
Citation: Yang, D.-H.; Kang, Y.-S.

Distance- and Momentum-Based

Symbolic Aggregate Approximation

for Highly Imbalanced Classification.

Sensors 2022, 22, 5095. https://

doi.org/10.3390/s22145095

Academic Editors: Wei Yi and

Xiansheng Guo

Received: 31 May 2022

Accepted: 4 July 2022

Published: 7 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Distance- and Momentum-Based Symbolic Aggregate
Approximation for Highly Imbalanced Classification
Dong-Hyuk Yang and Yong-Shin Kang *

Advanced Institute of Convergence Technology, Suwon 16229, Korea; dhyang@snu.ac.kr
* Correspondence: yskang@snu.ac.kr

Abstract: Time-series representation is the most important task in time-series analysis. One of the
most widely employed time-series representation method is symbolic aggregate approximation
(SAX), which converts the results from piecewise aggregate approximation to a symbol sequence.
SAX is a simple and effective method; however, it only focuses on the mean value of each seg-
ment in the time-series. Here, we propose a novel time-series representation method—distance-
and momentum-based symbolic aggregate approximation (DM-SAX)—that can secure time-series
distributions by calculating the perpendicular distance from the time-axis to each data point and
consider the time-series trend by adding a momentum factor reflecting the direction of previous
data points. Experimental results for 29 highly imbalanced classification problems on the UCR
datasets revealed that DM-SAX affords the optimal area under the curve (AUC) among competing
time-series representation methods (SAX, extreme-SAX, overlap-SAX, and distance-based SAX). We
statistically verified that performance improvements resulted in significant differences in the rankings.
In addition, DM-SAX yielded the optimal AUC for real-world wire cutting and crimping process
dataset. Meaningful data points such as outliers could be identified in a time-series outlier detection
framework via the proposed method.

Keywords: time-series representation; symbolic aggregate approximation; momentum; highly
imbalanced classification

1. Introduction

A time-series is a collection of temporal data and is one of the most frequently gener-
ated data in real-world applications. Thus, time-series analysis has been a crucial task in
real-world data-mining research since time-series can be easily obtained from various data
sources. To appropriately analyze a time-series, the most important task is time-series rep-
resentation, which involves the extraction of feature values from the time-series. Generally,
time-series consists of continuous values with enormous lengths; thus, extracting feature
values that can summarize the given time-series is a crucial task.

The most widely employed approach for time-series representation is dimensionality
reduction [1–6]. One of the initially used dimensionality reduction approaches is sam-
pling [1]. In this approach, a single data point is selected for each time-series segment
and is considered as the feature value that represents the corresponding segment in the
time-series. Although the sampling method is easy to implement, representing each seg-
ment of the time-series involving only a single data point is difficult, particularly when
there are numerous data points in each time-series segment. To improve the sampling
method, extracting a feature value that can effectively represent a set of data points in each
time-series segment has received significant attention. One notable method is piecewise
aggregate approximation (PAA) [2], which computes the mean value of each segment in a
time-series to represent the corresponding set of data points. PAA has been demonstrated
to be effective for time-series representations. Consequently, various extensions have been
introduced in time-series representations [3–6].
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Another broadly employed approach to represent time-series is discretization, which
converts the numeric value to a symbolic form [7–12]. Specifically, this method discretizes
the time-series into a predefined number of segments and then converts each segment
into a symbol. One of the widely used time-series discretization methods is symbolic
aggregate approximation (SAX) [11], which transforms the results from PAA values to
a symbol sequence. The time-series distribution space that follows the standard normal
distribution was divided into equiprobable regions. Each region is represented by a specific
symbol, such that each segment can be mapped into a corresponding symbol where it
exists. SAX easily allows inspection of results using discretized symbols in real-world
applications [13–26].

Nevertheless, SAX has a major limitation in which it only represents the mean value
of each segment in the time-series. Thus, SAX representation is prone to missing some
important information in the time-series [27–41]. Especially, in classification, one of the
main research topics in time-series analysis, retention of meaningful information is criti-
cal because the classification performance would be significantly affected if the symbols
between different classes are ambiguously discriminated. Moreover, generating symbols
that can properly represent the corresponding class is a key consideration in a highly
imbalanced classification, where the number of data points between different classes is
extremely different. By employing conventional SAX, the segment that contains data points
of the minor class might be converted to a symbol that does not reflect them because of
the relatively larger number of data points corresponding to the major class. Thus, the
influence of data points in the minor class would be diminished during time-series repre-
sentation. In fact, dealing with highly imbalanced data is one of the main characteristics
of real-world applications [42–45]. Therefore, a time-series discretization method that can
effectively summarize data points to properly represent the class which they reside in must
be developed.

