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Abstract: This work proposes a novel scheme for speckle suppression on medical images acquired
by ultrasound sensors. The proposed method is based on the block matching procedure by using
mutual information as a similarity measure in grouping patches in a clustered area, originating a new
despeckling method that integrates the statistical properties of an image and its texture for creating
3D groups in the BM3D scheme. For this purpose, the segmentation of ultrasound images is carried
out considering superpixels and a variation of the local binary patterns algorithm to improve the
performance of the block matching procedure. The 3D groups are modeled in terms of grouped
tensors and despekled with singular value decomposition. Moreover, a variant of the bilateral
filter is used as a post-processing step to recover and enhance edges’ quality. Experimental results
have demonstrated that the designed framework guarantees a good despeckling performance in
ultrasound images according to the objective quality criteria commonly used in literature and via
visual perception.

Keywords: ultrasound sensors; ultrasound image; speckle; superpixel segmentation; block matching;
mutual information; singular value decomposition; denoising

1. Introduction

The use of ultrasound images in diagnosing and assessing organs and soft tissue
structure is well established. Because of its non-invasive, painless nature and computing
improvements, ultrasound (US) is considered an essential medical imaging modality. The
main issue disturbing US images is the existence of a random grainy pattern known as
speckle, which is the primary factor that limits the performance in the diagnosis, detection,
and classification problems. Speckle is conventionally described as a dominant source of
noise in US imaging that decreases the contrast of soft tissue in the images and should
be suppressed without reshaping any critical features of the images or altering relevant
details. Since US imaging is a coherent sensing system, the speckle can be modeled as
multiplicative noise that is also present in other types of images acquired by different
sensors, such as lasers, synthetic aperture radar (SAR), and radiology, among others.

Over the years, numerous studies have been carried out to suppress speckle in US
images. Long-established speckle reduction methods calculate the noise-free image through
mathematical operations, such as the Lee filter [1] where the pixel’s values in the center
of a spotted window are used along with its linear combination of average density. The
filtered pixels are replaced with the new values obtained using the surrounding pixels. This
method assures the despeckling while conserving the image’s sharpness and features. A
similar classical filter is proposed by Kuan et al. [2] with the discrepancy of using a distinct
signal model to calculate the values of the despeckled pixels, and the filtering is performed
based on local statistics in the neighboring pixels. Another classical method is the Frost
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filter [3], which is based on the exponential function, whose parameters dwell on a local
variation coefficient; this technique pursues a high-pass filter, mainly in high-contrast areas.
Moreover, diverse approaches have been developed to define a threshold value for the
coefficients of Lee and Frost filters [4].

In addition to these classical methods, several approaches based on the average,
median, Gauss geometrical, Wiener, gamma maximum a posteriori (MAP), and Bayes–
Gauss algorithms have been proposed for numerous applications [5,6]. The principal
objective of these approaches is the suppression of speckle, conserving important features
such as edges and fine details.

Besides traditional methods, new techniques have demonstrated a good performance
in speckle suppression while preserving edges and details in medical US images. Garg
and Khandelwal [7] presented a procedure for thresholding wavelet coefficients using
the Neigh Shrink Sure filter and improving its performance via applying a bilateral filter.
Rahimizadeh et al. [8] designed a weighting function in the neutrosophic domain for
enhancing the performance of the non-local means (NLM) filter in reducing the speckle in
US images. Here, the pixels that are characterized by three components, including truth
membership, indeterminacy membership, and falsity membership, should be processed
to measure the similarity between pixels. Sameera and Sudhish in [9] considered the
statistical properties of US images by employing the time correlation between different
video sequence frames to calculate the MAP estimation of a noisy pixel. In [10], Mei et al.
introduced a despeckling method that utilized the non-local similarity using the optimized
Bayesian NLM filter and a redundancy index of each pixel for determining which areas of an
image have minimal redundancy. Zhang et al. [11] have developed a despeckling approach
for high-frequency speckle components based on wavelet shrinkage for an additive speckle
model that uses the statistical properties of the US image and a trilateral filter to suppress
the speckle’s low-frequency components. Zhu et al. [12] introduced a despeckling method
for US images that analyzed the local frequency information; this technique is invariant
to the intensities of the amplitudes of the features. Wang et al. [13] devised a despeckling
technique using stationary wavelet thresholding and applying an edge detector to the
low-frequency sub-bands for preserving fine details.

An approach based on homomorphic filtering is given in Yaseen et al. [14] where
total variation (TV) regularization is used over a dictionary trained by K -singular value
decomposition (K-SVD) and optimized with the split Bregman algorithm. In [15], the DLRA
filter is introduced for speckle reduction in US images, utilizing a low-rank approximation
matrix and the weighted nuclear norm minimization based on the mathematical operation
of third-order tensors. Nevertheless, this approach does not consider statistical information
for creating the tensors. On the contrary, Nadeem et al. [16] differentiated between homo-
geneous areas and non-homogeneous ones by considering statistical properties. However,
their results tended to modify the intensity of the pixels. Jubairhamed et al. [17] proposed
a despeckling method in the anisotropic diffusion scheme. They utilized contourlet for
thresholding the speckled pixels; nevertheless, the initial decomposition levels of the
transformation approximate the original image, but the last decomposition level presents
little relevance to the original image. In the study [18], a method for filtering images
contaminated by additive-multiplicative noise is introduced using the formation of similar
structures in 3D space, homomorphic transformation, where the 3D filtering approach is
based on the sparse representation in the discrete cosine transform. This scheme employs
a post-processing step that consists of a bilateral filter. More recently, Wang et al. [19]
proposed a despeckling method for SAR images implementing a clustering approach based
on the superpixels algorithm. They considered that the pixels have the same characteristics
to furnish different weights for the speckle coefficients. In the work [20], a technique for
despeckling SAR images has been introduced based on clustering areas using segmentation
via k-means and MAP estimation.

