
Citation: Riza, L.S.; Fazanadi, M.N.;

Utama, J.A.; Samah, K.A.F.A.;

Hidayat, T.; Nazir, S. SAX and

Random Projection Algorithms for

the Motif Discovery of Orbital

Asteroid Resonance Using Big Data

Platforms. Sensors 2022, 22, 5071.

https://doi.org/10.3390/s22145071

Academic Editor: Haipeng Dai

Received: 29 March 2022

Accepted: 30 May 2022

Published: 6 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

SAX and Random Projection Algorithms for the Motif
Discovery of Orbital Asteroid Resonance Using Big
Data Platforms
Lala Septem Riza 1,* , Muhammad Naufal Fazanadi 1, Judhistira Aria Utama 2,
Khyrina Airin Fariza Abu Samah 3 , Taufiq Hidayat 4 and Shah Nazir 5

1 Department of Computer Science Education, Universitas Pendidikan Indonesia, Bandung 40154, Indonesia;
mnf_naufal@student.upi.edu

2 Department of Physics Education, Universitas Pendidikan Indonesia, Bandung 40154, Indonesia;
j.aria.utama@upi.edu

3 Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA Cawangan Melaka Kampus Jasin,
Melaka City 77300, Malaysia; khyrina783@uitm.edu.my

4 Astronomy Research Division, Faculty of Mathematics and Natural Science, Institut Teknologi Bandung,
Bandung 40132, Indonesia; taufiq@as.itb.ac.id

5 Department of Computer Science, University of Swabi, Swabi 94640, Pakistan; snshahnzr@gmail.com
* Correspondence: lala.s.riza@upi.edu

Abstract: The phenomenon of big data has occurred in many fields of knowledge, one of which
is astronomy. One example of a large dataset in astronomy is that of numerically integrated time
series asteroid orbital elements from a time span of millions to billions of years. For example,
the mean motion resonance (MMR) data of an asteroid are used to find out the duration that the
asteroid was in a resonance state with a particular planet. For this reason, this research designs a
computational model to obtain the mean motion resonance quickly and effectively by modifying
and implementing the Symbolic Aggregate Approximation (SAX) algorithm and the motif discovery
random projection algorithm on big data platforms (i.e., Apache Hadoop and Apache Spark). There
are five following steps on the model: (i) saving data into the Hadoop Distributed File System
(HDFS); (ii) importing files to the Resilient Distributed Datasets (RDD); (iii) preprocessing the data;
(iv) calculating the motif discovery by executing the User-Defined Function (UDF) program; and
(v) gathering the results from the UDF to the HDFS and the .csv file. The results indicated a very
significant reduction in computational time between the use of the standalone method and the use
of the big data platform. The proposed computational model obtained an average accuracy of 83%,
compared with the SwiftVis software.

Keywords: big data; SAX algorithm; random projection algorithm; time series; motif discovery; mean
motion resonance

1. Introduction

Nowadays, almost everyone creates or uses new data every day, so the growth of
data is unstoppable. For example, according to one study, Facebook uploads more than
250 million photos daily and handles interactions between 800 million active users and
more than 900 million objects (pages, groups, etc.) [1]. Thus, this phenomenon has given
rise to new terminology, namely big data. Big data is a term that represents the phenomenon
of data, namely high-volume, high-speed, and diverse information assets that demand
cost-effective information processing and innovative forms of information processing for
improved insight and decision making [2]. This big data phenomenon does not only occur
in computer applications but also in other fields. For example, researchers might attempt
to solve a problem in biology by analyzing the repetition in a DNA sequence [3]. Another
example is astronomy, where massive amounts of data are produced from ground- and

Sensors 2022, 22, 5071. https://doi.org/10.3390/s22145071 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22145071
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-5324-8208
https://orcid.org/0000-0002-0632-6330
https://orcid.org/0000-0003-0126-9944
https://doi.org/10.3390/s22145071
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22145071?type=check_update&version=1

Sensors 2022, 22, 5071 2 of 17

space-based observations. So, analyzing the data using traditional computation methods is
almost impossible. One of the forms of data that is particularly abundant in the field of
astronomy is asteroid orbital time series data, which involves six elements in the Keplerian
component, namely a (semimajor axis), e (eccentricity), i (inclination), ω (arguments of
perihelion), Ω (longitude of the ascending node), and M (mean anomaly) [4]. Moreover,
big data analysis is also used in agriculture [5]. This is because sensors/tools in agriculture
produce massive datasets, such as weather and climate change, remote sensing, crop
images, land conditions, etc.

In astronomy, there is a population of asteroids between the orbits of Mars and Jupiter.
One contributing mechanism to delivering asteroids in the main belt into the near-Earth
region could be high-velocity collisions between asteroids [6]. While in the near-Earth
region, defined as a region that satisfies the inequality q (perihelion distance) < 1.3 au and
Q (aphelion distance) > 0.98 au, asteroids can experience close encounters with certain
planets (Mercury, Venus, Earth, and Mars) and also the moon. As a result of these close
encounters, asteroids can fragment due to strong tidal forces, or if they survive, their orbits
can change drastically in a short time. The drastic changes in orbits can change the future
fate of asteroids, namely whether they still orbit the sun, collide with massive objects, or
are ejected from the solar system. According to Gallardo [7], it is laborious to identify
which one of the hundreds of mean motion resonances (MMRs) that theoretically exist
near the semimajor axis of the orbit we are studying is the one affecting the asteroid’s
motion. MMRs occur when two bodies have periods of revolution with a simple integer
ratio, either stabilizing or destabilizing the orbit. Stabilization may happen when the two
bodies move in such a synchronized fashion that they never closely approach. For small
bodies, such as asteroids, destabilization is far more likely. Locations of MMRs are simply
calculated with the use of Kepler’s third law, and the critical angle is used to refer to the
actual resonance state.

Therefore, this research is focused on building a computational model by modifying
the motif discovery algorithm on a big data platform and adapting its implementation so
that it can provide motif search results and resonance results in a 1:1 state found in the
asteroid orbital resonance time series data accurately and quickly. In our study, we use
only the commensurability of the orbital period of an asteroid to the planets as an indicator
for the existence of MMRs. We focus only on finding 1:1 MMR states among near-Earth
asteroids with terrestrial planets and the moon. An asteroid can be in the 1:1 MMR with
a given planet when |a − a1 | < (µ/3)1/3a1 is satisfied (µ is the planet–Sun mass ratio,
whereas a and a1 are the asteroids and planet’s orbital semimajor axes, respectively). In
this case, the orbital period of the asteroids around the sun are the same as the planets.
Moreover, this study uses the two following algorithms for detecting motifs that occur
in time series data without any motive input from the user: the SAX algorithm [8] used
to change the time series representation, and the random projection algorithm [9] used
to discover a motif. Using the SAX algorithm, a time series dataset can quickly change
to string representation. Then, this is followed by the random projection algorithm to
detect the motif data found in the data. Random projection can detect motifs without the
need for the motif input data that users want to find quickly. To process the data, this
research will use Apache Hadoop [10] and Apache Spark [11] as big data platforms and use
the modified SAX algorithm and random projection algorithm to process big time series
data. The Hadoop Distributed File System (HDFS) of Apache Hadoop will be used as data
storage for storing large data and spread over several cluster nodes. Then, Apache Spark
will be used as a computing medium for this research to process large data quickly by
dividing the process into several nodes in the cluster. By using these platforms running in
parallel and distributed computing modes, computational cost can be reduced while still
maintaining reasonable accuracy.