Herein, we propose a novel time-series representation method, named distance- and
momentum-based symbolic aggregate approximation (DM-SAX), that can discriminate
between majority and minority classes by considering time-series distributions and trends.
As demonstrated in later sections, the proposed method considers the time-series distri-
bution by calculating the perpendicular distance from the time-axis to each data point. In
addition, the time-series trend is considered by adding a momentum factor that reflects
the direction of previous data points. It will be easy to identify the meaningful data points
by employing DM-SAX, such as defects in manufacturing process, in a time-series outlier
detection framework.

The remainder of this paper is organized as follows. Section 2 reviews the related
works. In Section 3, the conventional SAX and the proposed DM-SAX are introduced in
detail. Section 4 presents the performance benchmarks of the proposed model against
other time-series symbolic-representation approaches. Finally, the conclusions and possible
avenues for future research are presented in Section 5.

2. Related Works
2.1. Conventional SAX

The conventional SAX represents and preserves time-series information using alpha-
betical symbols. It is well known for its effective representation of high-dimensional time-
series while maintaining the properties of the given data points in the time-series [11].

Figure 1 presents the SAX procedure. The first phase is to employ dimensionality
reduction using PAA [2]. As shown in Figure 1a, the time-series is divided into segments
with a certain length, and each segment is summarized with the mean value of the data
points that it includes. Therefore, the time-series vector X = [x1, . . . , xN ] with a length
of N is converted into a PAA vector XPAA =

[
xPAA

1 , . . . , xPAA
S

]
with a length of S. The ith

element of PAA xPAA
i is computed using the equation below.
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xPAA
i =

S
N

( N
S )i

∑
j=( N

S )(i−1)+1

xj, (1)

where i ranges from 1 to S, and xj is the jth element of X.

Value

Time Index

1

-2

2 3 4 5 6 7 8 9 10

-1

0

1

2

(a)

Time Index

1

-2

2 3 4 5 6 7 8 9 10

-1

1

2

(b)

0Value

a

c

b

c

d

e

f

g

e

Value

Time Index

1

-2

2 3 4 5 6 7 8 9 10

-1

0

1

2

(a)

−1.113

Time Index

1

-2

2 3 4 5 6 7 8 9 10

-1

1

2

(b)

0Value

a

a

b

c

d

e

f

g

g

Value

Time Index

1

-2

2 3 4 5 6 7 8 9 10

-1

0

1

2

(a)

−1.060

0.926

Time Index

1

-2

2 3 4 5 6 7 8 9 10

-1

1

2

(b)

0Value

a

b

b

c

d

e

f

g

f

−0.480

0.320

1.086

Figure 1. Procedure of (a) PAA (t_size = 5) and (b) SAX (n_bins = 7).

Here, a constant N
S is called the time segment size (t_size), which is used as the main

PAA hyperparameter.
The second phase involves discretizing the PAA values, as shown in Figure 1b. In this

phase, a previously generated PAA vector XPAA =
[
xPAA

1 , . . . , xPAA
S

]
is transformed into a

symbol vector XSAX =
[
xSAX

1 , . . . , xSAX
S

]
by mapping each element of XSAX into one of

the discretization regions in accordance with its value. Note that the discretization regions
follow a standard normal distribution, with the size of each region being equal to satisfy
the equiprobability. For instance, Figure 1b demonstrates a case with an alphabet size of 7,
indicating that ±1.07, ±0.57, and ±0.18 are the ‘breakpoints’ of each separation, and that
each alphabet (a, b, c, d, e, f, and g), following the standard normal distribution, occupies
14.3% of the area. Table 1 lists the breakpoints.

Table 1. Lookup table containing the breakpoints.