Dabov et al. [21] devised a new framework for filtering Gaussian white noise in im-
ages. This approach is based on the block matching procedure, which is used for detecting
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movement in video sequences. First, a 3D group composed of similar patches in the images
is formed by determining the Euclidean distance between them and a reference one. Then,
the Wiener filter is used to obtain the denoised image. The BM3D framework has been
used for different applications, such as despeckling SAR images [22–24]. Nevertheless, its
performance decreases at higher noise levels and does not consider the different character-
istics of the noise under the domain of the transformation employed, such as the discrete
cosine transform (DCT). These drawbacks of the BM3D algorithm are addressed by Hasan
and El-Sakka [25]. Furthermore, Santos et al. [26] provided a scheme for arranging the 3D
groups by considering different stochastic distances (Kullback–Lebler distance, Rényi dis-
tance, Hellinger distance, and Bhattacharyya distance) for measuring the similarity between
patches. They took into account the statistical properties of the US images; nonetheless,
their method did not consider other features for comparing the patches.

It can be observed that different approaches take advantage of the fact that pixels’
intensities in local neighboring pixels of a clustered area are highly correlated. Consequently,
this work aims to proportionate a despeckling method for medical ultrasound images that
considers the images’ statistical properties in combination with their texture patterns for
creating 3D groups in the BM3D scheme. For this purpose, the segmentation of US images
is carried out considering superpixels and a variation of local binary patterns, named CMI-
3DSVD (clustered-based using mutual information and 3D-singular value decomposition),
permitting to improve the performance of the block matching procedure. Furthermore, the
speckle reduction is modeled as a low-rank tensor approximation problem. The principal
contributions of the proposed method are listed below.

1. The method integrates the local statistical properties and texture on a clustered area of
an image based on superpixel segmentation and a variant of the local binary patterns,
enhancing the performance of the block matching procedure in the BM3D framework.

2. The new approach uses the mutual information measure for comparing the similarity
between patches in the block matching procedure to consider the high correlated
information on a clustered area of a medical US image for the despeckling procedure.

3. The proposed arrangement from the 3D grouping in the block matching algorithm
supports an efficient procedure for despeckling using tensor algebra.

4. A post-processing stage is introduced by employing a variant of the bilateral filter to
increase the quality of edges and fine details in medical ultrasound images.

The rest of this paper is organized as follows. Section 2 explains the proposed de-
speckling method. Later, the experimental results are described and discussed in Section 3.
Finally, this paper concludes in Section 4.

2. Material and Methods

Since the medical ultrasound images are acquired from a coherent acquisition system,
the presence of speckle can be modeled as multiplicative noise. Such a model has been
widely used for deploying speckle reduction methods and can be expressed as follows.

X(i, j) = Y(i, j)S(i, j) + A(i, j), (1)

where X(i, j) corresponds to the image corrupted with speckle, S(i, j) denotes the speckle
coefficients in the image, and Y(i, j) is the noise-free image. A(i, j) represents additive noise,
which usually is present in a slight amount. Finally, (i, j) represents the spatial position of
the pixels.

The proposed method can be divided into three principal stages. Firstly, the image is
segmented to improve the performance of the block matching procedure and the tensoriza-
tion of the image. The second stage consists of the filtering operation of an image by using
the minimization of the low-rank approximation. Finally, the enhancement of the edges
and fine details are performed in the third stage. Figure 1 illustrates the proposed method
via a block diagram.
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Figure 1. Block diagram of the proposed CMI-3DSVD filter.

2.1. Image Segmentation

In order to limit the search for similar patches and contemplate the local statistical
properties and texture features, a segmentation scheme is proposed based on the superpix-
els algorithm. Therefore, the local binary pattern (LBP) algorithm is considered because it
extracts irregular texture features supporting rotation invariance in grayscale, such as in
medical images [27]. The local tri-directional pattern (LTriDP) [28] is an expansion of LBP
that employs the relation between a center pixel and the neighboring pixels in a window of
size of 3× 3 pixels, as shown in Figure 2.

Figure 2. Patch of size 3× 3 used for the extraction of texture.

The magnitude of the LTriDP is calculated to determine a pixel’s texture feature,
considering the difference of the grayscale value between the central pixel pc and the
neighboring pixels pt in the vertical and horizontal directions. This process is described
as follows:

M1 =
√
(pt−1 − pc)

2 + (pt+1 − pc)
2

M2 =
√
(pt−1 − pc)

2 + (pt+1 − pt)
2,

(2)

where t = 1, 2, . . . , 8; in the specific case when t = 1 the pixel pt−1 = p8. According to the
values obtained from (2), it is possible to determine the magnitude of this pixel based on
the results of M1 and M2 using the following equation:

Mag(t) =
{

1, M1 ≥ M2
0, M1 < M2.

(3)

The local texture feature of the central pixel pc is calculated as

LTriDPMag(pc) = {Mag(1), Mag(2), . . . , Mag(8)}, (4)

LTriDP(pc) =
7

∑
t=0

2t × LTriDPMag(pc). (5)
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Once the texture features are computed, the simple linear iterative clustering (SLIC)
method is applied. It generates superpixels employing the color similarity and the prox-
imity of the pixels of an image. It is based on the K-means clustering procedure to reduce
the searching area [29]. However, Kim et al. [30] concluded that only the grayscale pixels
that are similar to the center of the cluster are used to update the spatial position of the
center pixel.

