In [26],
regarding the detection of the low frequency electric field, the buoys were used as platforms
for the detection of the electric field. A fixed electric field electrode array was used to detect
and locate underwater targets in [27]. An underwater low frequency electric field sensing
device was developed in [28].

In this paper, a low frequency electric field detection system based on a high-speed
boat was initially devised and built. An offshore test is presented to verify the feasibility
of detecting low frequency electric field of targets using a high-speed boat equipped
with electric field sensors. Subsequently, noise characteristics were extracted without a
target source to analyze the distribution of noise and discover the reasons for the line
spectrum detection failure as shown in the test results. Next, a denoising algorithm
was developed based on the distribution of noise. On this basis, an adaptive denoising
algorithm is proposed for low frequency electric field target detection of high-speed motion
platforms. The proposed algorithm combines improved complete ensemble empirical
mode decomposition with adaptive noise (ICEEMDAN) with an adaptive threshold. The
modes obtained from the ICEEMDAN will be used for threshold calculation and adaptive
layer screening. In the end, measured signals will be employed to verify the performance
of the proposed algorithm.

The structure of the paper is the following. Section 2 describes in detail the method-
ology for the identification of the low frequency electric field emitted by an underwater
mobile platform. Section 3 presents a complete analysis of the noise source, through
a test without a target source. The noise caused by the speed variation was collected.
Section 4 analyzes the characteristics of the electric field noise emitted by the mobile plat-
form. Section 5 presents an adaptive low frequency electric field denoising algorithm based
on ICEEMDAN method with threshold. Section 6 presents the results of the methodology
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described in the previous sections. Finally, the conclusions and future work are reported in
Section 7.

2. A Low Frequency Electric Field Detection System with a High-Speed Boat as the
Platform
2.1. System Design and Construction

In this paper, a high-speed boat was used as the motion platform for electric field
detection. The boat was 10.5 m long and 2 m wide, and its propulsion system used pump
injection propulsion. The whole hull is made of glass steel, and only the stern water inlet
and spray nozzle are made of metal. The velocity of the boat was adjustable up to 50 kn,
and flexibly was set as needed during the test.

A set of orthogonal electric field sensors was provided for the bow and stern, respec-
tively, to study the electric field noise characteristics and determine the detection range of
electric field sensors at different positions of the boat as shown in Figure 1.

Sensors 2021, 21, x FOR PEER REVIEW 3 of 20 
 

 

ICEEMDAN method with threshold. Section 6 presents the results of the methodology 
described in the previous sections. Finally, the conclusions and future work are reported 
in Section 7. 

2. A Low Frequency Electric Field Detection System with a High-Speed Boat as the 
Platform 
2.1. System Design and Construction 

In this paper, a high-speed boat was used as the motion platform for electric field 
detection. The boat was 10.5 m long and 2 m wide, and its propulsion system used pump 
injection propulsion. The whole hull is made of glass steel, and only the stern water inlet 
and spray nozzle are made of metal. The velocity of the boat was adjustable up to 50 kn, 
and flexibly was set as needed during the test. 

A set of orthogonal electric field sensors was provided for the bow and stern, respec-
tively, to study the electric field noise characteristics and determine the detection range of 
electric field sensors at different positions of the boat as shown in Figure 1. 

 
Figure 1. Schematic diagram of electric field measurement system based on fast moving platform. 

First, a cruciform acquisition system based on a fixed bracket is designed, as shown 
in Figure 2a. Each set of sensors contained four Ag/AgCl poles. This electrode, at a tem-
perature of 25 °C and a pressure of 1 atm, has a potential equal to ΔE = +0.198 V (sensitivity 
=10−7 (V/m); Noise floor = 3.1 × 10−9 V/sqrt(Hz) at 1 kHz). Each set of electrodes was 
mounted onto a rigid cross to measure the longitudinal electric field xE  and transverse 
electric field yE . The electrodes were spaced 0.5 m apart. Since the bottom of the actual 
speedboat is a non-planar structure, based on the configuration of the cross-shaped acqui-
sition system, the fixed bracket is removed and the sensor is laid on the bottom of the 
speedboat in accordance with Figure 2b. Its detection principle is consistent with that of 
the cross-shaped acquisition system. 

Figure 1. Schematic diagram of electric field measurement system based on fast moving platform.