β1

n_bins
3 4 5 6 7 8 9 10

β1 −0.43 −0.67 −0.84 −0.97 −1.07 −1.15 −1.22 −1.28
β2 0.43 0.00 −0.25 −0.43 −0.57 −0.67 −0.76 −0.84
β3 0.67 0.25 0.00 −0.18 −0.32 −0.43 −0.52
β4 0.84 0.43 0.18 0.00 −0.14 −0.25
β5 0.97 0.57 0.32 0.14 −0.00
β6 1.07 0.67 0.43 0.25
β7 1.15 0.76 0.52
β8 1.22 0.84
β9 1.28

Finally, the element is converted to an alphabetical symbol, becoming the repre-
sented value for its corresponding element of XSAX. At this point, the number of dis-
cretization regions is called the number of bins (n_bins), which is employed as the main
SAX hyperparameter.

2.2. Real-World Applications of SAX

SAX is a popular time-series representation method that has been extensively studied
in real-world applications. In general, there are two research topics related to SAX in
real-world applications, such as pattern-discovery and prediction.
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With this, the pattern-discovery is an interesting research topic. Park and Jung [13]
proposed a pattern-discovery framework that combined SAX with association rule mining
(ARM). In the SAX-ARM method, time-series generated from sensors in a die-casting pro-
cess are converted to symbols. Then, apriori, one of the most employed ARM algorithms,
extracts the deviant patterns from those symbols. Ferreira et al. [14] suggested adaptive
SAX (ASAX) to analyze heat-wave patterns from daily information. The suggested ap-
proach adopts SAX after time-series segments are automatically adapted by considering
the difference between the current and average values. Similarly, Wu and Lee [15] intro-
duced an algorithm called closed flexible patterns (CFP) to identify the mining of closed
flexible patterns by utilizing SAX. CFP employs SAX to convert time-series into symbols.
Subsequently, frequent patterns are extracted through a depth-first search. Ohsaki et al. [16]
suggested a rule discovery support system for sequential medical data. The proposed
system utilizes SAX to extract patterns of glutamic pyruvic transaminase (GPT) from data
obtained from patients with hepatitis. In the medical field, Tseng et al. [17] proposed a
SAX modification to identify novel genetic relationships by mining similar subsequences
in microarray data. Ordóñez [18] proposed a novel pattern-visualization algorithm that
can differentiate between medical conditions such as renal and respiratory failure. The
proposed algorithm applies SAX to help interpret time-series data obtained from the pedi-
atric intensive care unit (PICU). Yaik et al. [19] employed SAX to identify frequent patterns
generated in CPU traces. By using SAX, the proposed method can predict longer steps
ahead than the conventional prediction technique (i.e., network weather services (NWS)).

Another research topic is prediction. Pouget et al. [20] suggested an approach that
can detect attacks that occurred on the Internet. This approach uses SAX to transform
data collected in a honeypot platform into symbols, which are used to detect attacks
by systematically identifying similarities between the time signatures of the attack tools.
On the other hand, Zoumboulakis and Roussos [21] proposed a novel method to detect
complex events in sensor networks. Here, the real-valued sensor data are converted
to symbols via SAX representation, and complex events that are difficult or impossible
to describe using conventional SQL-like languages are detected using distance metrics.
Meanwhile, McGovern et al. [22] introduced a prediction system that can detect severe
weather conditions such as tornados. The introduced system applies SAX to convert
large multidimensional time-series into symbolic representations. Symbols that satisfy
the predefined probability of detection (POD) and false alarm ratio (FAR) are selected
to create rules that can identify tornados. Ciompi et al. [23] adopted a technique for the
automatic detection of diseased regions of vessels using intravascular ultrasound (IVUS)
sequences. Morphological profiles from IVUS were obtained using the proposed technique.
Thereafter, SAX was applied to convert morphological profiles to discrete codewords,
which were used in the selection of keyframes that can detect unhealthy regions of the
vessel. Shie et al. [24] proposed an online treatment system for panic patients by combining
biofeedback therapy and web technologies. Numerical biofeedback data are transformed
into symbolized sequence data by employing SAX, and the classify-by-sequence (CBS)
algorithm is applied to detect whether the treatment is suitable. Morgan et al. [25] proposed
an anomaly detection algorithm for marine engines. Here, the measured iron concentrations
from the cylinder of the engine are collected. Then, these measurements are converted to
symbols by applying SAX, and support vector machines (SVM) are employed to detect
unexpected concentrations in the engine. He et al. [26] proposed an analog circuit fault
detection system using SAX. In the proposed system, data are collected from four op-amp
bi-quad low-pass filter circuits and then converted to symbols to detect the type of fault.