Algorithm 1 explains the procedure for the SLIC superpixel segmentation, where d∗
denotes a distance between the following features of the pixel pt and the central pixel
CK: g is the pixel’s grayscale value, S is spatial distance, and T defines the LTriDP value.
Moreover, Ng is the maximum distance of dg, NS represents the maximum size of the
neighborhood of the cluster (NS = S), and NT is the maximum of dT .

Algorithm 1 Segmentation based on superpixels.
Input: noisy image X(i, j)
Output: segmented image X̄(i, j)

1: Find the number of peaks in the histogram to define the K clusters.
Calculate the size of the cluster S by:

2: S =
√

P/K; . P is the number of pixels.
Determine the distance for clustering in a segment of size of 2S× 2S:

3: dg =
√(

gCK − gpt

)2

4: dS =
√(

iCK − ipt

)2
+
(

jCK − jpt

)2

5: dT =
√(

TCK − Tpt

)2, . T is the magnitude LTriDPMag(pc).

6: D =

√(
dg
Ng

)2
+
(

dS
NS

)2
+
(

dT
NT

)2

Update the clusters by:
7: GK = 1

PK
∑r∈αK

Gr

8: SK = 1
PK

∑r∈αK
Sr

9: X̄(i, j) is composed by clusters X0 to XK

In the previous pseudocode, PK defines the total number of pixels in the K-th super-
pixel αK = (|CK − pt| < σK) ∩OK; here, OK is the set of clustered pixels, and σK denotes its
standard deviation.

2.2. Block Matching via Mutual Information

The next stage in the proposed method consists of searching for similar patches to the
reference one via block matching utilizing the mutual information (MI) measure, which
characterizes the statistical dependence between two random variables. The MI measure,
denoted as MI(X0, Xk), is the average amount of information provided by the occurrence
of the reference patch X0 on the occurrence of the k-th similar patch Xk of a fixed size in a
clustered area. Contemplating that a probability density function represents the speckle
coefficients intensity and pixel values, it is viable to quantify the similarity between patches
through the entropy of this distribution [31]. The MI measure is expressed as follows:

MI(X0, Xk) = H(X0) + H(Xk)− H(X0, Xk), (6)

where H(X0) and H(Xk) represent the entropy of X0 and Xk, respectively; H(X0, Xk) is the
joint entropy between them. H(X0) is defined as follows:

H(X0) = −∑
t

P(pt)log2P(pt), (7)
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where P(pt) is the probability of the t-th pixel p. Then, the joint entropy is defined
as follows:

H(X0, Xk) = −∑
t

P(X0 = X0t , Xk = Ykt)log2P(X0 = X0t , Xk = Xkt). (8)

Based on the block matching algorithm, a search for similar patches maximizing
the mutual information is performed. The patches are composed of the pixels with the
maximum dependence between them since the mutual information depends on the pixel’s
probability of occurrence between the blocks.

The entropy H(X0) and H(Xk) can be found by computing the histograms that arrange
the total number of pixels analyzed for every possible intensity found in a patch. Then,
this histogram is normalized by the total number of pixels to estimate the probability
density function.

The joint two-dimensional histogram between two blocks is calculated to find the
joint entropy H(X0, Xk). The joint histogram is akin to the one-dimensional histogram.
However, the first dimension corresponds to the intensities of a reference patch, while the
second one represents the intensities of the k-th reference patch.

As a result, we obtain a third order tensor, denoted as XK(i, j, k), where the subscript
K defines the K-th clustered area of the input image.

2.3. Despeckling via Singular Value Decomposition

One of the most concurrent approaches for despeckling images is under the homomor-
phic transform domain, which is based on calculating the logarithm in order to remodel
the multiplicative nature of the speckle into an additive model, such as:

log
[
XK(i, j)

]
= log

[
YK(i, j)SK(i, j) + AK(i, j)

]
,

ẊK(i, j) = ẎK(i, j) + ṠK(i, j) +
AK(i, j)

YK(i, j)SK(i, j)
,

(9)

where ṠK(i, j) represents the speckle in an additive log-transformed model, which is usually
considered for homomorphic schemes, ẎK(i, j) denotes a noise-free 3D block and ẊK(i, j)
corresponds to a speckled 3D block, and the last term reflects the influence of additive
noise with sufficiently low intensity compared to speckle coefficients

(
AK(i,j)

YK(i,j)SK(i,j)
� 1

)
.

Here, the subscript K represents the tensor that corresponds to the K-th clustered area of
the input image, as shown in Figure 1.

The weighted nuclear norm minimization (WNNM) is a low-rank approximation
technique utilized to estimate the despeckled image from grouped blocks. The WNNM
framework is defined as

ˆ̇YK = arg min
ẎK

1
σ̇2

n

∣∣∣∣ẊK − ẎK
∣∣∣∣2

F +
∣∣∣∣ẎK

∣∣∣∣
w,∗, (10)

where σ̇2
n indicates the noise variance under the additive model, and

∣∣∣∣ẊK − ẎK
∣∣∣∣2

F is the
F-norm. The solution to the previous equation is given by

ˆ̇YK = USw(Σ)VT . (11)

The proof has been explained and discussed in [32] that corresponds to the singular value
decomposition of the noised patch ẊK, such as SVD(ẊK) = UΣVT . Here, Σ corresponds
to the singular values of ẊK. Further, the operation of soft-thresholding Sw(Σ) is obtained
as follows:

Sw(ΣK) = max((ΣK − wK), 0). (12)



Sensors 2022, 22, 5113 7 of 19

Here, wK defines the weights of the singular values and are formulated as

wK =
r
√

k
(σK(XK) + ε)

