
Citation: Hussein, M.; Mohammed,

Y.S.; Galal, A.I.; Abd-Elrahman, E.;

Zorkany, M. Smart Cognitive IoT

Devices Using Multi-Layer

Perception Neural Network on

Limited Microcontroller. Sensors 2022,

22, 5106. https://doi.org/10.3390/

s22145106

Academic Editor: Omprakash

Kaiwartya

Received: 2 June 2022

Accepted: 5 July 2022

Published: 7 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Smart Cognitive IoT Devices Using Multi-Layer Perception
Neural Network on Limited Microcontroller
Mahmoud Hussein 1,2, Yehia Sayed Mohammed 2, Ahmed I. Galal 2, Emad Abd-Elrahman 1,*
and Mohamed Zorkany 1

1 National Telecommunication Institute (NTI), 5 Mahmoud El Miligui Street, 6th District-Nasr City,
Cairo 11768, Egypt; mah.hussein@nti.sci.eg (M.H.); m_zorkany@nti.sci.eg (M.Z.)

2 Faculty of Engineering, Minia University, Minia 61519, Egypt; yahia.ali@mu.edu.eg (Y.S.M.);
galal@mu.edu.eg (A.I.G.)

* Correspondence: emad.abdelrahman@nti.sci.eg; Tel.: +20-1000-720-268

Abstract: The Internet of Things (IoT) era is mainly dependent on the word “Smart”, such as smart
cities, smart homes, and smart cars. This aspect can be achieved through the merging of machine
learning algorithms with IoT computing models. By adding the Artificial Intelligence (AI) algorithms
to IoT, the result is the Cognitive IoT (CIoT). In the automotive industry, many researchers worked
on self-diagnosis systems using deep learning, but most of them performed this process on the
cloud due to the hardware limitations of the end-devices, and the devices obtain the decision via
the cloud servers. Others worked with simple traditional algorithms of machine learning to solve
these limitations of the processing capabilities of the end-devices. In this paper, a self-diagnosis
smart device is introduced with fast responses and little overhead using the Multi-Layer Perceptron
Neural Network (MLP-NN) as a deep learning technique. The MLP-NN learning stage is performed
using a Tensorflow framework to generate an MLP model’s parameters. Then, the MLP-NN model
is implemented using these model’s parameters on a low cost end-device such as ARM Cortex-M
Series architecture. After implementing the MLP-NN model, the IoT implementation is built to
publish the decision results. With the proposed implemented method for the smart device, the output
decision based on sensors values can be taken by the IoT node itself without returning to the cloud.
For comparison, another solution is proposed for the cloud-based architecture, where the MLP-NN
model is implemented on Cloud. The results clarify a successful implemented MLP-NN model for
little capabilities end-devices, where the smart device solution has a lower traffic and latency than
the cloud-based solution.

Keywords: cognitive IoT; smart nodes; critical systems; neural networks; microcontrollers

1. Introduction

Now, we have a large number of IoT devices, many of them have limited processing
and intelligence capacities while others are sophisticated enough to have these computing
capacities. So, a lightweight communication protocol is required for the IoT communication
phase. The message queuing telemetry transport (MQTT) protocol is one of the broadly
used protocols in IoT messaging communication. It is the pub/sub protocol that outper-
forms traditional communication protocols such as HTTP as a very known client/server
architecture. The preference of MQTT comparing to other protocols came from its low
overhead in terms of packet size and transmission delay for real time applications as proven
in [1].

Combining the aspects of artificial intelligence (AI), machine learning (ML), math-
ematical decision models, or deep-learning (DL) with IoT can lead to the cognitive IoT
(CIoT) architecture. This classification had been considered in the literature review about
the cognitive sensing for many smart applications [2]. Moreover, the integration of smart
IoT modules in the critical applications have been considered such as transportation in
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oil lines control-based supervisory control and data acquisition (SCADA) systems [3] and
automotive industry domain.

Normally, the vehicles’ diagnosis and checking are performed in the maintenance
centers [4] and drivers should go to these centers to check for any problems found in their
vehicles [5]. Vehicles have some indication alarms that can help drivers to know if there is
a serious problem in the vehicle [6] and they should also do a vehicle check. Some of the
drivers do not know what these alarms indicate, and they will go to the maintenance center
for every alarm indicator resulting in wasted money and time if the alarm is not related to a
malfunction in one or more of the vehicle parts. The CIoT framework is one of the modern
solutions to overcome these issues [7]. For such a framework, this combination requires a
kind of TinyML running over specific kinds of microcontrollers.