In this study, the SAX algorithm and the random projection algorithm are implemented
to solve motif discovery issues [12]. However, this research was conducted in a single
processor. This means that the proposed method in this research is an improvement of

Sensors 2022, 22, 5071 3 of 17

the previous one. The other study involving Apache Spark on discovery patterns was
performed by Jiang et al. [13], Riza et al. [14], and Pérez-Chacón et al. [15].

2. Research Methods

Figure 1 shows the computational model developed in this research. It involves two
two big data platforms: Apache Hadoop YARN schedulers and Apache Spark. In Apache
Hadoop, we used the Hadoop Distributed File System (HDFS) for storage and Apache
Spark for the computation of the model. Therefore, it can be seen that this computational
model was built to adopt and modify processes run in the standalone mode so that it could
be run on a big data platform in parallel and distributed computing modes.

Sensors 2022, 22, x FOR PEER REVIEW 3 of 17

of the previous one. The other study involving Apache Spark on discovery patterns was
performed by Jiang et al. [13], Riza et al. [14], and Pérez-Chacón et al. [15].

2. Research Methods
Figure 1 shows the computational model developed in this research. It involves two

two big data platforms: Apache Hadoop YARN schedulers and Apache Spark. In Apache
Hadoop, we used the Hadoop Distributed File System (HDFS) for storage and Apache
Spark for the computation of the model. Therefore, it can be seen that this computational
model was built to adopt and modify processes run in the standalone mode so that it could
be run on a big data platform in parallel and distributed computing modes.

Figure 1. Computational model in the cluster engine using a big data platform. Figure 1. Computational model in the cluster engine using a big data platform.

Basically, the computational model can be divided into the 4 following system environ-
ments: (i) in personal computers/local machines; (ii) virtual machines on the Google Cloud

Sensors 2022, 22, 5071 4 of 17

Platform [16]; (iii) the HDFS of Apache Hadoop; and (iv) computation using DataFrame
in Apache Spark. Moreover, in these environments, there are four steps to be completed,
as follows.

2.1. Data Collection

In the first step, we collect data in the form of the resonance data of asteroid orbital
elements. The input data are uploaded first to the virtual machine on the Google Cloud
Platform. Then, the files in the virtual machine are copied using the put command owned
by Apache Hadoop into HDFS for processing the data in a cluster. After that, the file will be
imported/used by Apache Spark. The data type used in the Apache Spark environment is a
DataFrame containing a Resilient Distributed Dataset (RDD) [17] that has been partitioned
into sections on each block file in HDFS.

2.2. Data Preprocessing

The first stage conducted in the Apache Spark environment is data preprocessing.
Before completing the processing and calculations, we need to clean the data first. At this
stage, preprocessing of the time series data input is carried out. This preprocessing is the
stage of cleaning the raw data. After that, the next stage is the data normalization stage. The
time series data are normalized using Z-score normalization so that all data are comparable
for processing. The reason for using this normalization is because time series data tends
to have data with a normal distribution [18]. The normalized time series data will then
be converted into SAX and generate string data to be processed by the motif discovery
random projection algorithm. The SAX method allows time series data to be converted
into a string with the desired number of characters or alphabets in the string. The size
of the alphabet is an arbitrary integer a, where a > 2. This algorithm consists of 2 steps:
(i) the transformation of the initial time series into a time series with Piecewise Constant
Model (PAA) representation [19]; and (ii) reducing the dimensions by converting PAA into
a symbolic representation of the time series in the form of a string [20]. The process of the
SAX algorithm is described in pseudocode in Figure 2 and an example of the results of the
time series discretization is shown in Figure 3.

Sensors 2022, 22, x FOR PEER REVIEW 5 of 17

Figure 2. Pseudocode of the SAX algorithm in the standalone mode.

Figure 3. Time series that have been discretized to be labels of SAX in the following string
“aabddddccbcbaaa”.

2.3. Computing with Motif Discovery in Big Data Platforms
After running the SAX algorithm and obtaining the string data output from the SAX

algorithm, the next step is to find the previously unknown motif using the random pro-
jection algorithm [21]. This algorithm is taken from the problem of Planted Motif Search
(PMS) in the field of computational biology, where PMS aims to find all the motifs that
appear in each DNA sequence [22].

Random projection is one of the algorithms used for the problem of finding motifs in
DNA sequences. In this algorithm, pieces of input data in the form of sub-sequences (l-
mers) are projected according to a random position determined based on the value of k (k-
mers) [23]. Random projection represents those mutations that can occur anywhere so ran-
dom projections are performed randomly. The pseudocode of this algorithm can be seen
in Figure 4 [9].

Figure 2. Pseudocode of the SAX algorithm in the standalone mode.

Sensors 2022, 22, 5071 5 of 17

Sensors 2022, 22, x FOR PEER REVIEW 5 of 17

Figure 2. Pseudocode of the SAX algorithm in the standalone mode.

Figure 3. Time series that have been discretized to be labels of SAX in the following string
“aabddddccbcbaaa”.

2.3. Computing with Motif Discovery in Big Data Platforms
After running the SAX algorithm and obtaining the string data output from the SAX

algorithm, the next step is to find the previously unknown motif using the random pro-
jection algorithm [21]. This algorithm is taken from the problem of Planted Motif Search
(PMS) in the field of computational biology, where PMS aims to find all the motifs that
appear in each DNA sequence [22].

Random projection is one of the algorithms used for the problem of finding motifs in
DNA sequences. In this algorithm, pieces of input data in the form of sub-sequences (l-
mers) are projected according to a random position determined based on the value of k (k-
mers) [23]. Random projection represents those mutations that can occur anywhere so ran-
dom projections are performed randomly. The pseudocode of this algorithm can be seen
in Figure 4 [9].

Figure 3. Time series that have been discretized to be labels of SAX in the following string “aabdddd-
ccbcbaaa”.

2.3. Computing with Motif Discovery in Big Data Platforms

After running the SAX algorithm and obtaining the string data output from the
SAX algorithm, the next step is to find the previously unknown motif using the random
projection algorithm [21]. This algorithm is taken from the problem of Planted Motif Search
(PMS) in the field of computational biology, where PMS aims to find all the motifs that
appear in each DNA sequence [22].

Random projection is one of the algorithms used for the problem of finding motifs
in DNA sequences. In this algorithm, pieces of input data in the form of sub-sequences
(l-mers) are projected according to a random position determined based on the value of k
(k-mers) [23]. Random projection represents those mutations that can occur anywhere so
random projections are performed randomly. The pseudocode of this algorithm can be
seen in Figure 4 [9].

Sensors 2022, 22, x FOR PEER REVIEW 6 of 17

Figure 4. Pseudocode of the random projection algorithm.

The next stage is the motif discovery stage using the SAX algorithm and the random
projection algorithm designed and explained in the previous step. It should be noted that
this computation is run as a Resilient Distributed Dataset (RDD) of Apache Spark in each
data partition.

At this stage, in addition to the motive discovery function, there is a data normaliza-
tion process and a data postprocessing stage which include several elements, such as com-
bining the motifs found in a row, looking for values at the distance the AU motif is found,
and filtering which locations have 1:1 mean motion resonance. The four functions use
functions built in standalone Python; however, in Spark SQL, ordinary functions cannot
be used for data processing for partitioned data frames. In this stage, there is a process of
modifying the program code that has been made previously. The modification of the pro-
gram code involves changing the three processes in the discovery motif into the User-
Defined Function (UDF) in Apache Spark. This process is intended so that functions that
have been created in standalone Python can be used in the Apache Spark and Spark SQL
environments.