, (13)

where r > 0, k defines the number of similar patches in the third order tensor, σK is the noise
variance in the log-domain, and ε = 10−16 is a small constant to avoid the division by zero.
Afterwards, every despeckled tensor ˆ̇YK is subjected to the exponential transformation to
return to the original model of the image, resulting in

ŶK = exp
(

ˆ̇YK

)
. (14)

Finally, for the destensorization of the despeckled patches, the values obtained from
the MI are used as weight values according to the following equation:

Ŷ(i, j) = ∑k
m=1 ŶK(i, j, k)qm

∑k
m=1 qm

, (15)

where ŶK(i, j, k) corresponds to the K-th despeckled tensor ŶK formed by k-th similar
patches; and qm = 1−MI(XK(i, j, 0), XK(i, j, m)). Algorithm 2 describes the procedure for
despeckling a tensor using the SVD.

Algorithm 2 Despeckling tensors via SVD.
Input: noisy tensor XK
Output: despeckled tensor ŶK

1: ẊK = log
(
X̂
)

. log transform
2: for K = 1 to K-th cluster do
3: Estimate weight vector w
4: wK =

r
√

p
σK(XK)+ε

5: Singular value decomposition: |U, Σ, V| = SVD(ẊK);
6: Get the estimation: ẎK = USw(Σ)VT .;
7: Sw(ΣK) = max((ΣK − wK), 0).
8: ŶK = exp

(
ẎK
)

. exp transform
9: end for

Return: ŶK

2.4. Edge and Fine Detail Enhancement

In the final stage, named the post-processing phase, the Gaussian-Adaptive Bilateral
Filter (GABF) [33] is used to preserve and improve the quality of the edges and fine
details. The principal idea of this filter consists of producing low-pass Gaussian guidance.
A weighted average of the pixels achieves this in the adjacent position, with a weight
descending from the center.

2.5. Algorithm Summary

The proposed filtering technique consists of three principal stages: (i) segmentation
based on superpixels and block matching via mutual information, (ii) despeckling of 3D
blocks via singular value decomposition, and (iii) enhancement of edges and fine details. A
detailed description of the proposed CMI-3DSVD filter is summarized in the Algorithm 3,
where these operations are combined in the despeckling of US images.

2.6. Image Quality Metrics

To evaluate the performance of the proposed despeckling method, the following
convention to describe the objective criteria is used: Xd is the despeckled image, Xn denotes
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the noisy image, and Xg represents the ground truth noiseless image; M and N are the
dimensions of the image. Finally, the denotations E[·] and VAR[·] indicate the expected
value and variance operations. The criteria that require Xg are known as full-reference
metrics, while the criteria that only use Xd and Xn are the non-reference metrics [26].

Algorithm 3 Algorithm summary: CMI-3DSVD filter.
(i) Segmentation based on superpixels

Input: noisy image X(i, j)
Output: segmented image X̄(i, j)

1: Algorithm 1
Block matching via mutual information:

Input: segmented image X̄(i, j)
Output: noisy tensor XK(i, j, k)
Searching of the k-th similar patches to the reference one X0 via:

1: for K = 1 to K-th cluster do
2: for k = 1 to k-th similar patch do
3: MI(X0, Xk) = H(X0) + H(Xk)− H(X0, Xk)
4: if MI(X0, XK) < threshold
5: XK(i, j, k) = [X0; . . . ; Xk] . stacking of similar patches
6: end for
7: end for

(ii) Despeckling of tensors via Singular Value Decomposition
Input: noisy tensor XK(i, j, k)
Output: despeckled tensor ŶK(i, j, k)

1: Algorithm 2
Redistribution of tensors (destensorization):

Input: despeckled tensor ŶK(i, j, k)
Output: despeckled image Y(i, j)
Searching of the k-th similar patches to the reference one X0 via:

1: for K = 1 to K-th cluster do
2: for k = 1 to k-th similar patch do

3: Ŷ(i, j) = ∑k
m=1 ŶK(i,j,k)qm

∑k
m=1 qm

4: end for
5: end for

(iii) Enhancement of edges and fine details
Input: despeckled image ŶK(i, j)
Output: enhanced and despeckled image Y(i, j)
Gaussian-adaptive bilateral filter:

1: Estimate the spatial kernel
2: Low-pass guidance
3: Y(i, j) = GABF(Ŷ(i, j))

(A) Speckle smoothing metrics. Within homogeneous regions of an image, the speckle intensity,
also known as the speckle index (SI), is given by the relation of the standard deviation and
the mean [34] as follows:

SI =

√
VAR[Xn]

E[Xn]
. (16)

The speckle suppression index (SSI) is obtained by normalizing the SI of the despeckled
image by the SI of the original image in a specific homogeneous area in an image, which is
formulated by

SSI =

(√
VAR[Xd]

E[Xd]

)(
E[Xn]√
VAR[Xn]

)
(17)
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The lower the SSI is, the better despeckling performance the filter has. Thus, SSI < 1.
Nonetheless, the SSI may fail to evaluate the speckle removal performance if the filter
overestimates the despeckled image mean. To avoid this issue, the speckle suppression and
mean preservation index (SMPI) are used:

SMPI =
(

R + E[Xn]− E[Xd]
)(√VAR[Xd]√

VAR[Xn]

)
, (18)

where

R =
max

(
E[Xd]

)
−min

(
E[Xd]

)
E[Xn]

.