2.3. Variations of SAX

SAX results in an appropriate time-series representation. However, as previously
discussed, SAX is based on the PAA representation. Therefore, it only symbolizes the mean
value of each segment in the time-series, and this representation might cause informa-
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tion loss. Various attempts have been devoted toward overcoming the shortcomings in
existing literature.

Fuad and Marwan [27] proposed extreme-SAX (E-SAX), where the symbols can repre-
sent the segment more precisely than those of conventional SAX by considering only the
minimum and maximum data points of the segment. Lkhagva et al. [28] used extended-
SAX to reflect the trend of time-series containing a few critical data points, such as financial
time-series. The proposed approach can offset the negative effect and only consider the
mean value of the segment by adding the minimum and maximum values to the mean
value. Lin et al. [29] proposed bag-of-patterns (BOP), which constructs a histogram of SAX
words using the framework of bag-of-feature (BOF). Thereafter, classification is performed
by comparing the histograms to identify the nearest neighbor located in the training set.
One of the popular variations of BOP is symbolic aggregate approximation and vector space
model (SAX-VSM) [30], which introduces term frequency-inverse document frequency
(TF-IDF) to assign weights to SAX words. Each SAX word has a different weight for each
class to optimize the similarity computation to a certain extent. The major contribution of
SAX-VSM is the proposal of a parameter selection optimization method, DIRECT, to accel-
erate the SAX parameter search. Fuad and Marwan [31] suggested overlap-SAX (O-SAX)
to include the trend information of a given time-series. The last data point in the previous
segment and the first data point in the following segment are swapped to consider the trend
of the data points. Song et al. [32] proposed a novel approach referred to as transitional-SAX
(T-SAX) to incorporate transitional information into conventional SAX. To retain meaning-
ful information, the proposed approach retains the upward and downward transitional
information by tracing the data points traveling from the current quantile region to the next
location. Sun et al. [33] suggested SAX-based trend distance (SAX-TD) to reflect the trend of
the time-series using the first and last data points of a segment. Yin et al. [34] proposed the
trend feature symbolic approximation (TFSA) to enhance the classification performance of
SAX. In the proposed approach, a two-stage segmentation approach for fast segmentation
of long time-series is applied, and the experimental results demonstrate that it achieves
better segmentation and classification accuracy than SAX. Malinowski et al. [35] adopted a
novel algorithm 1d-SAX that outperformed SAX, while retaining the compression ratio.
In the algorithm, linear regression is applied in sub-segments of the time-series. Then,
symbols are created via mean and slope values. Fuad and Marwan [36] proposed the
genetic algorithm SAX (GASAX) to determine the breakpoints using a genetic algorithm. In
the proposed algorithm, a genetic algorithm is employed to determine the nearly optimal
configuration of breakpoints that provides the optimal fitness during the SAX process.
Additional variations of SAX are described in [37–41].

3. Proposed Method: DM-SAX
3.1. D-SAX

The conventional SAX approach results in an appropriate time-series representation.
However, SAX is based on the PAA representation, minimizing the dimensionality by
calculating the mean values of equal-sized segments. This implies that the mean value-
based representation might overlook some important values in industrial time-series, such
as outliers. In this section, we propose a two-stage time-series representation method that
can summarize the time-series better than the conventional SAX algorithm.

The first stage of representing time-series in the proposed method involves the consid-
eration of the distribution of the time-series by computing the perpendicular distance from
the time-axis to each data point in the segment. It should be noted that the perpendicular
distance from the time-axis to the data point implies the absolute value of the data point.
For instance, the 2nd value in Figure 2 is −2; hence, the perpendicular distance from the
time-axis to −2 is 2. By considering the distribution of the time-series, the information with
important data points such as outliers can be preserved. Therefore, the time-series vector
X = [x1, . . . , xN ] with length N is converted into a distance-based PAA (D-PAA) vector
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XD−PAA =
[

xD−PAA
1 , . . . , xD−PAA

S

]
with length S. The ith element of D-PAA xD−PAA

i is
expressed as,

xD−PAA
i =

( N
S )i

∑
j=( N

S )(i−1)+1

xj

∣∣xj
∣∣

∑
( N

S )i
j=( N

S )(i−1)+1

∣∣xj
∣∣ , (2)

where i ranges from 1 to S, xj is the jth element of X, and
∣∣xj
∣∣ is the absolute value of the

jth element of X.
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Figure 2. Procedure of (a) D-PAA (t_size = 5) and (b) D-SAX (n_bins = 7).