First, a cruciform acquisition system based on a fixed bracket is designed, as shown
in Figure 2a. Each set of sensors contained four Ag/AgCl poles. This electrode, at a
temperature of 25 ◦C and a pressure of 1 atm, has a potential equal to ∆E = +0.198 V
(sensitivity = 10−7 (V/m); Noise floor = 3.1 × 10−9 V/sqrt(Hz) at 1 kHz). Each set of
electrodes was mounted onto a rigid cross to measure the longitudinal electric field Ex and
transverse electric field Ey. The electrodes were spaced 0.5 m apart. Since the bottom of the
actual speedboat is a non-planar structure, based on the configuration of the cross-shaped
acquisition system, the fixed bracket is removed and the sensor is laid on the bottom of the
speedboat in accordance with Figure 2b. Its detection principle is consistent with that of
the cross-shaped acquisition system.

To ensure adherence to the moving boat, the sensors and associated cables were
attached to the surface of the hull using strong glue. The cables have been protectively
sheathed to prevent the electric field measurement system from turning off during the
movement of the vessel, to maintain its adhesion with the movement of the vessel, and
to avoid signal interference caused by any shaking irregular sensor. The sensors were
mounted on the hull of the boat as shown in Figure 2b.

2.2. A Low Frequency Electric Field Detection Test with a High-Speed Boat Platform

A standard simulation source was taken as the target source in a test to quantitatively
analyze the electric field sensing range of a moving carrier platform. Table 1 lists its
parameters. The schematic diagram of the test is given in Figure 3.
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Table 1. Parameter setting table of simulated radiation source.

Simulated Radiation Source Electrode Spacing Radiation Current Radiation Frequency

MMO electrode 13 m 6.9 A 3 Hz
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Figure 3. Schematic diagram of sea test: The speedboat moves from a distance to the simulated
radiation source placed on the shore, the blue area is the sea area, the gray area is the shore the water
depth in the test area was around 5 m.

Figure 3 shows that the motorboat moves in the direction of the simulated radiation
source placed on the shore, the blue area is the sea area, the gray area is the shore, 13 m
indicates that the electric dipole moment of the simulated source is 13 m, and the thick
black arrow indicates that during the test, the speedboat moves towards the simulated
source. The sampling frequency of the electric field measurement system was 250 Hz. The
measurement bandwidth was set to [0.05 Hz, 60 Hz]. The water depth in the test area
was around 5 m. The conductivity of seawater was 2.8 (S/m). The boat was set to sail
in the longitudinal direction. A set of sensors near the bow measured the longitudinal
and transverse components, Ex1 and Ey1, respectively, while a set of sensors near the stern
measured the longitudinal and transverse components, Ex2 and Ey2, respectively.
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During the test, the boat carrying the measurement system moved sequentially at the
set speeds of 5 kn, 10 kn, 15 kn, 20 kn, and 25 kn. At each speed, the boat’s movement
was kept unchanged for 380 s. With the method specified in [28], the detection of the line
spectrum was carried out using the collected signals. The results of the detection of the
spectrum of lines using the signals measured at the speed v = 10 kn are shown in Figure 4.
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Figure 4. Low frequency electric field measurement and line spectrum detection at boat speed of
10 knots. (a) the longitudinal component of the bow sensor; (b) the result of target line spectrum
extraction of Ex1; (c) the transverse component of the bow sensor; (d) the result of target line spectrum
extraction of Ey1; (e) the longitudinal component of the stern sensor; (f) the result of target line
spectrum extraction of Ex2; (g) the transverse component of the stern sensor; (h) the result of target
line spectrum extraction of Ey2.

Figure 4a,c,e,g shows the simulated source radiation signal measured in the exper-
iment; the abscissa is time (s) and the ordinate is E (uV/m) indicating the electric field
intensity. Ex1 indicates the longitudinal component of the bow sensor, Ey1 indicates the
transverse component of the bow sensor, Ex2 indicates the longitudinal component of the
stern sensor and Ey2 indicates the transverse component of the stern sensor. Figure 4b,d,f,h
shows the result of target line spectrum extraction using the method in [28]; the ordinate
represents the time axis of measurement (s) and the abscissa represents the frequency of
extraction (Hz). At 10 knot, the speed of the boat is not high, and the speed of the water
flow is mainly along the longitudinal direction. The transverse electric field in the bow is
away from the engine, which is placed in the stern, so there is no interference caused by the
splashing of the water due to the high speed of the boat. Therefore, the noise is minimal,
and the detection result is the best.

