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Abstract: Environment perception remains one of the key tasks in autonomous driving for which
solutions have yet to reach maturity. Multi-modal approaches benefit from the complementary
physical properties specific to each sensor technology used, boosting overall performance. The added
complexity brought on by data fusion processes is not trivial to solve, with design decisions heavily
influencing the balance between quality and latency of the results. In this paper we present our
novel real-time, 360◦ enhanced perception component based on low-level fusion between geometry
provided by the LiDAR-based 3D point clouds and semantic scene information obtained from
multiple RGB cameras, of multiple types. This multi-modal, multi-sensor scheme enables better
range coverage, improved detection and classification quality with increased robustness. Semantic,
instance and panoptic segmentations of 2D data are computed using efficient deep-learning-based
algorithms, while 3D point clouds are segmented using a fast, traditional voxel-based solution. Finally,
the fusion obtained through point-to-image projection yields a semantically enhanced 3D point cloud
that allows enhanced perception through 3D detection refinement and 3D object classification. The
planning and control systems of the vehicle receives the individual sensors’ perception together
with the enhanced one, as well as the semantically enhanced 3D points. The developed perception
solutions are successfully integrated onto an autonomous vehicle software stack, as part of the
UP-Drive project.

Keywords: autonomous driving; environment perception; low-level geometry and semantic fusion;
semantic and instance segmentation; deep learning; 3D object detection

1. Introduction

Automation of individual transportation will bring major benefits once it becomes
available in the mass market, such as increased safety on roads and higher mobility for
the aging or disabled population. At the same time, electric automated vehicles have
the potential to alleviate problems related to intensified urbanization by reducing traffic
congestion with a more efficient coordination of vehicles, while at the same time reducing
air pollution. Due to a lack of maturity in key technologies needed for the development of
automated vehicles, the prospect of full vehicle automation remains a long-term vision.

The European UP-Drive project [1], part of the Horizon 2020 program, set out to
address these technological challenges by developing a fully automated electric vehicle ca-
pable of safely navigating complex urban environments (depicted in Figure 1). Its main use
case covers the operation of a robot taxi, where passengers can be seamlessly transported
from the pick-up point to their desired destination. Moreover, the vehicle is able to find
empty parking spaces by leveraging a long-term semantic map shared between multiple
vehicles in the fleet [2]. Creating such a system required the development of state-of-the-art
key technologies that are essential to automated driving: robust 360◦ perception, lifelong
localization and mapping, scene understanding, risk assessment, planning and navigation.
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Figure 1. The UP-Drive demonstrator vehicle, based on a VW eGolf, navigates urban environments
in fully automated mode at the completion of the project.

The perception system of the automated vehicle, responsible for detecting and classi-
fying the objects in the scene, has to fulfill the low (0) false negatives requirement, a more
difficult one than the low false positives requirement specific to driving assistance systems.
The solution for this problem is multiple redundancy, increased accuracy and robustness,
along with 360◦ coverage around the vehicle at the sensory and algorithmic levels. To
achieve this goal, the UP-Drive vehicle was equipped with the area-view fish-eye camera
system (4 RGB cameras) for surround view perception, a front narrow field of view camera
for increased depth range and a suite of five 360◦ LiDARs.

Our contributions are focused on the design and implementation of a perception-
system architecture based on low-level fusion capable of delivering both classified 3D
object detections as well as a semantically enriched 3D point cloud used for enhanced
perception. Moreover, emphasis is placed on ensuring not only that the system runs in real-
time, but that it does so on limited hardware resources available on a test vehicle, enabling
autonomous operation by using live sensor data. In order to meet the requirements for
robustness and redundancy at algorithmic level, our perception system features parallel
processing pipelines for camera and LiDAR data. We develop an independent solution for
3D object detection by processing LiDAR measurements. We also provide an enhanced
perception solution, achieved by processing the spatio-temporal and appearance-based
representation (STAR) obtained through low level fusion of the geometric data from LiDARs
and semantic information obtained from RGB cameras.