The UDF’s role is to run the commands it contains against all RDD data frame parti-
tions that Apache Spark has split. For example, DataFrame x has 10 data divided into 4
partitions split by Apache Spark. Then, when the UDF, which contains data normaliza-
tion, the SAX algorithm, random projection, and preprocessing, is executed, the three
functions are executed simultaneously to each partition. To declare this UDF function re-
quires a data type structure for the output of this function, namely an array in an array
containing an array of integers which will contain the motif’s start location, the motif’s
ending location, and a 1:1 resonance condition of the motif. The application of the UDF
function and the modification of the algorithm are shown in Figure 5. It can be seen that,
basically, the UDF program involves the following functions: Z-score normalization, SAX,
random projection, and postprocessing.

Figure 5. The command of SAX and random projection in the UDF of Spark SQL.

The next step is to execute the previously created UDF function on the RDD data
frame. Running UDF on a DataFrame cannot be used in the same way as entering data
into a function as usual. The preprocessed DataFrame will apply the groupBy function
first to combine all data rows with the same asteroid ID. Then, the data in column a will

Figure 4. Pseudocode of the random projection algorithm.

The next stage is the motif discovery stage using the SAX algorithm and the random
projection algorithm designed and explained in the previous step. It should be noted that
this computation is run as a Resilient Distributed Dataset (RDD) of Apache Spark in each
data partition.

At this stage, in addition to the motive discovery function, there is a data normalization
process and a data postprocessing stage which include several elements, such as combining
the motifs found in a row, looking for values at the distance the AU motif is found, and
filtering which locations have 1:1 mean motion resonance. The four functions use functions
built in standalone Python; however, in Spark SQL, ordinary functions cannot be used for
data processing for partitioned data frames. In this stage, there is a process of modifying
the program code that has been made previously. The modification of the program code
involves changing the three processes in the discovery motif into the User-Defined Function

Sensors 2022, 22, 5071 6 of 17

(UDF) in Apache Spark. This process is intended so that functions that have been created
in standalone Python can be used in the Apache Spark and Spark SQL environments.

The UDF’s role is to run the commands it contains against all RDD data frame par-
titions that Apache Spark has split. For example, DataFrame x has 10 data divided into
4 partitions split by Apache Spark. Then, when the UDF, which contains data normal-
ization, the SAX algorithm, random projection, and preprocessing, is executed, the three
functions are executed simultaneously to each partition. To declare this UDF function
requires a data type structure for the output of this function, namely an array in an array
containing an array of integers which will contain the motif’s start location, the motif’s
ending location, and a 1:1 resonance condition of the motif. The application of the UDF
function and the modification of the algorithm are shown in Figure 5. It can be seen that,
basically, the UDF program involves the following functions: Z-score normalization, SAX,
random projection, and postprocessing.

Sensors 2022, 22, x FOR PEER REVIEW 6 of 17

Figure 4. Pseudocode of the random projection algorithm.

The next stage is the motif discovery stage using the SAX algorithm and the random
projection algorithm designed and explained in the previous step. It should be noted that
this computation is run as a Resilient Distributed Dataset (RDD) of Apache Spark in each
data partition.

At this stage, in addition to the motive discovery function, there is a data normaliza-
tion process and a data postprocessing stage which include several elements, such as com-
bining the motifs found in a row, looking for values at the distance the AU motif is found,
and filtering which locations have 1:1 mean motion resonance. The four functions use
functions built in standalone Python; however, in Spark SQL, ordinary functions cannot
be used for data processing for partitioned data frames. In this stage, there is a process of
modifying the program code that has been made previously. The modification of the pro-
gram code involves changing the three processes in the discovery motif into the User-
Defined Function (UDF) in Apache Spark. This process is intended so that functions that
have been created in standalone Python can be used in the Apache Spark and Spark SQL
environments.

The UDF’s role is to run the commands it contains against all RDD data frame parti-
tions that Apache Spark has split. For example, DataFrame x has 10 data divided into 4
partitions split by Apache Spark. Then, when the UDF, which contains data normaliza-
tion, the SAX algorithm, random projection, and preprocessing, is executed, the three
functions are executed simultaneously to each partition. To declare this UDF function re-
quires a data type structure for the output of this function, namely an array in an array
containing an array of integers which will contain the motif’s start location, the motif’s
ending location, and a 1:1 resonance condition of the motif. The application of the UDF
function and the modification of the algorithm are shown in Figure 5. It can be seen that,
basically, the UDF program involves the following functions: Z-score normalization, SAX,
random projection, and postprocessing.

Figure 5. The command of SAX and random projection in the UDF of Spark SQL.

The next step is to execute the previously created UDF function on the RDD data
frame. Running UDF on a DataFrame cannot be used in the same way as entering data
into a function as usual. The preprocessed DataFrame will apply the groupBy function
first to combine all data rows with the same asteroid ID. Then, the data in column a will

Figure 5. The command of SAX and random projection in the UDF of Spark SQL.

The next step is to execute the previously created UDF function on the RDD data
frame. Running UDF on a DataFrame cannot be used in the same way as entering data
into a function as usual. The preprocessed DataFrame will apply the groupBy function
first to combine all data rows with the same asteroid ID. Then, the data in column a will
be collected in the same list. Next is data aggregation by applying and executing the
created UDF function. The UDF function will be applied to each data partition and to each
data list of column a that has been grouped together. After the UDF function is executed,
the results will be stored in a new column and a new data frame containing the results
obtained after performing the 4 main computational processes in the discovery motif,
namely normalization, SAX, random projection, and the postprocessing of the data. After
that, postprocessing will be carried out to process the results of the random projection into
information that the user needs. This postprocessing includes several elements: combining
the motifs found in a row, identifying the differences in the location of the motifs and
looking for values at the distances at which the motifs are found, and filtering at any
locations that experience 1:1 mean motion resonance. The output produced is in the form
of information on the location of the motif, information of any time the motif is found, and
at what distance the motif is found in the time series data.

2.4. Copy DataFrame to Local File (.csv)

Then, a new DataFrame that has a column resulting from the motif discovery process
will be exported into a folder containing .csv. The resulting DataFrame that was previously
split into several partitions will be combined first using the resulting file, and will be saved
into the HDFS because the data will still be divided into several block files in different
nodes. Once saved to the HDFS, the resulting folder is copied back into the virtual machine
environment on the Google Cloud Platform. In this environment, the data are back to
normal in the form of a regular .csv and the file is not broken into several parts in the local
machine. The last step is to download the processed folder from the virtual machine to a
personal computer.

3. Experimental Study

The calculation of the orbits of celestial bodies in astronomy, in the simplest form, in-
volves two isolated bodies (the two-body problem), that is, one body of less mass orbits and

Sensors 2022, 22, 5071 7 of 17

another body of greater mass under the influence of their mutual gravitational attraction.
Indeed, the two bodies orbit a common center of mass, where each object’s velocity and
orbital distance from the common center of mass is determined by the mass of each object
and its center-to-center distance. In the case of more than two objects (commonly known
as the N-body problem), the same equation of motion can be extended to the number of
simulated objects [4].

Identifying the MMRs affecting the asteroid’s motion is difficult due to the absence of
a simple method that adequately weighs the strength of each resonance [7], or when several
planets and a large number of asteroids are to be considered [8]. Based on the geometrical
meaning of the resonance variable, Forgács-Dajka et al. [8] introduce an efficient method
by which MMRs can be easily found without any a priori knowledge of them. Our study
simplified the problem into 1:1 MMR for two-body (planet and asteroid) consideration
using a big data analysis platform.