As shown in Figure 4, a vessel-mounted measurement system ensures effective de-
tection of a target’s low frequency electric field signals. The target line spectrum can be
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successfully extracted from the electric field signals collected fore and aft, verifying the
feasibility of low frequency electric field detection with a high speed boat. For comparison,
the quality of the detection results was measured by a descriptor, such as the detection
ratio of the line spectrum (K). The maximum detection time for a target’s line spectrum
was Tmax, and the total motion time of a high-speed boat was Ttotal . With Tmax, we specify
the maximum time necessary to effectively detect the line spectrum of the target. Since the
spectrum of the lines is not always continuous, it can be divided into several fragments. The
sum of these contributions of the detection times gives the maximum total time necessary
to correctly detect the target.

The calculation is as given below:

K =
Tmax

Ttotal
× 100% =

Tmax

380
× 100% (1)

The measurement results of the detection of the electric field of a target by the measur-
ing platform moving at low to high speeds were compared with the detection results of the
spectrum of lines, as shown in Table 2.

Table 2. Comparison of target electromagnetic field measurement results and line spectrum detection
results when the measuring platform moves from low speed to high speed in turn.

Ex1

v (kn) 5 kn 10 kn 15 kn 20 kn 25 kn

Testing frequency (Hz) 3 Hz 3 Hz 3 Hz Failed to detect Failed to detect

Testing time (s) 170 s 100 s 50 s 0 s 0 s

Testing distance (m) 439 m 514 m 386 m 0 m 0 m

Detect proportional K/% 44.7% 26.3% 13.2% 0% 0%

Ey1

v (kn) 5 kn 10 kn 15 kn 20 kn 25 kn

Testing frequency (Hz) 3 Hz 3 Hz 3 Hz 3 Hz 3 Hz

Testing time (s) 330 s 130 s 60 s 60 s 45 s

Testing distance (m) 853 m 669 m 463 m 617 m 581 m

Detect proportional K/% 86.8% 34.2% 15.8% 15.8% 11.8%

Ex2

v (kn) 5 kn 10 kn 15 kn 20 kn 25 kn

Testing frequency (Hz) 3 Hz 3 Hz 3 Hz 3 Hz 3 Hz

Testing time (s) 85 s 85 s 40 s 45 s 50 s

Testing distance (m) 219 m 437 m 308 m 465 m 646 m

Detect proportional K/% 22.4% 22.4% 10.5% 11.8% 13.2%

Ey2

v (kn) 5 kn 10 kn 15 kn 20 kn 25 kn

Testing frequency (Hz) 3 Hz 3 Hz 3 Hz 3 Hz 3 Hz

Testing time (s) 110 s 100 s 45 s 50 s 65 s

Testing distance (m) 284 m 514 m 347 m 517 m 840 m

Detect proportional K/% 28.9% 26.3% 11.8% 13.2% 17.1%

As revealed in the test results, the noise resulting from the variation in the velocity of
the platform severely affected line spectrum detection, so that the detection ratio varied
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differently with velocity at the bow and stern. When the velocity reached 20 kn, line
spectrum detection failed with the longitudinal component at the bow Ex1.

3. A Noise Collection Test with a High-Speed Boat as the Platform

For the comprehensive analysis of the noise source, a test was carried out without
a target source. The noise caused by the variation of velocity was collected. The same
measurement system was employed as specified in Section 1.

To ensure consistency between the measurement environment and the status of the
measurement system affected by the noise caused by the movement of the platform, a test
has been designed as follows: the boat moved constantly at the initial velocity of 5 kn for
110 s, and then sped up to 10 kn and maintained this velocity for the same period. In the
same way, it moved at the velocities of 15 kn, 20 kn, and 25 kn, each for 110 s. Noise was
continuously collected at these velocities. The results are shown in Figure 5.
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Based on the time domain distribution of the measured noise, it was preliminarily
found that the total noise level at the bow was always lower than that at the stern. When
the speed was 25 kn, the bow electric field noise peaked, but the total noise level was still
very low.

4. Analysis of Noise Characteristics of a High-Speed Boat as the Platform
4.1. Time Domain Characteristics of Noise Signals

To fully characterize the electric field noise in the time domain, the dimensional
and non-dimensional temporal parameters of the signals were calculated. The selected
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dimensional characteristics included peak-to-peak value Ep−p, mean value σ2 and root
mean square Xrms; the selected dimensionless characteristics included kurtosis K4 and
waveform factor S f . The calculated parameters for the characteristics of noise signals are
presented in Table 3.