A lower value of SMPI indicates a better despeckling performance regarding mean
preservation and speckle reduction [35].
(B) Peak signal-to-noise ratio. The peak signal-to-noise ratio (PSNR) [36] is the ratio between
the power of a signal and the power of the disturbing noise and is expressed as

PSNR = 10log10

(
2552

MSE

)
. (19)

The mean square error (MSE) represents the noise power and may be calculated as

MSE =
1

MN

M,N

∑
i,j=1

(
Xg(i, j)− Xd(i, j)

)2. (20)

A high PSNR establishes a high signal-to-noise ratio and, consequently, a better filtering
performance.
(C) Structural similarity index. The structural similarity index (SSIM) is a quality measure
index that compares two images in terms of structures, luminance, and contrast. In order
to implement the SSIM as a full-reference criterion, Taxt [37] suggests using the ground
truth noiseless image. The SSIM values range in the interval [0, 1], where 0 indicates total
dissimilarity and 1 total similarity.
(D) Edge preservation index. The edge preservation index (EPI) is a criterion that specifies
the effectiveness of preserving edges of a filtering method. In this work, there is used the
definition given by Sattar et al. [38]

EPI =
∑M,N

i,j=1

(
Hg(i, j)Hd(i, j)

)√(
∑M,N

i,j=1 Hg(i, j)2
)(

∑M,N
i,j=1 Hd(i, j)2

) , (21)

where Hg =
(
∆Xg − E[∆Xg]

)
, Hd =

(
∆Xd − E[∆Xd]

)
and ∆ corresponds to the high-pass

filtered image, which is obtained with a 3× 3 pixel standard approximation of the Laplacian
operator. The EPI values extend between [0, 1], where the values near 1 indicate a good
conservation of edges.
(E) Resolution α. It is a metric of the resolution of US images, which has been employed
such as Santos et al. [26]. It is computed as the percentage of pixels in the auto-correlation
function of the despeckled image that outstrips 75% of its maximum value. A lower
resolution value (α) indicates a better image resolution.

3. Experimental Results and Discussion

During the development of the proposed method, numerous experiments were carried
out to obtain an optimal window size for 3D filtering considering the properties and the
PSNR of the filtered image. According to the tests carried out by Dabov et al. [21], two
profiles were considered according to the intensity of the speckle coefficients, since at high
noise levels, the images are deformed on a larger scale. The noise was tested for a standard
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deviation of different levels of multiplicative speckle noise ranging from 0.10 to 1.0. The
results represented in Figure 3 indicates that the optimum size for σ ≤ 0.50 is size of 5× 5,
while 7× 7 is for σ > 0.50.

0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55

35
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33

32

31
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29

0.10 σ
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7×7
9×9

11×11

σ

P
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N
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3×3
5×5
7×7
9×9

11×11

0.50

18

20

22

24

26

16

28

0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

(a) (b)

Figure 3. PSNR values that validate the optimum size of patches for the tensorization of the image.
(a) For σ ≤ 0.50 and (b) for σ > 0.50.

To give a view of the performance of the block matching procedure with the minimum
and the maximum number of stacked elements using the Euclidean and Hellinger distances
and the proposed mutual information, the SSIM values between the reference patch and
its similar patches are illustrated in Figure 4. Although the difference in SSIM values is
minimal, it is possible to determine that the mutual information yields better performance
for constituting third-order tensors.

0.9463

0.9421

0.9442

0.9680

0.9661

0.9670

0.9762

0.9701

0.9731

Euclidean
distance

Hellinger
distance

Mutual
information

SSIM0.50

Figure 4. Evaluation of the block matching performance considering the SSIM of Euclidean distance,
Hellinger distance, and mutual information. Minimum number of similar patches (red) vs. maximum
number of similar patches (blue) and its mean value (green).

The proposed approach has been validated using simulated and authentic ultrasound
images. For all cases, we compare our approach with the BM3D [21] method, SD-BM3D
method (Hellinger distance) [26], DLRA method [9], K-SVD [14] method, and Contourlet-
based method (CLT) [17], which have been described in Section 1. However, each filter
has been stated with different parameters in the reports mentioned above, managing the
compensation between smoothing and detail preservation; thus, a rule can not be set to de-
termine the optimum set of parameters to be used in general. Consequently, the parameters
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for experimentation with the filters have been chosen to overcome this issue by adopting
the following procedure. First, the BM3D filter is run with a set of parameters that visually
seems to have a good balance between filtering and edge preservation. Second, calculate
the resolution (α) metric and implement the other filters, modifying the parameters until
the same resolution (α) is known. Under these considerations, the performance of the filters
is optimum to be compared, contemplating that the images have the same resolution metric.
The experimental procedure was executed in an Intel Core i7-6700K PC with Windows 10,
using the MATLAB 2016b environment.

3.1. Experiments with Simulated Ultrasound Images

For the simulated US images, we used the tool Field II [39,40] to create images for
the cyst phantom, such as indicated in [26]. There are three cyst regions, which are the
black areas of the Figure 5, their amplitude is distributed to the corresponding unit mean
Gaussian distribution. There are also high scattering regions, represented by white spots in
Figure 6 whose amplitudes are multiplied by ten and are made zero inside the cyst region.
The configuration to simulate ultrasound images using the Field-II program is given in
Table 1.

Table 1. Field-II transducer configuration.