Tiny Machine Learning (TinyML) is a type of ML that is integrated with embedded
systems to enable running ML models on low-power microcontroller devices. It is capable
of performing AI applications on-device sensor data analytics using low-memory and
low-power resources. The proposed system delivers intelligence/smart to low-power/low-
memory microcontrollers (tiny devices) by enabling machine learning on these limited
microcontrollers. A standard IoT device just collects data from sensors and sends it over
the cloud via an IoT server, where the proposed smart IoT devices host machine-learning
models. So the proposed device as a TinyML device can optimize the ML-model (MLP-NN)
to work on limited resource- devices. It can eliminate and control the necessity of data
transmission to the IoT server. It can also take decisions not just send data as the standard
IoT device. It adds intelligence to millions of IoT devices that could be used every day.

This research can help drivers with a Smart CIoT Unit that helps in diagnosis and reduces
the number of visits to the maintenance centers. It also encourages safe driving. To make an IoT
device smart and help in diagnosis, the device should be able to learn and train with a machine
learning technique to have artificial intelligence decision making.

To cope with these objectives, there are two methods to do the learning process:
training the AI model on the cloud or on the device. In the first method, the learning
and training process will be handled on the cloud, as well as the decision-making [8,9].
At running mode, based on this method, the device should gather the sensor readings and
publish them to the cloud for decision-making, the cloud will make the decision based
on the learning process and return the result or output back to the device. Although this
method is simple, it has some disadvantages as the learning process is performed totally on
the cloud, which implies a delay due to sending inputs to the cloud and waiting for output
that should be sent back to the device. Another disadvantage, if the internet connection is
disconnected for any reason, then the device is not able to make any decision that may be
a critical one. The second method, the learning and training process will be handled on
the device, as this device will be a microcontroller [10,11]. In this case the microcontroller
must have high specifications from processor speed and memory. However, Most available
microcontrollers are limited in resources, which implies limited learning with respect to
the power cloud computing aspect.

In this paper, our proposal will consider the training process on the cloud, the weights’
matrix is output from this training process. An AI structure of a neural network is built
on the device with the training outcomes, which helps the device to be a decision maker
without the fear of a cloud disconnection. The proposed method overcomes the delay and
latency problem of the first method and the limited learning problem in the second method
due to the limited resources of the device. For comparison, another solution is proposed
for the cloud-based architecture in automotive industrial applications, where the machine
learning model is trained and implemented on the cloud. So, the decision making will be
performed on the cloud. To conclude, the first method’s learning and decision making is all
performed on the cloud while in the second method, it is all performed on a device with
high performance capabilities. However, our proposals consider the training phase on the
cloud while the decision making will be performed on a limited microcontroller.
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The remainder of this work is structured as follows: In Section 2, we give an overview
of the relevant work. In Section 3, we describe the structure of our proposed solution. Sec-
tion 4 presents the implementation phase based on the selected hardware for our framework
and considers the communication phase based on the MQTT protocol. The performance
evaluation of our proposed architecture will be handled in Section 5. Finally, conclusions
and future works are presented in Section 6.

2. Related Work

The ADAS system is designed to help drivers to prevent or reduce vehicle accidents
and the serious impact of accidents that drivers cannot avoid it. As ADAS could be used in
accident avoidance or detection, it is also used in many applications such as lane departure
corrections, automatic parking, traffic sign recognition, blind spot detection, and other
many applications to assist drivers and save lives. The current and future objectives
of the ADAS systems are to; increase the system reliability, develop systems in shorter
development cycles, and reduce cost to be able to be used in all vehicles. The proposed
system is one of the ADAS applications to realize autonomous vehicles and validate these
current and future objectives of the ADAS systems by adding smart decisions part based
on machine learning models such as MLP-NN.

The MLP-NN concepts are used even for different areas of interest. An audience
evaluation system was introduced in [12]. It studies a model for the teaching audience eval-
uation system based on the multilayer perceptron. Authors showed that the performance
evaluation of symphony based on the MLP can be evaluated in real-time, and it is at least
more accurate than the obtained results by the mainstream method of data post-processing
with iterative algorithms 23.1%.

An improved authentication system was proposed in [13]. It is a biometric authen-
tication system that uses the MLP-NN. Researchers propose an existing authentication
mechanism improvement through using Keystroke Dynamics (KD), MLP-NN and the Most
Valuable Player Algorithm (MVPA). To overcome the issues in the conventional training
process, the MLP-NN model is trained using the MVPA. With MATLAB software, their
proposed biometric authentication system is validated and developed on variant users.