Table 3. Calculation results of characteristic parameters.

Ex1

v (kn) 5 10 15 20 25

Ep−p (mV/m) 0.0181 0.0204 0.0391 0.0457 2.4327

µ (mV/m) −3.3 × 10−6 7.3 × 10−6 −9.1 × 10−7 −7.7 × 10−6 5.8 × 10−6

σ2 (mV2/m2) 1.0 × 10−11 1.8 × 10−11 2.2 × 10−10 6.4 × 10−10 4.1 × 10−6

Xrms (mV/m) 0.0021 0.0024 0.0038 0.0051 0.0451

K4 15.8 × 1011 8.6 × 1010 1.5 × 1010 4.6 × 109 1.4 × 107

S f 1.2627 1.2548 1.2787 1.2701 5.2342

Ey1

v (kn) 5 10 15 20 25

Ep−p (mV/m) 0.0291 0.0338 0.0342 0.1644 0.6374

µ (mV/m) −5.8 × 10−6 1.0 × 10−5 −5.1 × 10−6 3.6 × 10−5 −5.9 × 10−5

σ2 (mV2/m2) 6.3 × 10−7 8.5 × 10−12 1.4 × 10−10 9.2 × 10−9 6.3 × 10−7

Xrms (mV/m) 0.0033 0.0031 0.0036 0.0101 0.0283

K4 2.8 × 1010 4.3 × 1010 1.8 × 1010 9.3 × 108 2.4 × 106

S f 1.2787 1.2667 1.2654 1.5307 1.4974

Ex2

v (kn) 5 10 15 20 25

Ep−p (mV/m) 0.3102 0.2759 0.0617 0.0766 0.1087

µ (mV/m) 7.0 × 10−5 −6.3 × 10−5 3.3 × 10−7 3.6 × 10−6 −8.2 × 10−6

σ2 (mV2/m2) 1.6 × 10−6 3.1 × 10−8 2.7 × 10−9 5.7 × 10−9 1.4 × 10−8

Xrms (mV/m) 0.0356 0.0137 0.0072 0.0087 0.0111

K4 2.1 × 106 5.3 × 108 1.1 × 109 5.4 × 108 2.4 × 108

S f 1.2876 1.2569 1.2517 1.2615 1.2514

Ey2

v (kn) 5 10 15 20 25

Ep−p (mV/m) 0.8632 0.7105 0.1569 0.2320 0.2884

µ (mV/m) 9.7 × 10−5 −9.2 × 10−5 1.1 × 10−7 −5.6 × 10−7 1.3 × 10−5

σ2 (mV2/m2) 3.3 × 10−5 6.5 × 10−7 8.8 × 10−9 1.7 × 10−8 4.0 × 10−8

Xrms (mV/m) 0.0761 0.0285 0.0097 0.0115 0.0142

K4 1.8 × 105 6.7 × 108 6.8 × 108 4.9 × 108 2.6 × 108

S f 1.4408 1.3619 1.2808 1.3245 1.3215

Based on the results given in Table 3:

• The peak-to-peak value Ep−p revealed that the noise level at the bow was lower than
that at the stern when the velocity was not higher than 15 kn; nevertheless, it was
higher than the latter when the velocity exceeded 15 kn.
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• The mean value µ of noise at the bow and stern was always approximate to 0 at
all velocities.

• The variance σ2 showed that the noise collected at the bow and stern fluctuated very
slightly at all velocities.

• With the root mean square Xrms, it was revealed that the effective value of noise at the
bow increased with increasing velocity, but that at the stern, it increased, decreased
and increased again as velocity increased, but was lowest at the velocity of 15 kn.

• With the kurtosis K4, it was found that, for the same sensor, the noise at the bow
peaked when the velocity was 25 kn, but the noise at the stern was distributed most
gently when the velocity was 15 kn; for the same velocity, the noise at the bow was
distributed more gently than that at the stern when the velocity was not greater than
20 kn.

• The waveform factor S f revealed that the noise was not white noise except the lon-
gitudinal component of the noise at the bow Ex1 at v = 10 kn and the longitudinal
component of the noise at the stern Ex2 at v = 10 kn, and v = 15 kn.

• The results obtained from the tests allow us to state that:
• The high-speed motion of the platform caused stronger noise interference at the bow

than that at the stern.
• Electric field noise signals were mainly composed of alternating components. The

noise signals at the bow had the largest alternating components at v = 25 kn, whereas
those at the stern had the smallest alternating components at v = 15 kn

• The effective value of noise at the bow was lower than that at the stern, implying that
electric field sensors should be better placed near the bow.