This perception solution builds upon our previous work focused on generating se-
mantically enhanced point clouds [3], with large improvements to the capacity to extract
semantic information from the scene, as well as an optimized implementation for real-
time operation on limited hardware resources that handles all associated tasks: data
pre-processing (data batch formation along with continuous monitoring of data availability,
LiDAR motion correction, image undistortion), semantic information extraction, 3D point
cloud segmentation, low-level fusion of 3D-point geometric data with 2D semantic infor-
mation and, finally, the enhanced perception consisting of 3D object detection refinement
and classification. We adopt a low-level fusion approach in order to retain a larger number
of joint multi-modal features, which are typically lost in higher (e.g., object) level fusion
schemes. As we aim to fuse raw 3D and 2D measurements as well as semantic information
extracted from the camera images, we are constrained to performing the low-level fusion
later in the processing chain, in order to maintain real-time capabilities on the imposed
hardware resources. This allows processing the 3D and 2D modalities in parallel up to
the fusion step. While an early-low-level fusion design could enable a more advanced
segmentation of the enhanced point cloud, stalling the processing pipeline until the com-
putationally intensive semantic segmentations are generated would dramatically increase
the final latency of the results. In order to maintain real-time capabilities on the imposed
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hardware resources, we adopted this parallelized, late-low-level fusion architecture for the
enhanced perception solution. The independently obtained 3D and 2D segmentations, to-
gether with the semantically enhanced point cloud, can be used in other parallel perception
and higher level tasks. An overview of the enhanced perception system is presented in
Figure 2.

Sensory Data Acquisition

3D Point Cloud 
Motion Correction

Area-View and Front Image
Semantic, Instance and
Panoptic Segmentation

LiDAR based Processing 
and Detection

Spatio-Temporal and Appearance based 
Representation (STAR)

Enhanced Detection and Classification

Figure 2. Overview of the enhanced perception system’s main components and their core intercon-
nections: after data acquisition and pre-processing, 3D LiDAR data is processed independently of the
2D data up to the low-level fusion step which integrates the semantic information derived from the
images with the corrected 3D measurements, yielding the STAR data representation which is further
used for enhanced 3D detection and classification.

For achieving the goals of the UP-Drive project, the Environment Perception System
was designed based on the following specifications:

• Vehicle Operations

1. Automated driving restricted to urban areas with 30 km/h speed limits imposed
2. The driving areas have been previously mapped
3. Limited hardware resources
4. The software stack, including the enhanced perception, is running under ADTF

(Automotive Data and Time-Triggered Framework [4])

• Expected Contributions in Perception

1. 360° multi-modal and robust perception including detection and object classification
2. Enhanced perception through low-level fusion of geometric and semantic data
3. Independent processing of cameras and LiDARs
4. Suitable frame rate (above 5 FPS) output to enable real-time operation

2. Related Work

This past decade proved to be one of rapid growth for the autonomous driving sector,
in both the academic and industrial sectors. Companies such as Waymo (Google), Zoox
and Tesla have made progress towards achieving functional commercial products, while
independent research teams have also contributed greatly to the various advancements.
This prompted the creation of multiple publicly available datasets (e.g., [5–8]) designed for
aiding development of solutions for various tasks such as environment perception, object
tracking and localization.

Recently, in [9], the authors conduct a comprehensive survey of available datasets,
while providing a thorough analysis of the various deep learning based approaches for
object detection and semantic segmentation. They compare different sensor modalities and
the associated processing methods, further discussing the challenges of data fusion, such
as the stage at which it is best to perform it. They recognize that low-level fusion schemes
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can achieve higher performance by better utilizing the raw information at the cost of lower
model flexibility.

Some approaches forgo multi-modal perception, and hence the associated data fusion
steps. Typically, these use high density LiDARs for gathering both 3D information as well
as some texture information. In [10], the authors present a traditional solution based on
a single high-density LiDAR, tailored for urban environments, that separates stationary
features (represented in a multi-layer grid) from the dynamic objects which are subsequently
tracked. The authors of [11] also argue for the utility of multi-layer grid maps when
presenting a method for semantic segmentation of LiDAR scans using a convolutional
neural network.