Another work in [14] uses the MLP-NN modeling for a land prediction system. It
uses images from a Landsat satellite to determine the land-usage. Their prediction model
was validated using classified and simulated LULC maps of 2018 that are resulted into
an overall-accuracy to 88%. Results indicate that a 389.27% increase in built-up area as
the dominant land-use change in 1990–2018 and an increase of 56.25% of built-up area
is forecasted in the years 2018–2040. The land consumption rate and land absorption
coefficient indices are used to determine urban expansion. The observations derived from
their research are useful because they will help regional planners to forecast land-usage.

A malicious traffic detection system was introduced by [15]. It introduced an AI-based
solution for malicious traffic detection using MLP-NN. Authors explore the accuracy of
the MLP-NN learning algorithm for detecting botnet traffic from the IoT devices that
are infected by two main IoT botnets, namely, Bashlite and Mirai (also called Gafgyt).
After optimization and tuning steps, the MLP-NN algorithm got an accuracy 100% during
the testing phase of the IoT classification of the botnet traffic.

The Advanced Driver Assistance System (ADAS) visions introduced in this work [16]
covered the whole of the issues in this domain. They considered different aspects and vital
points of view regarding an ADAS system.

The work in [17] introduced an embedded system from development and assessment
views. They evaluated some indicators in their overall assessment such as safety, comfort
and economy. Moreover, they considered different styles of driving in order to study the
effects on safety for all scenarios and draw correlations between driving styles and the
considered indicators.
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Regarding the hardware implementation for AI codes on microcontrollers, the work
in [18] highlighted this issue based on backpropagation training. They confirmed through this
implementation the required minimum time for specific application-based microcontrollers.

This work [19] triggered a vital issue in transportation safety by analyzing driver
behavior during the driving journey. They considered the data inputs gathered from the
driver using IoT-machine learning systems and then sent them to the cloud for processing
and creating the suitable alarms for drivers to increase the level of safety by avoiding some
accidents scenarios.

Another work [20] considered the safety issue based on driver data and behavior has
been introduced under the umbrella of Autonomous Vehicles (AV) through the Driver
Assistance System (DAS). Their system can introduce different alerts to the driver based on
machine learning algorithm outputs.

For the Driver Assistance System (DAS), the work in [21] introduced an Advanced DAS
(ADAS) framework to consider safety and comfort indicators for the drivers. The prototype
depends on using some ML tools to read some signs and messages and convert them into
speech in order to help driver decisions. The work achieved reasonable accuracy based on
the studied datasets.

In the same context of ADAS, the work in [22] considered the design of autonomous
vehicles based on a generative adversarial network (GAN). Their design considered the
autonomous one driving and the human based one by recommending everything through
the driver car monitor.

This ADAS work [23] provides real-time object detection based on deep learning and
considering specific CPUs to avoid the high price GPUs units in the current generation cars.
They used specific NVIDIA series in their ADAS system to prove the detection efficiency
compared to similar GPU units used by other countries, proving it is a cost-wise solution.

There are many research studies on Self-Diagnosis Systems [24,25]. The End-Devices
for these systems have hardware limitations to do the full deep learning, so most of them
did the processing on the Cloud. On the other hand, some of these studies worked with
simple machine learning algorithms on the end-devices due to their limited capabilities.
This research emphasis on deep learning with the hardware-limited end-devices does the
learning process using a software utility, and then uses the output weights to make the
end-device able to take the decision for any values for inputs.

An improved self-diagnosis system for autonomous vehicles based on the deep learn-
ing technique is introduced in [26]. This self-based system for cars can enhance the overall
life cycle of the cars spare parts and the performance of self-diagnosis systems in terms of
the self awareness model. The work considered the data processing inside the vehicle by
an integrated module through gathering and processing the sensors data locally inside the
car. The learning model in this proposal is cloud based. The activation functions used in
this work are ReLU and the Sigmoid functions. They also proposed an edge computing
model for exchanging the self-diagnosis information between cars through a cloud-based
server. The work simulations are based on specific PCs not real IoT nodes or controllers as
we consider in our work.

Another work in the direction of self-diagnosis systems had been proposed in [27].
A decision-making tree is used based on some specific measures in the vehicle for safety-
based solutions considering server-less decisions. They proposed a machine learning-based
technique called lightweight autonomous vehicle self-diagnosis (LAVS). Their proposal
mainly focused on the communication protocols enhancement in such kinds of systems.