Afterward, a previously generated D-PAA vector XD−PAA =
[

xD−PAA
1 , . . . , xD−PAA

S

]
is converted into a symbol vector XD−SAX =

[
xD−SAX

1 , . . . , xD−SAX
S

]
. In this phase, the

same discretization and symbolization are processed similar to that of the SAX. In this
study, we refer to this method as distance-based SAX (D-SAX). The process of D-SAX is
shown in Figure 2.

3.2. DM-SAX

Although considering the distribution of data points in a time-series is an effective
method, this method does not reflect the trend of the time-series. Data points in the
first segment shows an increasing trend while data points in the second segment show a
decreasing trend, as shown in Figure 3a. Considering only the distribution of data points by
calculating the perpendicular distance from the time-axis to the data points is not sufficient
to appropriately represent a given time-series.
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Figure 3. Procedure of (a) DM-PAA (t_size = 5) and (b) DM-SAX (n_bins = 7).
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The second stage to represent a time-series in the proposed method involves adding a
momentum factor to consider the time-series trend. The equation for the momentum factor is,

mt = amt−1 + η(xt − xt−1) (3)

where t =
(

N
S

)
i, m( N

S )(i−1)+1 = 0, and xt is the tth element of X.
Note that a is the hyperparameter reflecting the direction of previous data points, and

η is the hyperparameter controlling the gradient of the current and previous data points.
The trend of data points is effectively reflected by considering the trend of the time-

series via the momentum factor that can reflect the direction of the time-series. After adding
the momentum factor to the D-PAA process, the time-series vector X = [x1, . . . , xN ]
with length N is converted into a distance- and momentum-based PAA (DM-PAA) vector
XDM−PAA =

[
xDM−PAA

1 , . . . , xDM−PAA
S

]
with length S. Finally, the ith element of DM-PAA

xDM−PAA
i is given by,

xDM−PAA
i = xD−PAA

i + mt (4)

Note that, when a and η are 0, the result of DM-PAA is the same as that of D-PAA.
Then, a previously generated DM-PAA vector XDM−PAA =

[
xDM−PAA

1 , . . . , xDM−PAA
S

]
is converted into a symbol vector XDM−SAX =

[
xDM−SAX

1 , . . . , xDM−SAX
S

]
. In this phase,

the same discretization and symbolization are processed in the same manner as in the SAX.
In this study, we refer to this method as DM-SAX. Figure 3 shows the process of DM-SAX.

4. Experimental Validation

In this section, we experimentally evaluated whether the proposed DM-SAX is su-
perior to other methods on various datasets provided by the University of California—
Riverside (UCR) time-series classification archive [46], a well-known data repository for
time-series data mining research, and real-world manufacturing processes.

4.1. UCR Datasets
4.1.1. Experimental Design

The comparative classification performances of five time-series representation methods
(SAX, extreme-SAX (E-SAX), overlap-SAX (O-SAX), D-SAX, and DM-SAX) are presented
on 29 different highly imbalanced datasets taken from the UCR time-series classification
archive. This archive originally contained 128 datasets involving various numbers of data
points, input features, and classes. For highly imbalanced classification, which is the scope
of our study, we converted the class with the smallest number of data points to a positive
class, whereas the other classes were converted to a negative class. Then, we calculated the
imbalance ratio for each dataset (i.e., the proportion of the number of data points in the
negative class to the number of data points in the positive class). Afterward, datasets with
imbalance ratios greater than 10 were selected for this experiment, reducing the number of
datasets from 128 to 29. Note that the datasets were originally divided into training and
test set. Table 2 lists the datasets used.