The majority of traditional (non-learning based) solutions for 3D obstacle hypothesis
generation from LiDAR data rely on grouping based on vicinity criteria and fitting a L-
shape model to the bird’s-eye view of LiDAR measurements for orientation detection. The
problem of using multiple high-density LiDARs for perception is an open research subject
and not dealt with frequently. In [12] the L-shape is fitted to the top view of the LiDAR
measurements for generating obstacle proposals. In case of multiple LiDARs, the authors
propose the back-projection of obstacle proposals to camera-image space for fusion. The
back-projection technique can be less appropriate when the camera and LiDARs have
significantly different mounting positions/viewpoints on the ego vehicle, and requires
additional time for the projection and image space fusion. In [10] obstacle measurements
from a single high density LiDAR are clustered using a polar grid with vertical compression
(each cell can contain multiple occupied intervals). Voxel based representations are also
proposed to represent and process LiDAR measurements, but mainly for static/dynamic
discrimination and with single high-density LiDAR setups. In [13] the measurements from
a single high-density LiDAR are converted to a voxel space that is used, in a temporal
fusion approach, to discriminate between static and dynamic measurements. Removing
dynamic obstacles from the LiDAR measurements (urban scenes with pedestrians) is also
done in [14] by using a voxel representation combined with sphere quadtrees. An efficient
voxel based fast segmentation algorithm is presented in [15] for detecting planar surfaces
in scenes with very high density scans of buildings (or similar structures). The approach
is, however, not meant for real-time processing as it takes tens of seconds on average
per frame.

Dynamic grid based methods were also proposed. A particle-based solution was
proposed in [16] for stereovision systems, by modeling a dynamic elevation map with a
set of particles (each particle has as features the position, speed and height). In [17], a
new dynamic grid approach was proposed, that relies on a Dempster–Shafer evidence
framework, with multi-hypotheses evidential representation, persistent grid representation
of the static environment, and a particle-tracking scheme that is applied only to dynamic
areas. A random finite set (RFS) representation for the state of the dynamic grid cells is
presented in [18]. Upon the RFS representation, a probability hypothesis density/multi-
instance Bernoulli filter is proposed and implemented with particles.

Deep-learning-based object detection methods that use 3D LiDAR data may exhibit
longer inference times or use more powerful hardware due to expensive 3D convolutions.
Methods such as the single stage network PointPillars [19] achieve good detection and
execution performance by encoding the 3D cloud into sparse pseudo-images that lend
themselves to processing through 2D convolutions. In [20], a new deep learning end-to-end
architecture is proposed, called Flownet3d, which is able to learn and detect the scene
flow from consecutive frames. Camera-only solutions have the benefit of lower hardware
costs, yet extracting the 3D information is more challenging. In [21] the authors propose
a stereovision based Object Detection solution that extracts the 3D Bounding Boxes from
an elevation grid map obtained by fusing disparity information with a CNN-generated
semantically segmented image.

Multi-modal solutions that combine multiple data streams are still considered the best
candidates for achieving autonomy, scoring high in accuracy and robustness. Moreover,
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adverse conditions impact sensing devices asymmetrically, a fact which can be exploited
using methods such as in [22]. Here, the authors propose a deep-learning sensor-fusion
architecture that performs well in difficult weather by using LiDAR, RADAR, RGB and
gated cameras. Instead of detecting and characterizing the type of conditions, features are
exchanged taking into account the entropy in each sensor’s measurement (heavily affected
modalities exhibiting low entropy).