Cloud computing was introduced by many researchers and vendor-specific solutions
to run some computational tasks in the cloud. While cloud computing has many benefits
such as elasticity and scalability in computational models, IoT data transfer to and from
the cloud is still a challenge in this direction, especially for real-time actions. The authors
in [28] tried to propose some offloading mechanisms to overcome such latency problems
to and from cloud data transfer. They proposed some kinds of task allocation strategies
that are able to optimally select the best resource combination of computation and storage
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needed to execute some IoT smart tasks. It is a kind of resources reservation by grouping
some tasks in order to execute and achieve real-time behavior. Such a direction is focused
on spontaneous resources in terms of computation and storage consumption while keeping
the lowest cost as an objective.

We can conclude the related work as shown in Table 1. Many researchers trained
the MLP-NN models On-Cloud, in addition to the operation process and the decision-
making being On-Cloud. Other studies trained and tested the MLP-NN models On-Device,
as well as the operation process and the decision-making being On-Device. In the proposed
solution, the training process is performed On-Cloud, and the operation process and the
decision-making are performed On-Device.

Table 1. The relevant work comparison.

Related Work Training Process Operation Process Decision Maker

[8,9,21,24–26] on-cloud on-cloud on-cloud
[10,11,16,18–20,23] on-device on-device on-device

The proposed solution on-cloud on-device on-device

3. Proposed Solutions

This section highlights the proposed solutions as follows:

3.1. Proposed Solutions Overview

Two solutions are proposed and studied for the automotive industrial domain. The first
solution is the cloud-based solution, where the decision maker is the cloud-based AI service.
When the decision maker is taken by the device, this is the second solution. In this research,
a study is conducted for the two solutions. As shown in Figure 1, the AI-Service is carried
out with a cloud-based server to make the decision for the sensor data. In the smart device
solution as shown in Figure 2, the device has locally implemented the MLP neural network
model to make the decision by itself instead of sending data to the cloud to handle the
decision-making process, so, an AI concept should be applied.

Cloud

Vehicle Sensors Training Testing

Weights

Implement 
the Model

MLP NN Model
Sensed Data

IoT MQTT Broker

Management Center

Figure 1. The proposed smart device architecture.



Sensors 2022, 22, 5106 6 of 18

Cloud

Vehicle Sensors

MLP NN 
Model

IoT MQTT 
Client

IoT MQTT 
Broker

Management Center

Figure 2. The proposed cloud-based architecture.

Therefore, a diagnostic system is proposed using neural networks to make a data
analysis and to make suitable decisions. The proposed smart device sends the diagnostic
problem or result directly to the management center instead of sending the data itself. This
saves traffic and the time taken to obtain the final decision or the system status rather
than the cloud-based solution. It includes two parts; the smart diagnosis device, and the
IoT communication. The smart diagnosis device uses the MLP neural network to make a
decision and knows the system status. For IoT communication, an MQTT broker is used to
publish the result of the MLP-NN phase.

There are four layers for the software architecture as shown in Figure 3. The application
layer has the implementation of the diagnosis system. The service layer has the IoT MQTT
service and the MLP-NN service. The software drivers’ layer interfaces the hardware layer
with the services and the application layer.

Figure 3. The layers stack for the proposed framework.

3.2. The Learning Smart Diagnostic Device Phase

At first, data-set was prepared with experts in the automotive field to include all the
possibilities for the sensor readings. This variety in the data-set enhances the learning and
testing phases. The data-set has six types of in-vehicle sensor readings (6 inputs); speed,
obstacle distance, fuel level, engine temperature, oil level, and door Lock. Vehicle speed
has four possibilities; stopped, slowly, normal, and exceed. Obstacle distances are zero,
close, and normal distance. Fuel and oil levels, and the engine temperature have values of
normal and abnormal. Four classification outputs (normal, small alarm, medium alarm,
and big problem). Data was normalized for the best learning process.

Figure 4 shows the general learning process structure of the proposed machine learning
which depends on the MLP neural network model.

The training data is randomly selected from the data-set. It represents 80% of the data
set. For the learning phase, the training data was taken as an input. The NN model is a
multi-layer model, it consists of input layer, two hidden-layers, and one output layer as
shown in Figure 4.

The input layer has six inputs; speed, obstacle distance, fuel level, engine temperature,
Oil Level, and door Lock. The first hidden-layer composes of twelve neurons and the
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second hidden-layer composes of five neurons. Finally, the output layer has one neuron.
The NN structure uses the Relu activation function that is shown in Figure 4. The training
error reached 0.00001.

Finally, the testing phase is initiated with the testing data, which is the other 20% of
the dataset. An error of less than 0.1 is accepted. If the error exceeds 0.1 for any test-case,
the learning process will be repeated to reach less than 0.1 for all test-cases.