3.1. Data Collection

The data used in this study are the time series data of asteroid orbital element res-
onance. The data are on the evolution of the orbits of celestial bodies in the form of
expected asteroids over the next several million years. An example of the time series
dataset of the asteroid orbital element resonance can be seen in Figure 6. The data used
were obtained from initial sources in the JPL NASA Small Body Database Search Engine
(http://ssd.jpl.nasa.gov/sbdb_query.cgi; accessed on 3 March 2016) by filtering only for
NEOs (near-Earth objects), which are asteroids of four classes (Amor, Apollo, Aten, and
Atira), both numbered and unnumbered with very well-known orbits. As of 3 March 2016,
3372 NEAs (near-Earth asteroids) were obtained according to the epoch MJD57400. The
data obtained comprised four asteroid orbital resonance data files, which can be seen in
Table 1.

Sensors 2022, 22, x FOR PEER REVIEW 8 of 17

data obtained comprised four asteroid orbital resonance data files, which can be seen in
Table 1.

Figure 6. An example of a time series dataset of asteroid orbital element resonance.

Table 1. List of resonance data of asteroid orbital elements.

File Name File Size (MB) Number of Lines Number of Aster-
oids

Batch1_1000Asteroid_20JutaTahun.txt 359,355 4,660,333 1000
Batch2_1000Asteroid_5JutaTahun.txt 310,874 4,033,633 1000
Batch3_1000Asteroid_8JutaTahun.txt 176,910 2,303,610 1000

Batch4_372Asteroid_10,5JutaTahun.txt 130,156 1,695,900 372
Total 977,295 12,693,476 3372

Table 1 shows that the total files used were four .txt files. Each file had a different
maximum duration of orbit computation, a different file size, and a different number of
lines. The total number of 3372 real asteroids was used and distributed across four files
where one file consisted of a maximum of 1000 asteroids. The total number of lines from
the four files was 12,693,476 lines with a total file size of 977 MB. In the file name, there
was information about the duration of computation. For example, the first .txt file had the
longest duration of orbit computation: up to 20 million years in the future from the current
epoch. The number of asteroids in each file will also decrease with time. Different pro-
cesses such as asteroid collision with the sun, planets, or ejection from the solar system
can cause decay.

Table 2 shows the data used in this research experiment. Due to space limitations, the
author only shows the first 19 rows of 10 asteroids out of 1000 asteroids in the first batch
of data. In this data, each asteroid is sampled every 1000 years and stored in days. The
number of columns in this dataset is 8, namely AsteroidID, t, a, e, i, OMEGA, omega, and M
(representing the asteroid ID, time, semimajor axis, eccentricity, inclination, argument of
perihelion, longitude of the ascending node, and mean anomaly).

Table 2. Examples of data used in experiments.

AsteroidID t a e i OMEGA Omega M
−2 0.0 0.3870980 0.2056274 0.1222434 0.843181 0.5090891 0.26909

Figure 6. An example of a time series dataset of asteroid orbital element resonance.

Table 1. List of resonance data of asteroid orbital elements.

File Name File Size
(MB)

Number of
Lines

Number of
Asteroids

Batch1_1000Asteroid_20JutaTahun.txt 359,355 4,660,333 1000
Batch2_1000Asteroid_5JutaTahun.txt 310,874 4,033,633 1000
Batch3_1000Asteroid_8JutaTahun.txt 176,910 2,303,610 1000

Batch4_372Asteroid_10,5JutaTahun.txt 130,156 1,695,900 372
Total 977,295 12,693,476 3372

http://ssd.jpl.nasa.gov/sbdb_query.cgi

Sensors 2022, 22, 5071 8 of 17

Table 1 shows that the total files used were four .txt files. Each file had a different
maximum duration of orbit computation, a different file size, and a different number of
lines. The total number of 3372 real asteroids was used and distributed across four files
where one file consisted of a maximum of 1000 asteroids. The total number of lines from
the four files was 12,693,476 lines with a total file size of 977 MB. In the file name, there
was information about the duration of computation. For example, the first .txt file had
the longest duration of orbit computation: up to 20 million years in the future from the
current epoch. The number of asteroids in each file will also decrease with time. Different
processes such as asteroid collision with the sun, planets, or ejection from the solar system
can cause decay.

Table 2 shows the data used in this research experiment. Due to space limitations, the
author only shows the first 19 rows of 10 asteroids out of 1000 asteroids in the first batch
of data. In this data, each asteroid is sampled every 1000 years and stored in days. The
number of columns in this dataset is 8, namely AsteroidID, t, a, e, i, OMEGA, omega, and M
(representing the asteroid ID, time, semimajor axis, eccentricity, inclination, argument of
perihelion, longitude of the ascending node, and mean anomaly).

Table 2. Examples of data used in experiments.

AsteroidID t a e i OMEGA Omega M

−2 0.0 0.3870980 0.2056274 0.1222434 0.843181 0.5090891 0.26909
−3 0.0 0.7233265 0.0067518 0.0592433 1.3375275 0.9612226 1.23472
−4 0.0 1.0007949 0.0174236 0.0000602 2.530922 5.5680704 0.12554
−5 0.0 0.9405935 0.0478169 0.0027293 5.115822 0.38571003 2.68625
−6 0.0 1.523777 0.0933678 0.0322604 0.86408144 5.002638 3.62185
−7 0.0 5.2025285 0.0488403 0.0227536 1.7542297 4.779151 2.55758
−8 0.0 9.556443 0.0533448 0.0434584 1.9813833 5.9391503 2.65307
−9 0.0 19.14179 0.0497408 0.0134874 1.2896736 1.7050518 3.67267
−10 0.0 29.975988 0.0075758 0.0308184 2.2987971 5.122956 4.79311

1 0.0 1.061678 0.051489 0.022113 4.421005 5.529237 2.02073
2 0.0 1.942493 0.555555 0.079524 4.411401 4.030324 3.01016
3 0.0 0.830664 0.388456 0.088272 2.900785 5.581375 4.84435
4 0.0 0.988711 0.013889 0.075412 4.614986 1.527315 3.08849
5 0.0 2.085440 0.606626 0.032093 4.734172 1.805200 0.44300
6 0.0 0.996808 0.012064 0.144113 0.434161 3.888507 3.87216
7 0.0 1.210198 0.177278 0.134907 2.571753 0.872216 5.25321
8 0.0 1.007883 0.139036 0.038552 3.671272 5.048894 5.85180
9 0.0 1.306163 0.246871 0.075872 5.275945 5.695753 0.27101
10 0.0 0.992638 0.083851 0.013485 1.455619 2.622877 4.49503
. .
957 7.304 × 109 1.5908555 0.0889270 0.3030403 3.3423336 1.8881923 1.93854
961 7.304 × 109 1.9744761 0.4365535 0.5805287 3.2029006 5.186608 2.33091

In this study, only the first three columns were used, namely AsteroidID, t, and a,
because this study focuses on finding the location and time of the occurrence of the found
MMRs. In the AsteroidID column, the data with a negative value represent the planet being
considered for MMRs. These planetary data are used as a reference of 1:1 mean motion
resonance with asteroids. The data are sorted in ascending order by column t, containing
the time sampled from the computation process. The unit of time in column t is in days. At
each multiple, this column is added by 365,250 days which is equal to 1000 years. Then,
column a has a unit value of AU, which means the average distance between the asteroid
and the sun. Column a is the time series data that will be processed for the discovery motif
because it can determine any 1:1 mean motion resonance occurrence in each asteroid.

Sensors 2022, 22, 5071 9 of 17

3.2. Experimental Scenario

In conducting the experiment, we first designed the scenario for the experiment. The
parameters used in all experiments were the same. The following are the details of the
design of the parameters for both experiments:

• sax_cuts = 20. This was used as a parameter to enter the number of letters used in the
SAX algorithm. The parameter sax_cuts was filled with the number 20 because this is
the largest number of letters that can be specified in SAX.