Another fused, CNN-based approach is presented in [23] where the authors extend
LaserNet [24] to incorporate 2D image features extracted by an auxiliary network which are
then mapped to 3D points. The enriched 3D points are then passed to LaserNet, obtaining
a segmented scene and object detections with better performance than the LiDAR-only
solution. In contrast, another category of fused solutions uses 2D detection networks to
generate boxes that are then used to select the 3D points that project over them, which
are subsequently used for extracting the object bounding box. Such a system is presented
in [25] where the 3D detections are generated using candidate points through a RANSAC
approach based on some generalized car models. The best proposal is then fed to another
CNN that refines the box.

For the task of semantic 2D image segmentation, fully convolutional networks (FCNs),
in which fully connected layers are replaced with convolutional layers, are widely used. The
studies [26,27] capture context cues by including dilated convolutions in the last residual
blocks and propose the Atrous Pyramid Pooling (ASP) with parallel dilated convolutions.
Deformable convolutions [28] learn the dilation rate of convolutions instead of using a
fixed rate. Spatial Pyramid Networks (PSPNet) [29] learn long-range and multi-scale
information by applying parallel pooling operations. Although dilated FCNs obtain state-
of-the-art results on public benchmarks such as Cityscapes [30], Mapillary Vistas [31] or
COCO [32], they have a large memory footprint since the learned feature maps have a
high output resolution. The encoder–decoder [33,34] architecture yields faster inference
speed by employing a feature extractor network in the encoder and a lightweight decoder
which learns to recover spatial resolution. Automated vehicles require real-time processing.
Therefore, we integrate in our UP-Drive solution an optimized ERFNet [33] encoder–
decoder network for semantic segmentation of the four unwarped area-view images.

Instance segmentation networks, which delineate each distinct object, can be classified
into two-categories: proposal-based, which detect candidate regions of interest which are
further segmented; and proposal-free, in which pixels belonging to the same semantic
segment are clustered into instances based on the distance in an embedding space. Mask
R-CNN [35] is the most representative proposal-based instance segmentation network, and
achieves top performance on public benchmarks. The network extends the two-stage object
detection network, Faster R-CNN [36], with a convolutional mask prediction head. Single-
stage instance segmentation networks based on single-stage object detectors have simplified
inference pipelines and employ specialized losses [37], or propose the use of prototype
masks [38] in order to reach the performance of two-stage networks. Proposal-free networks
are faster but have decreased accuracy. The subjects of [39,40] learn an embedding space
by regressing pixel offsets to instance center and then a clustering step follows. Instance
segmentation as a graph partition problem has been tackled in SSAP [41,42]. In [43,44]
networks are proposed that learn to fit polygons around instances. Proposal-based methods
show superior results, therefore we employ RetinaMask [37] for instance segmentation of
front area-view image and front narrow FoV image. RetinaMask, the single-shot network,
answers the requirements of our system in terms of accuracy and time and offers the
advantage of simplified inference pipeline, which allows for further acceleration with deep
learning inference engines [45].

The remainder of the paper is structured as follows: Section 3 presents in detail
the proposed perception system, covering the hardware setup, software architecture and
pre-processing functions, the 2D and 3D processing chains, the low-level fusion step for
building the STAR representation and, finally, the classification and enhanced detection
step. Section 4 contains the 2D and 3D evaluation procedures and the obtained results,
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along with timing information. Section 5 concludes the paper by outlining the main results
and expected future improvements.

3. Proposed Approach for the Enhanced Perception System
3.1. Test Vehicle Sensory Setup

The demonstrator used in the UP-Drive project is based on a fully electric Volkswagen
eGolf outfitted with industrial computers in the trunk space, which can take over all controls
of the vehicle. The perception task is carried out on a small form factor PC that features a
quad-core processor running at 3.60 GHz and a NVIDIA GTX1080 GPU. Figure 3 shows
the sensor payload layout used by the enhanced perception solution: area-view system
(also known as surround view, increasingly common on new vehicles) comprising of four
cameras, one narrow field-of-view (FoV) camera and five LiDAR scanners. Ego-motion
data is also available based on vehicle odometry (without GPS).

Figure 3. Sensor payload of test vehicle: 360◦ LiDARs in blue, area-view system with fish-eye RGB
cameras in green, narrow FoV camera in purple.