Preparing Dataset with 
Experts

Training with 80% of the 
dataset

Testing with the other 20% of 
the dataset

Accepted ERROR?

Yes

No

Start

End

Figure 4. The learning process structure.
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4. The Hardware Implementation of MLP-NN on the Cortex MCU

There are two ways to build a deep learning model on microcontrollers. The first
method depends on standard ready-made frameworks such as TensorFlow Lite (devel-
oped at Google), Caffe framework (developed at University of California). The second
method depends on building our model directly on the microcontrollers by a programming
language such as Embedded C programming language.

Most AI developers have used the first ready-made method, which is a very
easy method for AI developers who are not interested in programming embed-
ded systems. However, this ready-made framework has many limitations to de-
veloping machine learning models on microcontrollers. For example; TensorFlow
Lite is designed for the specific constraints of microcontrollers development (https:
//www.tensorflow.org/lite/microcontrollers, accessed on 1 June 2022). It supports
limited subset operations of TensorFlow , limited sets of devices, and it requires manual
memory management for Low-level C++ API. TensorFlow Lite for microcontrollers
requires a 32-bit platform. It is limited to small number of microcontrollers such as ARM
architecture of Cortex-M series, and ESP32. Moreover, some models are too big to store on
microcontrollers. The optimization and efficiency in TensorFlow Lite is a trade-off on the
model accuracy. Therefore, it has lower accuracy than their counterparts. Moreover, the
Caffe deep learning framework has limitations on microcontroller types such as TensorFlow
Lite. These ready-made frameworks can’t be used with low cost microcontrollers.

So, in our proposed design, we will use the second method which depends on building
our model directly on the low cost and low power microcontrollers after training and
testing the model using TensorFlow framework. Moreover, this type of microcontroller
(ARM-Cortex) is the most available in the market.

4.1. Proposed AI Implementation on Limited Microcontroller

After the training process with the TensorFlow on the cloud, the weights matrix is
obtained. Then, it will be taken as input to the MLP-NN software module that implements
the MLP-NN Model on the MCU. As shown in the previous figure (Figure 4), the software
should be initialized with the MLP-NN parameters such as the input count, weights matrix,
MLP-NN layers, and the activation function used.

The MLP-NN layers are denoted as rounds. The software will iterate for every round.
It starts with the first round as the current round. Then, it will calculate the new neurons
for the next round with the selected activation function. It copies the next round to the
current round to be calculated. The software will check if a new round is found. Then, it
calculates the neurons of the next round until reaching the final round that represents the
outputs. From these outputs, the decision is obtained.

After the training and testing process with the TensorFlow on the cloud, the weights
matrix is obtained. Then, we can build the MLP-NN on the MCU using the same MLP-NN
structure which is already built it in training phase, integrated with the weights matrix, and
is obtained after the testing phase. It will be taken as input to the MLP-NN software module
that implements the MLP-NN model on the MCU. Input neurons set X is defined as:

X = (X1, X2, . . . , Xn0, b) (1)

where n0 is the number of input sensors in the input layer (layer 0), and b is the bias.
The model neurons set N is defined as:

N = (n0, n1, n2, . . . , nZ) (2)

https://www.tensorflow.org/lite/microcontrollers
https://www.tensorflow.org/lite/microcontrollers
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where Z is the number of layers excluding the input layer. Weights WL that are obtained
from the training process are defined as:

WL =


WL−1

N1

L

N1
........ WL−1

N1

L

Nm
. .
. .

WL−1
Nn N1

L ........ WL−1
Nn Nm

L

 (3)

where WL is the weight matrix for the layer L, WL−1
N1

L

N1
is the weight of the link between

the neuron N1 in layer L − 1 and the neuron N1 in the layer L, n is the number of neurons
for the layer L − 1, m is the number of neurons for the layer L, and the ones column for
bias. The weights set W is defined as following:

W = w1, w2, . . . , wz (4)

The output layers neurons are obtained by applying the activation function φ as following:

yL = φ(yL−1WL) (5)

where yL is the output neurons vector for the layer L, yL−1 is the output neurons vector for
the previous layer L − 1.