• The electric field noise caused by the high-speed boat at different velocities was
not white noise, so that it was not subject to a normal distribution and belonged to
non-stationary random signals.

4.2. Frequency Domain Characteristics of Noise Signals

The target’s low frequency electric field was a line spectrum signal. For this reason,
attention should be paid to both of its time and frequency domain characteristics in the noise
analysis. Noise signals were time domain transformed to extract their frequency domain
characteristics in this section. Calculations were conducted using the following procedure:

1. Set the data length needed for Fast Fourier transform (FFT);
2. Calculate the FFT of time sequence;
3. Calculate the mean value of FFT amplitude spectrum squares;
4. Draft the power spectrum curve;
5. Calculate the cumulative energy distribution.

Following the above procedure, power spectra were calculated for the electric field
noise signals collected from the motion platform at different velocities. The results are
shown in Figure 6. The cumulative energy (area integral in energy spectrum estimation
curve) was calculated to obtain the curve for the variation of cumulative energy and total
energy with the frequency as shown in Figure 7.
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Figure 6. Noise power spectrum of the platform itself. (a) Power spectrum of the longitudinal
component of the bow sensor; (b) Power spectrum of the transverse component of the bow sensor;
(c) Power spectrum of the longitudinal component of the stern sensor; (d) Power spectrum of the
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In Figures 6 and 7, it was found that:
• The noise caused by the motion of the platform had its energy mostly at a frequency

below 10 Hz, especially in the frequency bands below 2 Hz. The energy in the
horizontal component of electric field noise at both the bow and stern exceeded 80%
in the frequency bands below 2 Hz, and even reached 99%.

• The longitudinal component Ex1 and the transverse component Ey1 of the bow noise
had more than 90% of the accumulated energy below 10 Hz, whereas the longitudinal
component Ex2 and the transverse component Ey2 of the transom noise rose very
slowly in the frequency band [10 Hz, 60 Hz] when the velocity reached 20 kn, and
noticeably took up a lower proportion than the cumulative energy at other velocities.
In other words, high-speed motion might cause large amounts of high frequency
interference at the stern, which must be attributed to the joint effect of the engine’s
electromagnetic radiation and the hull’s high-speed motion.
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Figure 7. Distribution of accumulated energy with frequency. (a) Distribution of accumulated energy
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transverse component of the bow sensor; (c) Distribution of accumulated energy of the longitudinal
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5. An Adaptive Low Frequency Electric Field Denoising Algorithm Based on
ICEEMDAN with Threshold

As stated in Section 3, the electric field noise caused by high-speed motion belongs to
non-stationary signals and its energy exists mainly at low frequencies. It overlaps the shaft
frequency signals in certain frequency bands. Therefore, remote target detection depends
on effective filtering of the noise signal. The use of an empirical mode decomposition
algorithm (EMD) is one of the common methods often used to extract the characteristics of
the non-stationary signal [29]. Using a complete ensemble empirical mode decomposition
with adaptive noise, (ICEEMDAN) [30,31] can be an effective way to help overcome the
modality mix problem in signal decomposition for the EMD algorithm and other improved
EMD algorithms [32]. In this case, an adaptive denoising algorithm of the low frequency
electric field based on ICEEMDAN with a threshold for the low frequency electric field
noise is therefore proposed.

5.1. Procedure of Implementing the ICEEMDAN Algorithm

It was assumed that a noise signal was denoted by x(t) and decomposed in the
ICEEMDAN to obtain the kth intrinsic mode function (IMF) ck(t) [33]. The residual was
rk(t). The i(i = 1, 2, . . . , k) white Gaussian noise s(i) was added. The local mean value was
M(·). Moreover, Ek(·) indicates the k(k = 2, 3, . . . , N) mode component obtained after the
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EMD. Thus, the flow chart for the procedure of implementing the ICEEMDAN algorithm is
presented in Figure 8.
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The procedure is detailed as follows:

1. Add the white Gaussian noise s(i) to the signal to be decomposed x(t) to obtain a new
signal to be decomposed:

x(t)i = x(t) + βoE1[s(i)] (2)

2. Use an EMD algorithm to calculate the local mean value of x(t)(i), and take the mean
value as the first residual r1(t):

r1(t) =
1
K

K

∑
i=1

M[x(t)(i)] (3)