Transducer center frequency 3.5× 106 Hz
Sampling frequency 100× 106 Hz

Speed of sound 1540 m/s
Width of element 1540/(3.5× 106)m
Height of element 5/1000 m

Number of physical elements 192
Number of active elements 62

The density of 10 scatterers/mm3 is used to achieve fully developed speckle, which is
confirmed to be constant by checking the statistics of the speckle that should correspond to
a Rayleigh distribution in a homogeneous region. According to the experiments, and for the
Field-II configuration, as shown in Table 1, a density higher than 8 scatterers/mm3 would be
enough to generate a fully developed speckled ultrasound image. The simulated speckled
US images are filtered via the proposed CMI-3DSVD despeckling framework, according to
the algorithm summary (Section 2.5), and compared with the state-of-the-art approaches.
Figure 7 illustrates the process performed for testing, evaluating, and comparing the results
of the despeckled simulated US images using the comparing methods and the CMI-3DSVD
filter. This procedure is performed ten times to average the objective criteria values.

(a) (b)

(c)

(d)

(e)

(f)

(g)

Figure 5. Subjective visual results of the despeckled simulated US image US-sim-04. (a) Input image.
Details are taken from the region marked in green: BM3D: (b) despeckled image, PSNR = 15.47 dB,
EPI = 0.2791; (c) error image. SD-BM3D: (d) despeckled image, PSNR = 16.07 dB, EPI = 0.2898;
(e) error image. CMI-3DSVD: (f) despeckled image, PSNR = 16.35 dB, EPI = 0.3156; (g) error image.
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Figures 5 and 6 show the simulated and filtered ultrasound images, indicated as
US-sim-04 and US-sim-11, respectively, with the subjective visual comparison with the
BM3D and SD-BM3D.

(a) (b)

(c)

(d)

(e)

(f)

(g)

Figure 6. Subjective visual results of the despeckled simulated US image US-sim-11. (a) Input image.
Details are taken from the region marked in green: BM3D: (b) despeckled image, PSNR = 17.02 dB,
EPI = 0.3247; (c) error image. SD-BM3D: (d) despeckled image, PSNR = 17.37 dB, EPI = 0.3516;
(e) error image. CMI-3DSVD: (f) despeckled image, PSNR = 18.04 dB, EPI = 0.4021; (g) error image.

Field-II
simulation program

Simulated

noisy US 
image

BM3D
SD-BM3D

K-SVD
CLT

DLRA
CMI-3DSVD

Despeckled 
image

Despeckling filters

Evaluation 
of results

Figure 7. Block diagram of the filtering testing procedure for simulated US images.

The visual results in Figures 5 and 6 show that the designed framework can achieve
good performance for the despeckling procedure. As can be observed, the BM3D technique
produces artifacts that degrade the processed images, and the SD-BM3D method tends
to over-smooth edges and fine details by comparing the error images. The principal
disadvantage of these techniques is that they do not consider the images’ local statistical
properties and texture features for grouping the 3D blocks, which limits the denoising
performance. The proposed CMI-3DSVD filter outperforms the mentioned denoising
methods by preserving important details of the image, such as edges, and by not blurring
homogeneous regions.

Table 2 presents the objective results for the criteria values of PSNR, SSIM, and EPI,
and Table 3 exposes the values of SSI, SMPI, and resolution α for the complete database of
simulated ultrasound images. The experiments were run ten times, and the criteria values
were averaged.
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Table 2. Average values of PSNR, SSIM, and EPI for the database of simulated US images, where the
highest values are highlighted in bold.

Metric Method
Noise Level

0.2 0.4 0.6 0.8 1.0

PSNR

BM3D 22.76 20.81 20.11 19.52 18.83
SD-BM3D 23.90 21.85 21.11 20.50 19.77
K-SVD 22.93 20.96 20.25 19.66 18.97
CLT 22.99 21.01 20.30 19.72 19.02
DLRA 24.12 22.04 21.30 20.69 19.95
CMI-3DSVD 24.71 22.59 21.82 21.20 20.44

SSIM

BM3D 0.5806 0.5412 0.5090 0.4916 0.4718
SD-BM3D 0.6096 0.5681 0.5344 0.5161 0.4953
K-SVD 0.5848 0.5450 0.5126 0.4951 0.4752
CLT 0.5863 0.5464 0.5140 0.4964 0.4765
DLRA 0.6150 0.5731 0.5391 0.5207 0.4997
CMI-3DSVD 0.6302 0.5873 0.5524 0.5335 0.5121

EPI

BM3D 0.6645 0.6472 0.6269 0.6154 0.6086
SD-BM3D 0.6976 0.6795 0.6581 0.6461 0.6389
K-SVD 0.6693 0.6519 0.6314 0.6198 0.6130
CLT 0.6711 0.6536 0.6331 0.6214 0.6147
DLRA 0.7038 0.6855 0.6640 0.6518 0.6447
CMI-3DSVD 0.7212 0.7024 0.6803 0.6679 0.6605

Table 3. Average values of SSI, SMPI, and resolution α for the database of simulated US images,
where the highest values are highlighted in bold.

Metric Method
Noise Level

0.2 0.4 0.6 0.8 1.0

SSI

BM3D 0.1008 0.1073 0.1122 0.1182 0.1268
SD-BM3D 0.1031 0.1097 0.1146 0.1208 0.1296
K-SVD 0.1018 0.1083 0.1133 0.1193 0.1280
CLT 0.1029 0.1095 0.1145 0.1206 0.1294
DLRA 0.1074 0.1144 0.1195 0.1259 0.1351
CMI-3DSVD 0.1134 0.1208 0.1262 0.1329 0.1427

SMPI

BM3D 0.2090 0.2044 0.1987 0.1969 0.1926
SD-BM3D 0.2136 0.2089 0.2031 0.2013 0.1969
K-SVD 0.2110 0.2063 0.2005 0.1983 0.1945
CLT 0.2134 0.2086 0.2028 0.2010 0.1967
DLRA 0.2228 0.2178 0.2117 0.2099 0.2053
CMI-3DSVD 0.2354 0.2299 0.2235 0.2216 0.2167