The Relu activation is used in neurons of hidden layers which is defined as:

f (net) = max(0, net) (6)

and
netn = WTy(n−1) (7)

where W represents the weight parameters between the current NN layer and previous
NN layer, WT is transpose of matrix W, and y(n−1) is the output of the previous NN layer.
For the neuron of the output layer, the sigmoid activation function is used which is defined as:

φ(t) =
1

1 + e−net (8)

All output neurons set Y is defined as:

Y = (y0, y1, y2, . . . , yZ) (9)

where y0 is the input neurons vector X, yZ is the output layer, and Z is the number of layers.
As shown in Algorithm 1, the software uses the MLP-NN structure that is used

during the training phase with the obtained weights parameters W. The MLP-NN hyper-
parameters such as the input layer neurons X, the weights parameters W, number of
neurons for each layer, reference to the output neurons for all layers Y, and the number of
layers Z. It acts for the input layer as a previous output y0 , then applies a multiplication
of the neurons vector of this layer to the weight matrix w1 that has the weights between
the input layer (layer 0) and the next layer (layer 1). y1 is calculated by taking the sigmoid
activation function to every value obtained in the output vector. This behavior is repeated
as shown in the algorithm for each layer in the MLP-NN model. Finally, the output layer
yZ is obtained. The following pseudo code summarizes the previous steps.
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Algorithm 1 : MLP-NN Model Decision Making

function TAKEDECISION(X, W, N, Y, Z)

Copy the input neurons X into the first output layer y0 in Y

for every layer L in range 1 to z (number of layers) do

Multiply the transpose of the layer L weights with the previous output layer:
(WL)T ∗ yL−1

Calculate the ReLU activation function for the multiplication result: φ(yL−1 ∗ WL)

Copy the ReLU activation function results into the Layer L output yL

end for

Obtain the decision from the last output layer yZ

end function

4.2. Implementation Steps

The embedded systems industry requires low-cost high-performance microcontrollers
that do the specific system tasks. In this direction, the Cortex-M based microcontroller
has few kilobytes to megabytes of flash memory (FLASH) and the static ram memory
(SRAM). In addition to the limitation in the processing capability that is less than or equal
to 200 MHz processor speed, this performance is higher than similar microcontrollers for
the same price.

A CIoT hardware platform was implemented as shown in Figure 5 to meet the pro-
posed solution. The platform has three main parts; a WI-FI module for IoT MQTT connec-
tivity, a PIN header for sensors’ interfacing, and a cortex microcontroller for the firmware
implementation of the MLP-NN Model and the IoT MQTT client. It is based on the STMi-
croelectronics (STM) Board. An STM32F401RE microcontroller (MCU) is the main MCU
for this board. It has an ARM Cortex-M4 32-bit processor architecture. This processor is a
32-bit processor. It has memories of 512 KBs FLASH and 96 KBs SRAM with a processor
speed of up to 84 MHz as a maximum processor speed that is a very low speed with respect
to normal PCs or server machines.

STM BoardWI-FI ModulePIN Header

Figure 5. The Proposed CIoT Hardware Unit.

The firmware (embedded software) is designed and implemented for the MLP model
of the smart device solution. This model is not implemented in case of the cloud-based
solution. Steps of the MLP-NN model Implementation are as following;

• Dataset was collected from experts in the automotive field.
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• 80% from the data-set was used in TensorFlow training to obtain a specific error and
the other 20% for testing the MLP-NN.

• The weights’ matrix W was Obtained from the trained MLP-NN TensorFlow model.

• The firmware obtains data from sensors as input neurons. It has the weights’ matrix
W of the TensorFlow MLP-NN model.

• Algorithm 1 was implemented on the microcontroller in a function called “takeDeci-
sion(...)” to obtain the decision.

• The decision is published to the interested entities through the proposed IoT system.

4.3. IoT Implementation

The IoT system is implemented for the two solutions, but for the smart device solution,
decisions are sent through the IoT system. On the other hand, the sensor data is sent in the
cloud-based solution.

After implementing the MLP-NN model on the MCU, then the IoT implementation is
required to publish the result from the decision taken as an output from the MLP-NN stage.
IoT has different communication protocols, the MQTT protocol is used in this research.
It is based on TCP as being connection oriented, which can guarantee a higher level of
message delivery.

As shown in Figure 6, a TCP connection should be established at first, with an MQTT
broker with the server domain name and port. Now, a TCP socket is opened with the
server that has the MQTT broker installed. The next step is to send an MQTT connection
establishment packet (CONNECT packet). It includes a client identification, and some of
connection parameters and flags.

Connect to the MQTT 
broker

Prepare the publish 
packet with message

Open TCP socket with 
the server

Send the publish packet 
with QoS1

ACK received ?

No

Yes

Start

End

Figure 6. Flow chart of IoT Implementations.
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When an MQTT connection is created, the MCU will become an MQTT client. It can
publish to any topic on the MQTT and receive any messages through a subscription packet
to the MQTT broker. After preparing the message that contains a result of the MLP-NN
model, it will be published to a certain topic to the maintenance center. There are different
quality of services (QoS) levels; QoS0 means fire and forget, QoS1 denotes at least once
of message delivery, and QoS2 guarantees exactly once of message delivery. Generally,
Embedded Systems QoS0 and QoS1 are almost used due to lower overhead than the QoS2.