The experiment was controlled such that a random forest with 20 iterations was used
as a base classifier since it is well known for its stable predictive performances [47–50].
As previously discussed, t_size and n_bins are the two main hyperparameters of the SAX.
In this experiment, we set t_size to 3 and 5 and n_bins to 4, 6, 8, and 10; thus, a total of
8 experiments were conducted. Note that classes containing a positive class are represented
as positive classes in the PAA process. For example, classes 0, 1, 0, 0, 0, and 0 are converted
to 1 and 0 if t_size is set to 3. For DM-SAX, a and η were fixed at 0.9 and 0.01, respectively.
Note that the area under the curve (AUC) was employed as a performance measure because
it is regarded as a comprehensive and balanced metric that better reflects the classification
performance on highly imbalanced data [51,52].
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Table 2. Dataset descriptions.

Dataset #Training
Data Points

#Test
Data Points

#Input
Features

Imbalance
Ratio

Adiac 390 391 176 38.1
CricketX 390 390 300 11.0
CricketY 390 390 300 11.0
CricketZ 390 390 300 11.0
Crop 7200 16,800 46 23.0
DistalPhalanxOutlineAgeGroup 400 139 80 11.0
DistalPhalanxTW 400 139 80 19.7
ECG5000 500 5000 140 207.3
ElectricDevices 8926 7711 96 12.3
EOGHorizontalSignal 362 362 1250 11.3
EOGVerticalSignal 362 362 1250 11.3
FaceAll 560 1690 131 45.9
FacesUCR 200 2050 131 45.9
FiftyWords 450 455 270 149.8
Fungi 18 186 201 24.5
InsectWingbeatSound 220 1980 256 10.0
MedicalImages 381 760 99 48.6
MiddlePhalanxTW 399 154 80 15.3
NonInvasiveFetalECGThorax1 1800 1965 750 49.2
NonInvasiveFetalECGThorax2 1800 1965 750 49.2
OSULeaf 200 242 427 10.6
Phoneme 214 1896 1024 1054.0
PigAirwayPressure 104 208 2000 51.0
PigArtPressure 104 208 2000 51.0
PigCVP 104 208 2000 51.0
ProximalPhalanxTW 400 205 80 32.6
ShapesAll 600 600 512 59.0
SwedishLeaf 500 625 128 14.0
WordSynonyms 267 638 270 74.4

4.1.2. Experimental Results

Table 3 summarizes the results of the performance benchmarks. The AUCs were
obtained by averaging the results from the validation repeated eight times, as mentioned
above. The highest AUCs obtained for each dataset are highlighted in bold. On an average,
DM-SAX achieved the highest AUC, 73.44(%), followed by D-SAX, E-SAX, O-SAX, and
SAX. Moreover, DM-SAX demonstrated an optimal performance with a mean rank value
of 2.24. Specifically, DM-SAX outperformed the other methods in 10 out of 29 datasets.
Furthermore, we recognized that considering both the distribution and trend of the time-
series resulted in a more beneficial effect than solely considering the distribution of the
time-series in 16 out of 29 datasets.

Note that DM-SAX was superior to conventional SAX particularly when the dataset
was difficult to classify, with DistalPhalanxTW, MiddlePhalanxTW, Phoneme, PigArtPressure,
and ProximalPhalanxTW being the typical cases in point. It may be hard to attribute these
comparative results to a specific factor. Nevertheless, the results indicate that time-series
representation by calculating the perpendicular distance from the time-axis to each data
point and computing the trend of data points resulted in data representation that could
appropriately deal with ‘hard-to-classify’ problems.

The Friedman omnibus test [53] was first performed on the rank values of the classifi-
cation performances for each competing method across the datasets to verify the statistical
significance of the difference between the methods. Therefore, the p-value (<0.5 × 10−4)
was demonstrated to be less than the alpha risk of 0.05, indicating statistically signifi-
cant differences in the rankings between the AUCs of time-series representation methods.
Subsequently, a post-hoc Wilcoxon rank test was employed to enforce the pairwise com-
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parison of the time-series representation methods, with an adjusted alpha risk of 0.005
(=0.05/10) [54,55].

Table 3. Performance benchmarks (UCR datasets).