The four area-view (AV) cameras feature 180° horizontal FoV fish-eye lenses, enabling
them to capture a surround view of the vehicle. The acquisition of 800 × 1280 px RGB
images is externally synchronized between all AV cameras, with very low jitter. The
additional narrow FoV camera is mounted in the position of the rear-view mirror and
captures 1280 × 1920 px RGB images with a 60° FoV. It is also hardware synchronized with
the AV system, complementing detection at longer ranges. Three-dimensional geometric
information is captured by the five LiDAR scanners, three of which feature thirty-two
vertical scan beams (asymmetrically spaced), while the middle-rear and right-rear scanners
use sixteen beams.

Offline calibration [46,47] of the cameras and LiDARs provides intrinsic parameters of
the cameras (radial distortion, focal length) and extrinsic geometric parameters (position
and orientation in 3D) of cameras and LiDARs. Camera intrinsic calibrations are done
using a standard checkerboard calibration pattern. The extrinsic calibration of the cameras
provides the relative positions and orientations of the cameras with respect to a 360° LiDAR
master sensor and is achieved with the aid of a set of markers mounted on the walls of a
calibration room. The extrinsic 360° LiDAR calibration is also carried out in the calibration
room and provides the relative position and orientations of each LiDAR with respect to
a chosen master LiDAR (the front left sensor). Finally, the sensor coordinate system is
registered with the respect to the car coordinate system.

3.2. Perception System Software Architecture

Figure 4 illustrates the enhanced perception system’s architecture, where the necessary
operations are subdivided into a series of modular entities, all of which were implemented
as plugins in the ADTF Automotive Framework [4] using the C++ programming language.
The data inputs are aggregated by the Flow Manager which controls the two processing
chains: the operations on the 3D point cloud (light blue) and those on the 2D images
(light green).
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Figure 4. Data flow architecture of the proposed enhanced perception system: 3D geometric informa-
tion (blue, top part) is processed in parallel with 2D camera images (green, bottom part) before the
final merger of the two.

The two sensor modalities are handled in parallel on limited hardware by delegating
the 3D processing to the CPU and the camera processing to the GPU. The final plugin
performs data fusion of the intermediary results, forming the basis for the final detection
refinement and classification step. A set of classified objects Oc, containing both static
and dynamic type detections is outputted, along with the semantically enhanced 3D point
clouds (STAR) PL

e , each corresponding to a LiDAR scanner L, which are further used in
other modules of the system (e.g., curbstone detection [48] and localization [49]). Classified
objects coj are represented as cuboids defined by their center (x, y, z), dimensions (w, l, h),
orientation (θ) and ordered classification vector ([clso]) which features the most likely
class predictions. The enhanced points use the EnhancedPoint data structure (detailed in
Algorithm 1), which adds information both from the 2D domain as well as from the 3D
segmentation (the object ID and class if the point is part of a segmented detection).

Algorithm 1: STAR 3D point enhancement representation.

struct {
float x,y,z ;
bool isEnhanced;
uInt8 r,g,b;
uInt16 u,v ; \\projection coord.
uInt16 instanceID;
uInt8 semClass;
uInt16 objID;
uInt8 objClass;

} EnhancedPoint;
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3.3. Pre-Processing Functions

The Flow Manager module performs multiple tasks: data and execution stream
synchronization, as well as memory and thread management. We improve on our previous
work in [50] based on continuous monitoring of the system running in real-time onboard
the test vehicle. In order to reduce, as much as possible, the latency between the acquisition
of raw measurements and the final results being outputted, we decided to forgo the use of
point cloud buffers for each LiDAR scanner as these introduced additional delays due to
the behavior of upstream components. Instead, we introduce a data request mechanism to
communicate with the raw LiDAR data grabbers. Thus, a new data batch is formed by
requesting the 360° point clouds from the LiDAR Grabber once processing completes for
the current batch (signaled by the Flow Control Signal). The request is based on the batch’s
master timestamp, corresponding to the (synchronized) acquisition timestamp of the most
recently received set of images, tsmaster. The response to the Flow Manager’s request
consists of point clouds from every LiDAR L, where the last scanned point pn in each
cloud was measured (roughly) at the master timestamp (consequently, the first scanned
point will have been measured approximately 100ms earlier, as the scanners operate at a
10 Hz frequency).