4.4. AI and IoT Integration

The AI and IoT are integrated in the smart device solution on the same target hardware.
However, the AI is not implemented on the same target device for the cloud based system.

Now, the MLP-NN module , and the IoT MQTT client are implemented on the MCU.
In this part, the integration of these parts will be discussed. Due to a successful integration,
and due to the hardware limits, a real-time operating system (RTOS) is used. The RTOS is
an embedded operation system for multi-tasking.

As shown in Figure 7, the main firmware will initiate the main MCU peripherals.
An RTOS task is created to read the sensors connected to the system. It will validate the
sensor readings. It will send the sensor’s valid readings to the MLP RTOS task that is used
to process the MLP-NN Model. The MLP task will obtain a decision and prepare a message.
It will send the message to the RTOS IoT task to publish the message.

Initialize System 
Peripherals

Read Sensors

Getting the output decision from 
the MLP NN Model using the 

sensors’ data

Valid Sensor 
Data?

Prepare Message 
with the Decision

Publishing the output decision 
using the IoT MQTT Module

Yes

No

Start

End

Figure 7. Flow chart of AI-IoT Integration.
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4.5. The IoT Communication

There are many IoT communication protocols; the Constrained Access Protocol
(CoAP), Message Queuing Telemetry Transport (MQTT), and others. CoAP is working
on the UDP transportation protocol unlike the MQTT uses TCP protocol, which is more
reliable than the UDP protocol. The proposed device requires sending the diagnostic data
to the management center. This data is obtained from the output of the machine learning
process. It is transmitted using MQTT. The MQTT protocol is used in embedded systems
as it is a lightweight protocol. A real-time operating system (FreeRTOS) is used with
the proposed device for multi-tasking purpose. It makes the software more reliable and
scalable. An ARM-Cortex M4 processor is commonly used in embedded systems due to its
features. It is enhanced to use STMicroelectronics and provides STM32F microcontroller
series that are based on ARM-Cortex M4 architecture. It is used in the proposed platform.

An IoT MQTT client requires connecting to the broker by sending a CONNECT packet
showing the client identifier. Clients can exchange messages between them. A transmitter
client publishes to a specific topic and the receiver node subscribes to the same topic of the
publisher node to receive the published messages to this topic. The IoT communication
is implemented by developing the MQTT standard protocol with the important packets.
A WI-FI hardware module is used for the Internet communication to communicate with
the maintenance center publishing a request for maintenance.

The proposed system firmware that is implemented on the MCU reads the current
sensor readings and states. It applies these readings as an input to the built MLP-NN
system to obtain the result that is one of the model outputs. The firmware decodes the
output to a decision to make or an alarm to send to the owner and the maintenance system
through the IoT implemented system with the MQTT standard.

5. Results

In this section, the training and testing processes were performed completely with
the TensorFlow using a dataset that is described in a previous subsection. The single and
double hidden layer MLP-NN were implemented to choose the accurate model. Two
solutions were implemented in a real network to specify which is better for what. This will
be shown in the following subsections.

5.1. The Training and Testing of the MLP Neural Network

To select the suitable number of hidden layers in the MLP-NN structure in our model,
we divided the main dataset into training and testing datasets. Then, the training dataset
(80% of the main dataset) was used to train the model, and the testing dataset (20% of the
main dataset) was used to test the model using Keras/Tensorflow deep learning platform.
The metric that was used to validate the results was Mean Square Error (MSE), which
called training and validation losses shown in Figures 8 and 9. As shown in Figure 8,
the training and validation results are not very promising for the MLP-NN single hidden
layer structure. That model needs a lot of iterations (epochs) to decrease the losses during
training and testing phases. So, we increased the hidden layers to be double hidden layers
MLP-NN. Then, by using the same training and testing datasets, the training and validation
losses enhanced as shown in Figure 9. From these results, the double hidden MLP-NN is
suggested for the proposed CIoT system since MSE error of the double hidden layer is
better than the single hidden layer MLP-NN.
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Figure 8. The training and validation losses for the single hidden layer deep learning (MLP).

Figure 9. The training and validation losses or the double hidden layers deep learning (MLP).