• l_find = 10. This was used to determine the minimum length of the motif sought in
the random projection algorithm. This parameter contained a value of 10 because we
identified a resonance in the asteroid orbital data if the asteroid had a minimum length
of 10,000 years or 10 time units in the time series.

• Mismatch = 1. This was used to determine the minimum number of mismatches that
occurred in the motifs in the random projection algorithm.

• n_try = 1. This was used to determine the number of trials or iterations that were
carried out to run the random projection algorithm.

• threshold = 2. This was used to determine the minimum number of the same motifs
found so that the collection of motifs was called resonance by the user. The author
gives a value of 2 because this was the minimum number of buckets to be called
a motif.

• threshold_planet = 0.05. This was used to determine the maximum and minimum
limits of the 1:1 resonance of asteroids with each planet from the distance value on
each planet.

We performed two experiments. First, we experimented with using multiple worker
nodes, with each node having four CPU cores; the second experiment involved using
multiple CPU cores on two worker nodes on the Google Cloud Platform. In the first
scenario, the author experimented on a cluster that used several worker nodes, with each
node having four CPU cores, as can be seen in Table 3.

Table 3. Experimental scenario with four cores and various worker nodes.

No Master Worker Nodes Core per Node

1 1 0 4
2 1 2 4
3 1 5 4
4 1 10 4
5 1 15 4

Table 3 shows that the experiment used different worker nodes and cores on the same
nodes on the Google Cloud Platform. In the experimental scenario using 1 master and 0
worker nodes, the computation was run standalone with the master only, so the master
node worked as a worker node. In the other experimental scenarios, the master did not
perform the computations.

In the second scenario, the author experimented on a cluster that used several CPU
cores on two worker nodes, as can be seen in Table 4.

Table 4. Experimental scenario with various cores and two worker nodes.

No Master Worker Nodes Number of Core

1 1 2 4
2 1 2 8
3 1 2 16
4 1 2 32
5 1 2 48

Sensors 2022, 22, 5071 10 of 17

Table 4 shows that the experiment used different numbers of cores and the same
worker node on the Google Cloud Platform. Unlike the case with the first experimental
scenario, the meaning of the number of cores here is that the cores used in two worker
nodes were added up. For example, if a worker node had four CPU cores, the number of
cores was eight cores.

It should be noted that Table 5 shows descriptions of the hardware specifications that
were used in the experiments.

Table 5. Description of hardware specification in the experiments.

Mode Description Hardware Specification

Standalone Processor Intel® Core™ i7-8550U 8 Cores CPU
Memory 8 GB RAM
HDD 1 Tera Bytes

Cluster/Parallel and
Distributed Computing

- Cluster with 1 namenode and 2 worker nodes, 5 worker
nodes, 10 worker nodes, and 15 worker nodes in the
experiment, as illustrated in Table 3:

(a) Namenode specification: Processor Intel Broadwell
4 Cores, Memory 15 GB RAM, HDD 32 GB.

(b) Worker node specification: Processor Intel Broadwell
4 Cores, Memory 15 GB RAM, HDD 32 GB.

- Cluster with 1 namenode and 2 worker nodes with various
cores in the experiment, as illustrated in Table 4:

(a) Namenode specification: Processor Intel Broadwell
4 Cores, Memory 15 GB RAM, HDD 32 GB.

(b) Worker node specification: Processor Intel
Broadwell 2 cores, 4 cores, 8 cores, 16 cores, dan
24 cores, Memory 7.5 GB RAM, 15 GB RAM, 30 GB
RAM, 60 GB RAM, dan 90 GB RAM, HDD 32 GB.

4. Results and Analysis

After conducting two experimental scenarios, the results are presented in the
following section.

4.1. Experimental Results with Four Cores and Various Worker Nodes

The results of the first experiment can be seen in Table 6. The ‘Cost Time’ column
shows the time to complete each computation in minutes for all files. The ‘Speedup’ column
is a performance measure. This column measures the ratio of execution time and execution
time on a cluster-per-node basis. Then, the ‘Efficiency’ column is a measure of the use of
the computing resources. It measures the ratio between the performance and the resources
used to achieve that performance.

Table 6. Experimental results of four cores and various worker nodes (all files).

No Master Worker
Nodes

Number
of Core Cost Time Speedup Efficiency per Node

1 1 0 4 974.23 1 1
2 1 2 4 460.61 2.11508 1.05754
3 1 5 4 190.30 5.119427 1.023885
4 1 10 4 105.08 9.271289 0.927129
5 1 15 4 78.29 12.4443 0.82962

The experimental results of the four cores with several worker nodes showed a signifi-
cant comparison of computing time, as shown in Figure 7. From Figure 7 and Table 6, it
can be seen that the more workers used in the cluster the faster the computing process was.

Sensors 2022, 22, 5071 11 of 17

This shows that the number of nodes used significantly affected the computational speed.
The longest time taken for processing data was on the 977 MB file, which was 974.23 min
or equivalent to 16.23 h using 1 worker node, while the fastest time was 78.28 min or
equivalent to 1.3 h using 15 workers nodes, which had a speedup value of 12.4 times faster
than using 1 worker node.

Sensors 2022, 22, x FOR PEER REVIEW 12 of 17

Figure 7. Cost time profile between workers against time.

The results of this experiment are interesting: as the worker nodes increased, the in-
crease in computational speed was not proportional to the number of worker nodes
added. This is shown in the efficiency column: the more worker nodes used the lower the
efficiency was. For example, in the experiment with 10 worker nodes, the speed increase
was not two times faster than an experiment that used 5 worker nodes. Similarly, when
using 10 worker nodes to 15 worker nodes, the speed increase was not the same as using
5 workers to 10 workers. The increase in speed from 5 workers to 10 workers was 85.22
min, while the increase in speed from 10 workers to 15 workers was 26.79 min.

4.2. Experimental Results with Various Cores and Two Worker Nodes
The results of the first experiment can be seen in Table 7. The ‘Cost Time’ column

shows the amount of time to complete each computation in minutes for all files. The
‘Speedup’ column is the performance measure. This column measures the ratio of execu-
tion time and execution time on a cluster-per-four-cores basis. Then, the ‘Efficiency’ col-
umn is a measure of the use of computing resources. It measures the ratio between per-
formance and the resources used to achieve that performance.

Table 7. Experimental results of four cores and various worker nodes (all files).

No Master Worker
Nodes Number of Core Cost

Time Speedup Efficiency per 4
Cores

1 1 0 4 974.23 1 1
2 1 2 4 460.61 2.11508 1.05754
3 1 5 4 190.30 5.119427 1.023885
4 1 10 4 105.08 9.271289 0.927129
5 1 15 4 78.29 12.4443 0.82962

The experimental results with various cores and two worker nodes showed a signif-
icant comparison of computing time, as shown in Figure 8. From Figure 8 and Table 7, it
can be seen that the more total cores used on two worker nodes, the faster the computa-
tional process. This shows that the number of cores used significantly affected the com-
puting speed. The longest time taken for processing the data was for the 977 MB file,
which took 866.97 min or equivalent to 14.44 h using 4 cores, while the fastest time was
87.73 min, or equivalent to 1.46 h, using 48 cores on two worker nodes. This had a speedup
value of 9.8 times faster than using four cores.

974.227

460.61

190.3
105.08 78.287

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

M
in

ut
es

Worker nodes

Cost Time for Total File (977 MB) and Workers with 4
Cores

Figure 7. Cost time profile between workers against time.