α

BM3D 0.1408 0.1397 0.1370 0.1348 0.1337
SD-BM3D 0.1468 0.1451 0.1427 0.1405 0.1382
K-SVD 0.1422 0.1410 0.1383 0.1360 0.1349
CLT 0.1437 0.1426 0.1398 0.1375 0.1364
DLRA 0.1501 0.1489 0.1460 0.1437 0.1424
CMI-3DSVD 0.1584 0.1572 0.1541 0.1517 0.1504

Table 2 shows that the proposed method achieves the best results in the full-referenced
metrics, indicating that the CMI-3DSVD filter carries out a despeckled image close to a
noise-free one. It can be observed that the designed framework surpasses, on average,
by 0.53 dB for PSNR, 0.013 for SSIM, and 0.020 for EPI the results of the state-of-the-
art methods at different noise intensities. Table 3 exposes the non-referenced criteria
values, demonstrating that the CMI-3DSVD despeckling framework suppresses the speckle
coefficients without deforming the processed image, considering the highest values of
SMPI. As shown in the previous tables, the proposed framework is robust to different noise
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intensities, demonstrating that it performs well for applications in detection systems and
classifying pathologies through ultrasound images.

3.2. Experiments with Real Ultrasound Images

The experiments with real images were performed using a database of ultrasound
frames of breast lesions recorded from malignant and benign tumors. This dataset is
available in [41]. The complete database consists of 183 frames from malignant tumors
and 183 from benign tumors, but ten images from each set of frames have been taken to
evaluate the proposed method.

The speckle noise was simulated employing the following procedure. First, two
random vectors were created to generate the speckle coefficients presented in the real
US image from the database. Afterward, two random vectors were formed with sizes
corresponding to the width and height of the processed image to create a pure noisy image.
The standard deviation of the noise varied between 0 and 1 in intervals of 0.1. Then, the
pure noisy image is combined with the real US one considering the multiplicative model
described in Equation (1). Thus, the noisy image is filtered using the proposed CMI-3SVD
based on the algorithm summary (Section 2.5). Figure 8 illustrates the implementation
process for testing and evaluating the CMI-3DSVD filter and comparing techniques. This
procedure is performed ten times to average the objective criteria values.

Real US
image from 

database

BM3D
SD-BM3D

K-SVD
CLT

DLRA
CMI-3DSVD

Despeckled 
imageUS image

Noisy Generation of 
speckle noise

Despeckling filters

Evaluation 
of results

Figure 8. Experimental procedure for the comparison of the CMI-3DSVD filter on real ultrasound
images.

Figures 9 and 10 show the actual filtered ultrasound images, named US-07 and US-20,
respectively, with the subjective visual comparison of the proposed CMI-3DSVD against
the BM3D and DLRA methods.

(a) (b)

(c)

(d)

(e)

(f)

(g)

Figure 9. Subjective visual results of the despeckled real US image US-07. (a) Input image. Details are
taken from the region marked in green: BM3D: (b) despeckled image, PSNR = 26.57 dB, EPI = 0.7164;
(c) error image. DLRA: (d) despeckled image, PSNR = 26.92 dB, EPI = 0.8275; (e) error image.
CMI-3DSVD: (f) despeckled image, PSNR = 27.10 dB, EPI = 0.8641; (g) error image.
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(a) (b)

(c)

(d)

(e)

(f)

(g)

Figure 10. Subjective visual results of the despeckled real US image US-20. (a) Input image. Details are
taken from the region marked in green: BM3D: (b) despeckled image, PSNR = 25.48 dB, EPI = 0.6872;
(c) error image. SD-BM3D: (d) despeckled image, PSNR = 26.01 dB, EPI = 0.7158; (e) error image.
CMI-3DSVD: (f) despeckled image, PSNR = 26.33 dB, EPI = 0.7396; (g) error image.

Figures 9 and 10 show that the proposed approach provides high-quality despeckled
images compared to the BM3D and DLRA methods. Moreover, as noticed in the error
images, the DLRA filter causes blurring in detailed areas. This drawback resides in the lack
of consideration of statistical properties for 3D group creation and the use of the Euclidean
distance to measure the similarity between patches, which may cause alteration of the
edges’ properties of the processed 3D block. In opposition, the CMI-3DSVD filter achieves
better performance since it preserves edge quality and does not deform homogeneous
regions in the processed images.

In order to validate the performance on speckled real US images of the CMI-3DSVD
filter and compare it with other despeckling methods, Table 4 shows the objective criteria
values of PSNR, SSIM, and EPI as Table 5, the values of SSI, SMPI, and resolution α.

Table 4. Average values of PSNR, SSIM, and EPI for the database of real US images, where the highest
values are highlighted in bold.

Metric Method
Noise Level

0.2 0.4 0.6 0.8 1.0

PSNR

BM3D 28.99 26.51 25.61 24.87 23.99
SD-BM3D 30.44 27.83 26.89 26.11 25.19
K-SVD 29.21 26.70 25.79 25.05 24.16
CLT 29.29 26.77 25.86 25.12 24.23
DLRA 30.72 28.08 27.13 26.35 25.42
CMI-3DSVD 31.47 28.77 27.80 27.00 26.04

SSIM

BM3D 0.7395 0.6893 0.6483 0.6261 0.6009
SD-BM3D 0.7764 0.7236 0.6806 0.6573 0.6309
K-SVD 0.7448 0.6941 0.6529 0.6306 0.6053
CLT 0.7468 0.6960 0.6547 0.6323 0.6069
DLRA 0.7833 0.7300 0.6867 0.6632 0.6365
CMI-3DSVD 0.8026 0.7480 0.7036 0.6795 0.6522

EPI

BM3D 0.8463 0.8243 0.7984 0.7838 0.7752
SD-BM3D 0.8885 0.8654 0.8382 0.8229 0.8138
K-SVD 0.8524 0.8303 0.8042 0.7894 0.7808
CLT 0.8547 0.8325 0.8063 0.7915 0.7829
DLRA 0.8964 0.8731 0.8457 0.8302 0.8211
CMI-3DSVD 0.9185 0.8946 0.8665 0.8507 0.8413
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Table 5. Average values of SSI, SMPI, and resolution α for the database of real US images, where the
highest values are highlighted in bold.