3. Calculate the first mode IMF1 coefficient c1(t):

c1(t) = x(t)− r1(t) = x(t)− 1
K

K

∑
i=1

M[x(t)(i)] (4)
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4. Calculate the second mode IMF2 distribution c2(t) with Equations (3) and (4):

c2(t) = r1(t)− r2(t) = r1(t)−
1
K

K

∑
i=1

M
{

r1 + β1E2[s(i)]
}

(5)

5. Calculate the kth IMFk distribution ck(t) in the similar way:

ck(t) = rk−1(t)− rk(t) = rk−1(t)−
1
K

K

∑
i=1

M
{

rk−1(t) + βk−1Ek[s(i)]
}

(6)

6. Calculate the correlation coefficient of IMF distribution with the original signal αk.
The greater the coefficient, the more real signals containing the target signal from the
IMF decomposition. Meanwhile, all IMFs and the original signal were normalized to
prevent removing the real IMFs with lower amplitude. The correlation coefficient of
the kth IMF with the original signal x(t):

αk =

L
∑

t=1
(x(t)− x)(ci(t)− ci)√

L
∑

t=1
(x(t)− x)2 ×

L
∑

t=1
(ci(t)− ci)

2·
(7)

where L is the number of sampling points.

The correlation coefficient of the noise signals containing the target or not with IMF
was calculated and varied with the decomposition layer as shown in Figure 9.
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Figure 9. Correlation coefficients of IMF with and without targets as a function of decomposition
layers.(a) Correlation coefficients for Ex1 at the bow; (b) Correlation coefficients for Ex1 at the
stern; (c) Correlation coefficients for Ey1 at the bow; (d) Correlation coefficients for Ey1 at the
stern; (e) Correlation coefficients for Ex2 at the bow; (f) Correlation coefficients for Ex2 at the stern;
(g) Correlation coefficients for Ey2 at the bow; (h) Correlation coefficients for Ey2 at the stern.
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Figure 9a,c,e,g shows the calculation results of autocorrelation coefficients of signals
with targets by four sensors in the bow and stern of the ship. Figure 9b,d,f,h shows the
results of autocorrelation coefficients calculated by four sensors, the bow and stern, on
noise signals without targets, and provide a theoretical basis for threshold selection of
subsequent algorithms through the comparison of autocorrelation coefficients. Because the
analog source used in the experiment is 3 Hz, which is also based on the measured data, it
is effective for 3 Hz. This paper designs a general method, because the frequency of the
target radiation source is not limited to 3 Hz.

As revealed in Figure 9:

1. The target containing noise signals had fewer IMF decomposition layers than the noise
signals containing no target, implying that the latter had a more complicated composition.

2. The target containing noise signals had a larger correlation coefficient than the noise
signals containing no target in some cases, so that denoising by filtering could be
achieved through removing some correlation coefficients.

3. The correlation coefficient of the target containing noise signals increased and then
decreased with the increase of the decomposition layer. The correlation coefficient
α4 was the largest at the fourth layer but became approximately 0 after reaching the
seventh layer. This means that the signal at the fourth layer contained the largest
amount of real information from the target source, so that it could be regarded as an
approximately real signal. The signal after the seventh layer in the IMF decomposition
contained very little information, so that it might be regarded as a ghost signal.

4. The correlation coefficient of the noise signals containing no target increased with the
decomposition layer. The correlation coefficient of the transverse component at the
bow Ey1 with IMF contained two peaks and one trough when the velocity was less
than 15 kn. It peaked at the second IMF layer and the sixth IMF layer but hit a trough
at the fourth IMF layer. When the velocity exceeded 15 kn, the correlation coefficient
varied in the same way as the other sensors; that is, increasing and then decreasing,
peaking at the second IMF layer, and being regarded as a ghost signal after the ninth
IMF layer.

5.2. An Adaptive Denoising Algorithm Based on the ICEEMDAN with Threshold

Threshold was calculated following such distribution of the correlation coefficients of
the target containing noise signals and the noise signals containing no target as detailed in
Section 4.1. The IMF screening was conducted while signals were reconstructed to denoise
the target containing noise signals. It was assumed that the correlation coefficient of the kth
IMF with the original signal was αk, and the threshold was TH. A set of targets containing
noise signals x(t) was collected for the longitudinal component at the bow Ex1 when the
velocity was 5 kn. The denoising procedure is as given in Figure 10.