The results of this experiment are interesting: as the worker nodes increased, the
increase in computational speed was not proportional to the number of worker nodes
added. This is shown in the efficiency column: the more worker nodes used the lower the
efficiency was. For example, in the experiment with 10 worker nodes, the speed increase
was not two times faster than an experiment that used 5 worker nodes. Similarly, when
using 10 worker nodes to 15 worker nodes, the speed increase was not the same as using
5 workers to 10 workers. The increase in speed from 5 workers to 10 workers was 85.22 min,
while the increase in speed from 10 workers to 15 workers was 26.79 min.

4.2. Experimental Results with Various Cores and Two Worker Nodes

The results of the first experiment can be seen in Table 7. The ‘Cost Time’ column
shows the amount of time to complete each computation in minutes for all files. The
‘Speedup’ column is the performance measure. This column measures the ratio of execution
time and execution time on a cluster-per-four-cores basis. Then, the ‘Efficiency’ column is a
measure of the use of computing resources. It measures the ratio between performance and
the resources used to achieve that performance.

Table 7. Experimental results of four cores and various worker nodes (all files).

No Master Worker
Nodes

Number
of Core Cost Time Speedup Efficiency per 4 Cores

1 1 0 4 974.23 1 1
2 1 2 4 460.61 2.11508 1.05754
3 1 5 4 190.30 5.119427 1.023885
4 1 10 4 105.08 9.271289 0.927129
5 1 15 4 78.29 12.4443 0.82962

The experimental results with various cores and two worker nodes showed a signifi-
cant comparison of computing time, as shown in Figure 8. From Figure 8 and Table 7, it can
be seen that the more total cores used on two worker nodes, the faster the computational
process. This shows that the number of cores used significantly affected the computing
speed. The longest time taken for processing the data was for the 977 MB file, which took
866.97 min or equivalent to 14.44 h using 4 cores, while the fastest time was 87.73 min, or

Sensors 2022, 22, 5071 12 of 17

equivalent to 1.46 h, using 48 cores on two worker nodes. This had a speedup value of
9.8 times faster than using four cores.

Sensors 2022, 22, x FOR PEER REVIEW 13 of 17

Figure 8. Cost time profile between total cores and time.

Similar to the experiment using various worker nodes and four cores, the results of
this experiment were interesting: as the number of cores increased, the increases in com-
puting speed were not proportional to the number of cores added. This is shown in the
efficiency column, which shows that the more cores used the lower the efficiency was. For
example, when the experiment used 32 cores, the speed increase was not two times faster
than the experiment using 16 cores. Likewise, when using 32 cores to 48 cores, the speed
increase was not the same as using 16 cores to 32 cores. The speed increase from using 16
cores to 32 cores was 99.69 min, while the speed increase from 32 cores to 48 cores was
42.58 min.

4.3. Speed Comparison with SwiftVis Software
In terms of computation time, this study compared speed using SwiftVis software

(available at https://www.cs.trinity.edu/~mlewis/SwiftVis/; accessed on 18 February
2019), which is a tool for finding MMRs commonly used in planetary science research. To
obtain the MMR states from the SwiftVis application, users are required to input the time
series data of orbital computations, choose a selection function, add a filter function, and
choose a general plot function to obtain any asteroids in an MMR state with a particular
planet, as well as the duration of the MMR state with the planet. SwiftVis output can be
saved as a new .txt file. The speed comparison for all data with the first scenario against
the SwiftVis software is shown in Table 8 and the speed comparison for the second sce-
nario is shown in Table 9.

Table 8. Speed comparison of first scenario with SwiftVis.

No Result of Worker Nodes Cost Time (Minute)
1

Research

1 974.23
2 2 460.61
3 5 190.30
4 10 105.08
5 15 78.29
6 SwiftVis - 9052.08

Table 9. Speed comparison of first scenario with SwiftVis.

No Result of Worker Nodes Cost Time (Minute)
1

Research
4 866.97

2 8 460.61
3 16 230.00

866.97

460.61

230.00
130.31 87.73

0.00
100.00
200.00
300.00
400.00
500.00
600.00
700.00
800.00
900.00

1000.00

4 8 12 16 20 24 28 32 36 40 44 48

M
in

ut
e

Number of Core

Cost Time for Total File (977 MB) and 2 Workers and Cores

Figure 8. Cost time profile between total cores and time.

Similar to the experiment using various worker nodes and four cores, the results of this
experiment were interesting: as the number of cores increased, the increases in computing
speed were not proportional to the number of cores added. This is shown in the efficiency
column, which shows that the more cores used the lower the efficiency was. For example,
when the experiment used 32 cores, the speed increase was not two times faster than the
experiment using 16 cores. Likewise, when using 32 cores to 48 cores, the speed increase
was not the same as using 16 cores to 32 cores. The speed increase from using 16 cores to
32 cores was 99.69 min, while the speed increase from 32 cores to 48 cores was 42.58 min.

4.3. Speed Comparison with SwiftVis Software

In terms of computation time, this study compared speed using SwiftVis software
(available at https://www.cs.trinity.edu/~mlewis/SwiftVis/; accessed on 18 February
2019), which is a tool for finding MMRs commonly used in planetary science research. To
obtain the MMR states from the SwiftVis application, users are required to input the time
series data of orbital computations, choose a selection function, add a filter function, and
choose a general plot function to obtain any asteroids in an MMR state with a particular
planet, as well as the duration of the MMR state with the planet. SwiftVis output can be
saved as a new .txt file. The speed comparison for all data with the first scenario against
the SwiftVis software is shown in Table 8 and the speed comparison for the second scenario
is shown in Table 9.

Table 8. Speed comparison of first scenario with SwiftVis.

No Result of Worker Nodes Cost Time (Minute)

1

Research

1 974.23
2 2 460.61
3 5 190.30
4 10 105.08
5 15 78.29
6 SwiftVis - 9052.08

https://www.cs.trinity.edu/~mlewis/SwiftVis/

Sensors 2022, 22, 5071 13 of 17

Table 9. Speed comparison of first scenario with SwiftVis.

No Result of Worker Nodes Cost Time (Minute)

1

Research

4 866.97
2 8 460.61
3 16 230.00
4 32 130.31
5 48 87.73
6 SwiftVis - 9052.08

According to the speed comparison shown in Table 9, the SwiftVis software had a
slower time than the research results. The time required to process all data with SwiftVis
was about 9052.08 min, or equivalent to 6.2 days, while the longest time required by this
research was only 974.23 min. This comparison’s results showed that this research was
much faster, even with the use of one worker node to process data, compared to the
SwiftVis software.

The speed calculation in SwiftVis software starts from entering data and involves
manually recording asteroids that experience 1:1 resonance. Speed results with SwiftVis
are approximate data. This is because if they are processed whole this would take a lot of
time and energy. Speed calculations were generated from calculations against one SwiftVis
output file. The speed obtained was 10 min for data that had 1411 rows of data. If 1411 rows
can be processed in 10 min, then 1 row can be processed in 0.00709 min. Then, the speed
for processing one line of data was multiplied by the total number of output data lines,
which produced a total speed of 9007.02 min. After being multiplied, this was then added
to the speed of the SwiftVis software, which generated output data at a speed of 45.06 min.
The two-process speed results were then added up to 9052.08 min.

4.4. Accuracy Comparison with SwiftVis Software

After the experiments were carried out, the authors compared the output of the
program that was built with the SwiftVis software to ensure that the output of the program
matched the results issued by SwiftVis. Table 9 describes the comparison of the results of
the experiments carried out and the output of the SwiftVis with the same threshold_planet
parameter of 0.05 and the minimum resonance length of the l_find parameter, which was
10 units of time. In the results of the SwiftVis software, which could not determine the
minimum limit of the resonance length found, the results of a resonance location that
was in the 1:1 threshold range, even though only one unit of time was entered into the
planet_threshold parameter, were produced. In this case, all results whose time range was
less than the parameter l_find, which was 10, were considered to have no resonance in that
time range.