Dataset SAX E-SAX O-SAX D-SAX DM-SAX

Adiac 43.10 52.64 50.01 48.34 48.97
CricketX 55.78 58.68 60.93 61.01 60.23
CricketY 68.84 71.62 63.95 72.73 72.54
CricketZ 51.33 52.90 51.57 52.42 52.86
Crop 99.55 99.42 99.73 99.64 99.64
DistalPhalanxOutlineAgeGroup 89.31 93.06 83.92 82.48 81.54
DistalPhalanxTW 50.73 54.51 57.16 56.74 57.51
ECG5000 65.72 58.09 60.87 66.54 67.04
ElectricDevices 80.55 78.34 80.56 84.80 84.02
EOGHorizontalSignal 72.34 76.00 77.95 73.75 74.37
EOGVerticalSignal 69.57 70.84 76.62 69.94 69.14
FaceAll 94.29 92.89 89.28 96.09 97.15
FacesUCR 61.33 55.96 59.05 65.01 63.88
FiftyWords 60.54 65.93 58.70 60.86 61.54
Fungi 98.12 86.14 93.89 97.77 97.89
InsectWingbeatSound 76.53 62.60 71.30 78.31 78.83
MedicalImages 77.95 87.85 90.21 95.24 95.75
MiddlePhalanxTW 63.70 69.12 68.31 66.15 71.17
NonInvasiveFetalECGThorax1 85.80 87.12 67.86 92.76 92.31
NonInvasiveFetalECGThorax2 82.04 81.11 67.12 87.23 87.72
OSULeaf 57.59 47.28 56.51 57.78 58.30
Phoneme 36.33 69.76 69.82 53.56 53.52
PigAirwayPressure 59.11 81.37 84.45 64.83 66.59
PigArtPressure 60.70 51.64 39.82 76.63 77.15
PigCVP 73.18 47.11 60.54 86.58 84.24
ProximalPhalanxTW 56.00 72.25 55.87 71.74 74.06
ShapesAll 82.38 74.49 89.97 85.76 84.61
SwedishLeaf 64.70 72.39 59.80 65.72 63.80
WordSynonyms 51.43 57.13 57.09 54.18 53.32

Mean AUC (%) 68.57 69.94 69.06 73.26 73.44

Mean Rank 3.86 3.21 3.24 2.41 2.24

Table 4 presents the test results. Although there was no statistically significant dif-
ference between DM-SAX and D-SAX, DM-SAX outperformed SAX, E-SAX, and O-SAX,
whereas D-SAX was observed to be insignificant in contrast to DM-SAX. This indicates that
the computation of the time-series trend redeemed the classification performance of the
method that only considered the distribution of the time-series.

Table 4. Post-hoc test (Wilcoxon) results (p-value).

SAX E-SAX O-SAX D-SAX DM-SAX

SAX - 0.9573 0.6517 0.0135 0.0022
E-SAX - 0.9222 0.0139 0.0032
O-SAX 0.0251 0.0043
D-SAX - 0.2692
DM-SAX -

Figure 4 shows the ratio of each algorithm included in the top-n rank by AUC. DM-SAX
is considered the top-performing algorithm in 31% (73/232) of repeated experiments among
29 datasets, and it was at least the 2nd ranked algorithm in 59% (137/232) of the results.
Overall, DM-SAX showed a better classification performance than the other methods.
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4.2. Real-World Manufacturing Process Dataset
4.2.1. Experimental Design

A manufacturing process dataset compiled from cutting and crimping process in the
wiring harness manufacturing was used to further prove the applicability of the proposed
DM-SAX. A wiring harness is used to transmit electrical signals between control devices
in a vehicle. To produce a wiring harness, a cutting machine was used to cut the wire to
a certain length. Then, both ends of the wire were connected to the terminals and were
pressed using an applicator.

The dataset was collected from 20:38 19 July to 13:02 22 July 2021, with 285,297 data
points, and each consecutive 100 data points represented approximately 1 min. Failures
were recorded at 656 data points, and the imbalance ratio was 433, indicating a highly imbal-
anced ratio. In this section, three features (B/S, RCFA, and MPP) are used to predict whether
the products prepared by wire cutting and crimping are normal or abnormal. Tables 5 and 6
lists a brief description and detailed statistical information on these features, respectively.

Table 5. Description of features.

Features Description

B/S Bad limit overall/Specification delta conductor
RCFA Results measured from crimp force analyzer
MPP Maximum press power

Table 6. Descriptive statistics.