5.2. Proposed Solutions Comparative Study

In this section, a study and a discussion are carried out with results for the two
proposed solutions; the smart device solution that has the implementation of the MLP-NN
model, and the cloud-based MLP-NN model. To study the proposed solutions’ performance,
two performance metrics were chosen in the experiments: the delay (i.e., latency), and the
total transmitted bytes. The delay is defined as the interval time between gathering the
sensors’ data and receiving the taken decision by the maintenance center. While total
transmitted bytes are the total number of bytes that are transmitted per a successfully sent
decision message.

The smart device takes the sensors’ data and applies it to the implemented MLP model
to obtain the output decision. Conversely, if the system sends this data to the server to have
the decision back, this will require more traffic. Therefore, the proposed smart device has
lower traffic than the cloud-based architecture as shown in Figure 10 and Table 2. The traffic
difference in bytes increases with more network loss. It is 15 bytes with no losses and
increases with more loss in the network until it reaches 152 bytes at 30% network loss.

Moreover, as shown in Figure 11 and Table 3, when loss increases in networks, the pro-
posed smart device has lower delays than the proposed solution of the cloud-based system.
The delay difference was significant from 15% and above in the lossy network.

However, the server-based system is simple to re-train, as the smart devices require
training on another entity and then re-updating the MLP model. In addition, updates
are easier to update on one device in the case of the cloud model rather than the smart
device structure.
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Figure 10. The total average bytes in message.

Table 2. The total average bytes in message for the two solutions with network loss.

Loss The Smart Device Proposed
Solution

The Cloud-Based Smart
Proposed Solution

0 165 180
5 172 191
10 211 234
15 241 282
20 273 332
25 321 409
30 390 542
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Figure 11. The total average delay for message.

Table 3. The total average delay (seconds) for message for the two solutions with network loss.

Loss The Smart Device Proposed
Solution

The Cloud-Based Smart
Proposed Solution

0 0.001012 0.001035
5 0.002031 0.002291
10 0.049147 0.051023
15 0.137203 0.151072
20 0.492318 0.585108
25 1.420015 1.621284
30 2.237014 2.758305
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We can summarize the pros and cons of the On-Cloud training process and the On-
Device training process as shown in Table 4.

Table 4. The pros and cons of the On-Cloud training process and the On-Device training process.

On-Cloud Training Process On-Device Training Process

Pros - Cloud powerful training (No limited learning) - Secure (local processing)
- Easy to do - Internet connectivity is not required
- Hardware Independent
- Low-cost training
- No embedded expensive hardware is required

Cons - Security and privacy issues - Limited learning compared to the Cloud learning
- Internet connectivity is required - Requires high-capable devices (memory and speed)

- Hardware dependent
- Expensive due to hardware cost

In Table 5, a summary is introduced to the pros and cons for the On-Cloud operation
process and decision maker, and the On-Device operation process and decision maker.

Table 5. The pros and cons of the On-Cloud operation process and decision maker, and the On-Device
operation process and decision maker.

On-Cloud Operation Process and Decision Maker On-Device Operation Process and Decision Maker

Pros - Training and operation process on the same machine - No further delay is required for decision-making
- Any update on MLP-NN structure is easier to rebuild - Secure enough due to local actions
- Faster powerful computing - Internet connectivity is not required
- Model updates on cloud only - Works on limited-resources microcontrollers

Cons - Higher delay to get the decision back from the Cloud - Requires updating for any MLP-NN structure
- Internet connectivity is required to take the decision - Model updates should be applied to all devices
- Security and privacy issues

6. Conclusions

In this paper, a smart cognitive IoT devices solution that integrates the AI and IoT
system was introduced in the industry automotive field. It has an AI implementation
of the MLP-NN with the double hidden layer and the single hidden layer. As a result,
the double hidden layer was better in terms of testing and validation accuracy. After that,
two solutions were proposed: the smart device solution, which uses the implementation of
the MLP-NN model on ARM-Cortex as a limited microcontroller; and the other solution is
the cloud-based MLP-NN model, which is implemented on the cloud AI server.

For the first proposed solution, the hardware implementation of the proposed MLP-
NN is successfully integrated with the implementation of IoT MQTT and real sensor
interfaces on an ARM-Cortex as an example of a limited microcontroller.

A comparison of the two solutions with parameters such as the delay and throughput
were performed. The cloud-based solution required more traffic and delay than the smart
device solution. The delay difference was bigger from 15% and above in the lossy network.
The difference in traffic bytes was 15 bytes at first with no losses and increased with the
increasing of the network loss until it reached 152 bytes at 30% network loss. However,
the cloud-based system was simple to re-train, as the smart devices required training on
another entity and then the re-update was carried out for the MLP model. In addition,
updates were easier to be performed on one device in the case of the cloud model rather
than the smart device solution.
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