Due to a large amount of data, the authors took a sample of 10 asteroids from
3372 asteroids. This sample consisted of the first 10 asteroids and 20 asteroids that were
taken randomly from the orbit integrator package’s output file to determine the built
program’s accuracy. In the SwiftVis output column, if there were asteroids in resonance
with certain planets, then the column was divided into two parts at each point. In the
first part was a description of which planet the asteroid resonated 1:1. The second part
described the year the asteroid experienced 1:1 resonance in 1000-year units. A comparison
of results is shown in Table 10. Based on the results of the output comparison table, the
built program obtained an average accuracy of 83% from 30 asteroid asteroids with the
minimum required resonance length according to the input l_find in the scenario, which
was 10. Accuracy was obtained based on the percentage of the same number of time
units between the experimental results and the SwiftVis results. To calculate the accuracy
percentage, all experimental results of the slices’ resonance time ranges were combined
first and then compared for matches with the results issued by SwiftVis. For example,
the asteroid with ID 6 had two resonances between 71–82 and 76–86. Because the two
time ranges had a wedge from index 76 to 82, this was combined into a new time range

Sensors 2022, 22, 5071 14 of 17

of 71–86. Then, the time range was compared with the SwiftVis output that had the same
timeframe. Then, it was found that the accuracy obtained for the asteroid with ID 6 from
the experimental results was 100%.

Table 10. Accuracy comparison of second scenarios and SwiftVis.

No AsteroidID System Experiment Results SwiftVis Application Output Accuracy

1 1 no 1:1 resonance no 1:1 resonance 100%
2 2 no 1:1 resonance no 1:1 resonance 100%

3 3

1:1 moon. 63–73
1:1 earth. 69–125
1:1 Mars. 212–226
1:1 Mars. 219–228
1:1 Mars. 231–240
1:1 Mars. 220–229
1:1 Mars. 232–241
1:1 Mars. 221–230
1:1 Mars. 233–242

1:1 Earth. 94–122
1:1 Mars. 204–238 88%

4 4 no 1:1 resonance no 1:1 resonance 100%
5 5 no 1:1 resonance no 1:1 resonance 100%

6 6 1:1 Mars. 71–82
1:1 Mars. 76–86 1:1 Mars. 71–86 100%

7 7 no 1:1 resonance 1:1 Mars. 211–234 0%
8 8 no 1:1 resonance no 1:1 resonance 100%

9 9 1:1 Mars. 35–45
1:1 Mars. 38–58 1:1 Mars. 34–57 95%

10 10 no 1:1 resonance no 1:1 resonance 100%

11 57
1:1 Mars. 59–99

1:1 Mars. 95–106
1:1 Mars. 99–152

1:1 Mars. 80–145 100%

12 74 1:1 Mars. 24–127 1:1 Mars. 64–115 100%

13 153
1:1 Mars. 59–70

1:1 Mars. 65–138
1:1 Mars. 132–143

1:1 Mars. 61–149 93%

14 251 no 1:1 resonance no 1:1 resonance 100%

15 299 1:1 Earth. 39–100
1:1 Mars. 180–191 1:1 Earth. 66–93 100%

16 344 no 1:1 resonance 1:1 Mars. 832–893 0%
17 380 1:1 Mars. 557–568 1:1 Mars. 527–590 17.46%
18 403 1:1 Mars. 539–599 1:1 Mars. 560–598 100%
19 446 1:1 Mars. 78–266 1:1 Mars. 145–181 100%

20 462

1:1 Earth. 0–163
1:1 Mars. 1332–1440
1:1 Mars. 1434–1445
1:1 Mars. 1440–1588
1:1 Mars. 1582–1593
1:1 Mars. 1588–1755

1:1 Earth. 24–40
1:1 Earth. 70–161

1:1 Mars. 1348–1743
100%

21 558 no 1:1 resonance no 1:1 resonance 100%
22 598 no 1:1 resonance no 1:1 resonance 100%
23 646 no 1:1 resonance no 1:1 resonance 100%
24 700 no 1:1 resonance no 1:1 resonance 100%

Sensors 2022, 22, 5071 15 of 17

Table 10. Cont.

No AsteroidID System Experiment Results SwiftVis Application Output Accuracy

25 727

1:1 Venus. 147–773
1:1 moon. 1099–1110
1:1 Earth. 1104–1369
1:1 Earth. 1364–1375
1:1 Mars. 2007–2057
1:1 Mars. 2052–2063
1:1 Mars. 2057–2254

1:1 Venus. 341–563
1:1 Earth. 1304–1401
1:1 Mars. 2029–2251

95.2%

26 799 no 1:1 resonance no 1:1 resonance 100%
27 822 1:1 Mars. 15–26 no 1:1 resonance 0%

28 876 1:1 Mars. 41–52
1:1 Mars. 45–229 1:1 Mars. 45–228 100%

29 903 no 1:1 resonance no 1:1 resonance 100%

30 975
1:1 Mars. 296–319
1:1 Mars. 310–320
1:1 Mars. 312–322

1:1 Mars. 318–330
1:1 Mars. 332–353 12.12%

Average accuracy: 83%

There was tolerance in the calculation of accuracy. If the program produced an output
that did not exist in the SwiftVis output, the results were ignored and did not affect the
accuracy percentage. For example, the asteroid with ID 3 showed a 1:1 resonance with
the moon, but in the SwiftVis output the asteroid did not have a 1:1 resonance with the
moon. Tolerance was also applied if the time range generated by the program exceeded
the time range generated by SwiftVis. It was ignored and did not affect the accuracy. In
the output of the experimental results, the asteroid with ID 3 had a 1:1 resonance with
the Earth in the time range 69–125, while in SwiftVis it had a time range of 94–122. So,
the experimental results were considered to be suitable because they included the results
from the SwiftVis output, even though the time span exceeded the range result time from
SwiftVis. An error in the program occurred in the result of the sample asteroid with ID 7,
which should have had a 1:1 resonance with Mars in the time range of 211 to 234. This was
due to the different methods used in the two programs. SwiftVis only uses selection and
filtering, but the program we built uses motif discovery, so it is possible to obtain different
resonance locations. Then, there is the calculation of the location of the motifs that uses
the average a-value of the motifs found; the a-values in the motifs found exceeded the
threshold and were thus not included in the 1:1 resonance.

5. Conclusions

The main contributions of this research are: (i) providing a computational model for
time series motif discovery with a big data platform in the case of mean motion resonance;
(ii) from the experimental results, it can be concluded that the more worker nodes or
the more cores used will significantly speed up the computing process, but using more
worker nodes or cores will not guarantee an increase in the efficiency of the use of worker
nodes and cores in computing; (iii) the determination of the accuracy of the program
that has been built. Our method obtained an average accuracy of 83% of a sample of
30 asteroids from 3372 asteroids, compared with the SwiftVis software. In the future, we
have plans to improve this system’s accuracy and processing speed, and it is hoped that
further research can produce specific information for those asteroids in 1:1 MMR with the
Earth. These objects could become a destination for space mineral mining, and are thus of
economic value.