Features Min Median Mean Max

B/S −2052.0 1.0 −1.1 1674.0
RCFA 1.0 14.0 17.4 2052.0
MPP 99.0 3457.0 3774.8 8758.0

There were two major differences although the overall experimental design was almost
the same as that of the UCR datasets. One major difference is the training and test split
criterion. As previously mentioned, training and test sets were originally divided in UCR
datasets. In contrast, we arbitrarily divided the real-world dataset into training and test
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sets in a ratio of 0.7 and 0.3. The other difference is that we set t_size to 25, 50, 75, 100, and
150 for the real-world dataset, which is larger than those on the UCR dataset experiments.
Table 7 summarizes the detailed similarities and differences between the experiments on
the real-world and UCR datasets.

Table 7. Similarities and differences between experiments of UCR and real-world datasets.

Elements UCR Real-World

Similarities

Competing methods SAX, E-SAX, O-SAX, D-SAX, and DM-SAX
Performance measure AUC

Base classifier Random forest (20 iterations)
n_bins 4, 6, 8, and 10

a 0.9
η 0.01

Differences
t_size 3, 5 25, 50, 75, 100, and 150

Training/Test set ratio Originally split
in the archive 0.7/0.3

4.2.2. Experimental Results

Table 8 lists the experimental results, and the best AUCs for each case are marked in
bold. The results demonstrate that DM-SAX obtained the optimal AUC (98.88%), followed
by D-SAX, E-SAX, O-SAX, and SAX. In addition, DM-SAX demonstrated the optimal
performance while outperforming other methods in 10 out of 20 experimental cases, with a
mean rank value of 1.15.

Table 8. Performance benchmarks (real-world dataset).

t_size n_bins SAX E-SAX O-SAX D-SAX DM-SAX

25

4 85.16 89.45 87.74 99.39 99.38
6 85.00 94.18 93.58 99.73 99.76
8 80.30 93.95 93.69 99.88 99.88

10 83.23 93.68 92.28 99.34 99.33

50

4 85.90 81.48 86.89 98.95 98.95
6 82.32 89.86 89.51 99.02 99.02
8 84.67 93.17 87.87 99.50 99.47

10 84.72 93.39 90.14 99.52 99.52

75

4 79.29 77.62 85.28 99.27 99.27
6 76.83 88.39 86.97 98.96 98.96
8 78.56 91.91 86.79 98.57 98.57

10 76.23 92.53 86.79 98.95 98.96

100

4 84.58 76.34 85.81 98.39 98.40
6 81.79 89.40 86.52 98.55 98.56
8 78.48 92.79 87.77 97.79 98.27

10 76.17 93.57 86.44 98.44 98.91

150

4 77.27 73.90 82.60 97.75 97.76
6 78.45 86.71 82.03 98.06 98.08
8 82.87 91.48 80.41 98.62 98.66

10 79.05 91.37 78.79 97.45 97.90

Mean AUC (%) 81.04 88.76 86.90 98.81 98.88

Mean Rank 4.70 3.40 3.90 1.50 1.15

Note that DM-SAX outperformed D-SAX, particularly when the t_size was larger than
100. This implies that the addition of a momentum factor resulted in a favorable effect
when there were sufficient data points to reflect the overall trend of the time-series.
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5. Conclusions

In this study, we developed a novel time-dimensionality representation method, called
DM-SAX, and compared it with other well-known time-series representation methods.
The proposed method secures the time-series characteristics by computing the perpendic-
ular distance from the time-axis to data points and considers the trend of time-series by
employing the momentum factor that can reflect the direction of previous data points.

The experimental results on 29 UCR problems proved that DM-SAX exhibited the
optimum AUC among the competing methods. Moreover, we empirically verified that
DM-SAX is superior to other methods using real-world wire cutting and crimping process
data. Defect detection would be applicable in the real-time industrial process using the
proposed method. To be more specific, if the symbols generated in the proposed method
are located at both ends of the discretization region, one could easily determine that those
symbols represent the defects. Furthermore, the proposed method can also be employed
in unsupervised learning, such as for human behavior pattern discovery, traffic pattern
discovery, and failure rule discovery.

As an extension of the proposed method, a new type of factor that can further represent
the characteristics of a given time-series will be developed in the future. Here, an additional
factor related to momentum factor that could better reflect the trend of the data will be
considered. In addition, a heuristic method for selecting a and η may be another future
research topic. The current configuration (a: 0.9, η: 0.01) may have overlooked the optimal
trend of the time-series. Thus, it is necessary investigating various search algorithms.
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