Metric Method
Noise Level

0.2 0.4 0.6 0.8 1.0

SSI

BM3D 0.1401 0.1491 0.1559 0.1642 0.1762
SD-BM3D 0.1432 0.1524 0.1593 0.1678 0.1800
K-SVD 0.1414 0.1505 0.1574 0.1657 0.1778
CLT 0.1430 0.1522 0.1591 0.1675 0.1798
DLRA 0.1493 0.1589 0.1661 0.1749 0.1877
CMI-3DSVD 0.1576 0.1678 0.1754 0.1847 0.1982

SMPI

BM3D 0.2904 0.2839 0.2760 0.2736 0.2676
SD-BM3D 0.2968 0.2902 0.2821 0.2796 0.2735
K-SVD 0.2931 0.2866 0.2786 0.2762 0.2702
CLT 0.2964 0.2898 0.2817 0.2792 0.2732
DLRA 0.3095 0.3025 0.2941 0.2916 0.2852
CMI-3DSVD 0.3267 0.3194 0.3105 0.3078 0.3011

α

BM3D 0.1956 0.1941 0.1903 0.1873 0.1857
SD-BM3D 0.2092 0.2073 0.2034 0.2012 0.1985
K-SVD 0.1975 0.1959 0.1921 0.1890 0.1874
CLT 0.1997 0.1981 0.1942 0.1911 0.1895
DLRA 0.2085 0.2069 0.2028 0.1996 0.1979
CMI-3DSVD 0.2201 0.2184 0.2141 0.2107 0.2089

Table 4 shows that the CMI-3DSVD filter produces the despeckled images with the
best values of the full-referenced metrics, which means that it provides an image similar to
a noise-free one. Thus, the proposed CMI-3DSVD filter outperforms on average by 0.60 dB
for PSNR, 0.018 for SSIM, and 0.021 for EPI compared with state-of-the-art methods. Table 5
shows the non-referenced criteria values, which demonstrate that the designed framework
reduces the intensity of the speckle coefficients while conserving the information of the
processed image, considering the highest values of SSI and SMPI.

In addition to evaluating and comparing the filters using objective quality metrics,
a subjective evaluation based on the experience of a medical radiologist is performed.
For this, the same 20 real ultrasound images processed by the CMI-3DSVD and other
comparison methods were used. Contemplating the subjective visual quality of the image
filtered by each method, the specialist assigned them a score according to the following
scale: 1—bad, 2—poor, 3—fair, 4—good, and 5—excellent without knowing which image
corresponds to each filter. This scale is provided by the International Telecommunications
Union (UTI) quality grading recommendations in [42]. The results of this evaluation are
represented in Table 7 and demonstrate that the proposed CMI-3DSVD despeckling method
achieves high-quality despeckled images, considering the subjective visual perception of
a specialist.

Table 6. Specialist ratings for the filtered real ultrasound images.

No. of Image BM3D SD-
BM3D K-SVD CLT DLRA CMI-

3DSVD

1 5 5 5 5 5 5
2 5 5 5 4 4 5
3 5 4 5 5 3 5
4 5 5 4 4 5 5
5 4 5 4 4 5 5
6 5 5 5 5 5 4
7 4 5 5 5 5 5
8 4 5 5 4 4 5
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Table 7. Cont.

No. of Image BM3D SD-
BM3D K-SVD CLT DLRA CMI-

3DSVD

9 5 5 5 4 4 5
10 5 4 3 5 4 5
11 4 4 4 4 5 4
12 3 4 3 3 5 5
13 4 5 4 3 4 5
14 4 5 5 4 5 4
15 3 3 4 4 5 4
16 5 3 4 5 5 5
17 3 3 5 5 4 3
18 5 4 3 4 3 5
19 3 4 5 5 4 5
20 3 5 3 4 5 5
Average 4.2 4.4 4.3 4.3 4.45 4.7

4. Conclusions

This paper presents a novel despeckling method for medical ultrasound images. The
consideration of the local statistical properties and texture on a clustered area of the images
appears to demonstrate better performance with the block matching procedure, which
implies an increased suppression of the speckle coefficients in homogeneous regions by
comparing the results of the SD-BM3D and DLRA filters. Moreover, the proposed CMI-
3DSVD achieves a good execution in preserving the edges and fine details, which are
important features for the tasks of classification or detection.

Furthermore, using the mutual information as a similarity measure for the block match-
ing procedure improves the formation of third-order tensors, enhancing the despeckling
procedure via SVD. Moreover, the suggested post-processing stage enhances the edges and
produces high-quality despeckled images, conserving relevant elements for the detection
of tumors or the diagnosis of diseases through medical ultrasound images. Finally, a
preliminary test employing the subjective visual perception of a radiology specialist was
performed to evaluate the suitability of the proposed CMI-3DSVD despeckling method
for applications in medicine, providing a higher score than the compared methods and
achieving a category of high quality.
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