The specific denoising procedure is as follows:

1. Perform the ICEEMDAN for the collected signals x(t) to output K IMF layers.
2. Calculate the correlation coefficient of each IMF layer αk(k = 1, 2, . . . , K);
3. Set the threshold. Calculate the standard deviation of the correlation coefficient σ, and

take it as the IMF screening threshold TH. Keep if αk ≥ TH;
4. Screen the IMF. Keep the corresponding IMFk if αk ≥ TH, or discard it if not. Output

K1 is the screened IMF layers;
5. Reconstruct the signal, superposed the K1 IMF layers to obtain the denoised signal

x′(t).
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6. Verification of the Algorithm

Following the procedure of implementing the algorithm in Section 5, mode decom-
position and adaptive IFM layer screening were conducted for the target containing noise
signals collected by the sensors at different velocities. The results are given in Table 4.

Table 4. Screening results of IMF layers with target noisy signals collected by different sensors at
different speeds.

Ex1

v/(kn) 5 10 15 20 25

Layer number screening results 3–5 4–5 3–5 3–6 1–5

Ey1

v/(kn) 5 10 15 20 25

Layer number screening results 3–5 3–6 3–4 3–5 3–5

Ex2

v/(kn) 5 10 15 20 25

Layer number screening results 3–5 4–5 3–5 3–6 3–5

Ey2

v/(kn) 5 10 15 20 25

Layer number screening results 3–5 4–5 3–4 2,4–5 3–5
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Based on the IMF screening results in Table 4 and the denoising procedure, the
collected signals as given in Section 2 were denoised. Line spectrum detection was also
carried out for the reconstructed signals in the same way, to compare the results before
and after filtering. The time sequence distribution diagram of the longitudinal component
at the bow Ex1 at different velocities was drafted as shown in Figure 11. The left part of
Figure 11 shows the calculated results of the signals containing the target, whereas the right
part shows the calculation results of the signals containing no target. The comparison is
presented in Table 5.
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Figure 11. Temporal distribution comparison of bow longitudinal component Ex1 before and after
filtering at different speeds. (a) Temporal distribution at 5 kn before filtering; (b) Temporal distribution
at 5 kn after filtering; (c) Temporal distribution at 10 kn before filtering; (d) Temporal distribution at
10 kn after filtering; (e) Temporal distribution at 15 kn before filtering; (f) Temporal distribution at
15 kn after filtering; (g) Temporal distribution at 20 kn before filtering; (h) Temporal distribution at
20 kn after filtering; (i) Temporal distribution at 25 kn before filtering; (j) Temporal distribution at
25 kn after filtering.

Table 5. Comparison of line spectrum detection results before and after filtering.

Ex1

v/(kn) 5 10 15 20 25

Specific gravity of line spectrum
detection (%)

Before filtering 44.7 26.3 13.2 0 0

After filtering by standard
ICEEDAN 68.1 40.2 20.5 7.1 3.8

After filtering of the algorithm
in this paper 71.5 49.2 34.3 20.9 16.4

Detection distance of the
spectrum (m)

Before filtering 439 514 386 0 0

After filtering by standard
ICEEDAN 668 785 599 278 186

After filtering 702 966 1010 821 805
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Table 5. Cont.

Ex1

Distance improvement (%)
the standard ICEEDAN

algorithm +52.2 +52.7 +55.1 - -

Algorithm of this paper +59.9 +87.9 +161.7 - -

Ey1

v(kn) 5 10 15 20 25

Specific gravity of line spectrum
detection (%)

Before filtering 86.8 34.2 15.8 15.8 11.8

After filtering by standard
ICEEDAN 88.1 43.2 21.1 16.1 11.9

After filtering of the algorithm
in this paper 93.1 57.2 35.5 23.2 22.7

Detection distance of the
spectrum (m)

Before filtering 853 669 463 617 581

After filtering by standard
ICEEDAN 865 845 618 628 585

After filtering of the algorithm
in this paper 914 1123 1046 911 1115

Distance improvement (%)
the standard ICEEDAN

algorithm +1.4 +26.3 +33.4 +1.7 +0.6

Algorithm of this paper +7.2 +67.9 +125.9 +47.6 +91.9

Ex2

v(kn) 5 10 15 20 25

Specific gravity of line spectrum
detection (%)

Before filtering 22.4 22.4 10.5 11.8 13.2

After filtering by standard
ICEEDAN 35.3 30.8 10.5 12.6 13.5

After filtering of the algorithm
in this paper 38.9 44.6 14.4 19.5 20.1

Detection distance of the
spectrum (m)