Sensors 2022, 22, 5071 16 of 17

Author Contributions: Conceptualization, L.S.R. and J.A.U.; methodology, L.S.R.; software, M.N.F.;
validation, J.A.U., K.A.F.A.S. and T.H.; formal analysis, S.N.; investigation, L.S.R., M.N.F. and
J.A.U.; resources, T.H.; data curation, L.S.R. and M.N.F.; writing—original draft preparation, L.S.R.;
writing—review and editing, K.A.F.A.S. and S.N.; visualization, M.N.F.; supervision, L.S.R.; project
administration, L.S.R.; funding acquisition, J.A.U. All authors have read and agreed to the published
version of the manuscript.

Funding: Authors would like to acknowledge the Ministry of Research and Technology/National
Research and Innovation Agency for funding this work through a research grant of 281/UN40.LP/
PT.01.03/2021.

Acknowledgments: This paper involved extensive use of data from the Jet Propulsion Laboratory’s
Horizons On-line Solar System data and ephemeris computation service and also SwiftVis software
from Mark Lewis.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ittmann, H.W. The impact of big data and business analytics on supply chain management. J. Transp. Supply Chain Manag. 2015, 9,

1–9. [CrossRef]
2. Gandomi, A.; Haider, M. Beyond the hype: Big data concepts. methods. and analytics. Int. J. Inf. Manag. 2015, 35, 137–144.

[CrossRef]
3. Riza, L.S.; Rachmat, A.B.; Munir, T.H.; Nazir, S. Genomic Repeat Detection Using the Knuth-Morris-Pratt Algorithm on R

High-Performance-Computing Package. Int. J. Adv. Soft Comput. Appl. 2019, 11, 94–111.
4. Riza, L.S.; Utama, J.A.; Putra, S.M.; Simatupang, F.M.; Nugroho, E.P. Parallel Exponential Smoothing Using the Bootstrap Method

in R for Forecasting Asteroid’s Orbital Elements. Pertanika J. Sci. Technol. 2018, 26, 441–462.
5. Kamilaris, A.; Kartakoullis, A.; Prenafeta-Boldú, F.X. A review on the practice of big data analysis in agriculture. Comput. Electron.

Agric. 2017, 143, 23–37. [CrossRef]
6. Menichella, M.; Paolicchi, P.; Farinella, P. The main belt as a source of near-Earth asteroids. In Worlds in Interaction: Small Bodies

and Planets of the Solar System; Springer: Dordrecht, The Netherlands, 1996; pp. 133–149.
7. Gallardo, T. Atlas of the mean motion resonances in the Solar System. Icarus 2006, 184, 29–38. [CrossRef]
8. Lin, J.; Keogh, E.; Lonardi, S.; Chiu, B. A Symbolic Representation of Time Series. with Implications for Streaming Algorithms. In

Proceedings of the 8th ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery, San Diego, CA,
USA, 13 June 2003; pp. 2–11.

9. Jones, N.C.; Pevzner, P.A.; Pevzner, P. An Introduction to Bioinformatics Algorithms; MIT Press: Cambridge, UK, 2004.
10. White, T. Hadoop: The Definitive Guide; O’Reilly Media. Inc.: Sebastopol, CA, USA, 2012.
11. Zaharia, M.; Xin, R.S.; Wendell, P.; Das, T.; Armbrust, M.; Dave, A.; Stoica, I. Apache spark: A unified engine for big data

processing. Commun. ACM 2016, 59, 56–65. [CrossRef]
12. Riza, L.S.; Fazanadi, M.N.; Utama, J.A.; Hidayat, T.; Abu Samah, K.A.F. The implementation of sax and random projection for

motif discovery on the orbital elements and the resonance argument of asteroid. Int. J. Nonlinear Anal. Appl. 2021, 12, 959–970.
13. Jiang, F.; Leung, C.K.; Sarumi, O.A.; Zhang, C.Y. Mining sequential patterns from uncertain big DNA in the spark framework.

In Proceedings of the 2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Shenzhen, China, 15–18
December 2016; IEEE: New York, NY, USA, 2016; pp. 874–881.

14. Riza, L.S.; Pratama, F.D.; Piantari, E.; Fashi, M. Genomic repeats detection using Boyer-Moore algorithm on Apache Spark
Streaming. Telkomnika 2020, 18, 783–791. [CrossRef]

15. Pérez-Chacón, R.; Asencio-Cortés, G.; Martínez-Álvarez, F.; Troncoso, A. Big data time series forecasting based on pattern
sequence similarity and its application to the electricity demand. Inf. Sci. 2020, 540, 160–174. [CrossRef]

16. Krishnan, S.P.T.; Gonzalez, J.L.U. Building Your Next Big Thing with Google Cloud Platform: A Guide for Developers and Enterprise
Architects; Apress: New York, NY, USA, 2015.

17. Zaharia, M.; Chowdhury, M.; Das, T.; Dave, A.; Ma, J.; McCauly, M.; Stoica, I. Resilient Distributed Datasets: A Fault-Tolerant
Abstraction for In-Memory Cluster Computing. In Proceedings of the 9th {USENIX} Symposium on Networked Systems Design
and Implementation ({NSDI} 12), San Jose, CA, USA, 25–27 April 2012; pp. 15–28.

18. Jain, A.; Nandakumar, K.; Ross, A. Score normalization in multimodal biometric systems. Pattern Recognit. 2005, 38, 2270–2285.
[CrossRef]

19. Keogh, E.; Chakrabarti, K.; Pazzani, M.; Mehrotra, S. Locally Adaptive Dimensionality Reduction for Indexing Large Time Series
Databases. In Proceedings of the 2001 ACM SIGMOD International Conference on Management of Data, Santa Barbara, CA, USA,
21–24 May 2001; pp. 151–162.

20. Lin, J.; Keogh, E.; Wei, L.; Lonardi, S. Experiencing SAX: A novel symbolic representation of time series. Data Min. Knowl. Discov.
2007, 15, 107–144. [CrossRef]

http://doi.org/10.4102/jtscm.v9i1.165
http://doi.org/10.1016/j.ijinfomgt.2014.10.007
http://doi.org/10.1016/j.compag.2017.09.037
http://doi.org/10.1016/j.icarus.2006.04.001
http://doi.org/10.1145/2934664
http://doi.org/10.12928/telkomnika.v18i2.14883
http://doi.org/10.1016/j.ins.2020.06.014
http://doi.org/10.1016/j.patcog.2005.01.012
http://doi.org/10.1007/s10618-007-0064-z

Sensors 2022, 22, 5071 17 of 17

21. Pevzner, P.A.; Sze, S.H. Combinatorial approaches to finding subtle signals in DNA sequences. ISMB 2000, 8, 269–278.
22. Martinez, H.M. An efficient method for finding repeats in molecular sequences. Nucleic Acids Res. 1983, 11, 4629–4634. [CrossRef]
23. Ashraf, F.B.; Abir, A.I.; Salekin, M.S.; Mottalib, M.A. RPPMD (Randomly Projected Possible Motif Discovery): An Efficient

Bucketing Method for Finding DNA Planted Motif. In Proceedings of the 2017 International Conference on Electrical. Computer
and Communication Engineering (ECCE), Cox’s Bazar, Bangladesh, 16–18 February 2017; IEEE: New York, NY, USA, 2017;
pp. 509–513.

http://doi.org/10.1093/nar/11.13.4629

	Introduction
	Research Methods
	Data Collection
	Data Preprocessing
	Computing with Motif Discovery in Big Data Platforms
	Copy DataFrame to Local File (.csv)

	Experimental Study
	Data Collection
	Experimental Scenario

	Results and Analysis
	Experimental Results with Four Cores and Various Worker Nodes
	Experimental Results with Various Cores and Two Worker Nodes
	Speed Comparison with SwiftVis Software
	Accuracy Comparison with SwiftVis Software

	Conclusions
	References