Before filtering 219 437 308 465 646

After filtering by standard
ICEEDAN 347 600 308 496 660

After filtering of the algorithm
in this paper 382 876 424 766 987

Distance improvement (%)
the standard ICEEDAN

algorithm +58.4 +37.2 +0 +6.6 +2.1

Algorithm of this paper +74.4 +100.5 +37.7 +64.7 +52.8

Ey2

v(kn) 5 10 15 20 25

Specific gravity of line spectrum
detection (%)

Before filtering 28.9 26.3 11.8 13.2 17.1

After filtering by standard
ICEEDAN 49.3 33.9 20.1 15.5 17.8

After filtering of the algorithm
in this paper 53.3 41.0 38.9 28.9 26.6

Detection distance of the
spectrum (m)

Before filtering 284 514 347 517 840

After filtering by standard
ICEEDAN 484 662 591 607 874

After filtering of the algorithm
in this paper 524 805 1131 1135 1306

Distance improvement (%)
the standard ICEEDAN

algorithm +70.4 +28.8 +70.3 +17.4 +4.0

Algorithm of this paper +84.5 +56.6 +225.9 +119.5 +55.5

Based on Table 5, it is found that:
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1. The proposed denoising algorithm could perform the adaptive layer screening and
signal reconstruction based on the mode decomposition results of different original
signals.

2. The proposed algorithm achieved effective denoising. The line spectrum detection
ratio and range were enhanced for all the signals collected by all the sensors at various
velocities. The largest detection range exceeded 1300 m. Therefore, the algorithm was
proven effective at denoising.

3. By comparing the denoising algorithm in this paper with the standard ICEEDAN
algorithm, the standard algorithm can also improve the line spectrum detection
weight when the speed is low, but when the ship speed is higher than 10 kn, the
denoising effect of the algorithm in this paper is significantly better than the standard
ICEEDAN algorithm.

4. A target could be always identified by the time domain distribution of signals after be-
ing filtered with the proposed algorithm regardless of the platform’s motion velocity.

5. The proposed algorithm could overcome the interference caused by velocity, and
ensure the remote target was detected during the high-speed motion of the platform.
The line spectrum detection ratio of the longitudinal component at the bow Ex1
increased from 0% to 20.9%, and the detection range was expanded from 0 m to 821 m.

6. The transverse component at the bow and stern had its detection ratio improved
more than the longitudinal component at the bow and stern. This mirrored the larger
transverse component on the route of the boat in motion in the previous analysis.

7. Conclusions

This paper illustrates the design of an electric field detection system with a high-
speed boat as the platform, and the performing of an offshore test for its feasibility. Based
on the line spectrum detection results, the sensors at the bow might experience a line
spectrum detection failure when the velocity of the boat exceeded 20 kn. For this reason, a
supplemental test was carried out to collect the interference noise generated by the boat
in motion. Moreover, the noise characteristics of the platform at different velocities were
analyzed in terms of time and frequency domains. The analysis revealed that the low
frequency electric field noise affecting the detection performance of the high-speed motion
platform belonged to non-stationary random signals, and the level of noise of the sensors
at the bow was generally lower than those at the stern. This implied that sensors would be
better if placed at the bow. The sensors at the bow and stern were equally effective when
the velocity exceeded 15 kn. In addition, noise signals were mainly in low frequency bands.

To effectively filter the interference noise, an adaptive denoising algorithm based on
ICEEMDAN with a threshold was proposed after considering the noise characteristics,
and it was verified in simulation. The results proved that the proposed algorithm could
effectively denoise the target containing noise signals collected at velocities of 5 kn, 10 kn,
15 kn, 20 kn and 25 kn. After being denoised, the signals had a distinct time domain
distribution, and a higher signal to noise ratio. Moreover, the results of line spectrum
detection were improved to different degrees for the denoised signals. The original line
spectrum detection failed when the velocity exceeded 20 kn. After denoising, the detection
range was improved by 20.9% from 0 m to 821 m, and the line spectrum detection of a
target was successfully performed during high-speed motion. The total detection range of
the proposed algorithm was increased by 53.1% from 853 m to 1306 m, to achieve remote
target detection.

Future study will focus on improving the line spectrum detection method for further
expansion of target detection range. Furthermore, a rigorous analysis in terms of capacity
will be carried out on an unknown target.
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