Once all the required inputs are gathered, the Flow Manager plugin bundles the
calibration parameters and ego motion data and sends them for processing on two inde-
pendent execution threads, one for each sensor modality. The ego motion is provided as a
4 × 4 matrix Tego, comprised of rotation and translation components that characterize the
vehicle’s movement between the moment of image acquisition going back to the earliest
scanned 3D point included in any of the five point clouds. The plugin also performs mem-
ory management and handles dropouts in sensor data: the system continues to function
as long as the cameras and at least one LiDAR are online, while also being able to recover
once offline sensors become available.

Camera images first undergo an image undistortion pre-processing step that produces
undistorted and unwarped images that better represent the scene, based on the camera’s
projection model, as detailed in [3]. While we have experimented with single- and multi-
plane representations of the virtual undistorted imager surface, the best results were
obtained when considering a cylindrical representation in which the axis is aligned with
the ground surface normal, defined by the equations in Equation (1) (here, α represents the
horizontal field of view of the camera, with β = αH/W). Using look-up tables, this step is
performed in 1 ms for each camera.

X(u, v) = sin(−α + α · u/(W − 1))

Y(u, v) = −β + β · v/(H − 1)

Z(u, v) = cos(−α + α · u/(W − 1))

(1)

For 3D data, motion correction is the process of temporally aligning the sequentially-
scanned points pi to the master timestamp of the data batch (Equation (2)), thus eliminating
the warping induced by ego vehicle movement during the scan (obtaining pci). Besides
correcting geometric distortions, this step also enables a pseudo-synchronization between
the two sensing modalities, temporally aligning the point clouds to the moment of image
acquisition (represented by the master timestamp)—the unknown movements of dynamic
objects in the scene limiting the possibility for full synchronization.

pci = Ci · pi (2)

The procedure carried out by the correction plugins (one for each LiDAR L) is a
computationally-optimized version of the one we presented in [3], completing the task in
approximately 2.5 ms, yielding corrected point clouds PL

c : the correction transform Ci is
computed using the matrix exponential/logarithm functions [51] applied on the ego-motion
transform Tego, based on the time difference ∆i between master and point tsi timestamps
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(Equations (3) and (4)). To reduce the processing time of each motion correction plugin, we
use look-up tables to compute approximations of Ci, each of which can be applied to small
groups of 3D points captured in very rapid succession one after the other, without decreases
in quality. We also employ the OpenMP library to perform computations in parallel. This
does require a fine tuning of the maximum number of workers allowed to be used by each
plugin instance, based on the system load of the host computer. Each worker is assigned a
subset of points from the cloud, in order to minimize computational overhead.

∆i = tsmaster − ti (3)

Ci = (Tego)
− ∆i

∆0 = exp
(
− ∆i

∆0
· log

(
Tego

))
(4)

3.4. 2D Panoptic Segmentation

We develop a robust, fast and accurate 360◦ deep-learning-based 2D perception solu-
tion by processing images from the five cameras mounted on the UP-Drive vehicle. Our 2D
perception module’s goal is to detect static infrastructure such as road, sidewalk, curbs, lane
markings, and buildings, but also to detect traffic participants. This is achieved with image
segmentation which extracts semantic and instance information from images. We also
solve inconsistencies between semantic and instance segmentation and provide a unified
output in the form of the panoptic segmentation image. In the case of wide-angle area-view
cameras that provide the 360◦ surround view, a large extent of the scene is captured, but the
apparent sizes of objects are smaller compared to narrow FoV cameras. Thus, the detection
range of segmentation algorithms of area-view images is limited to the near range around
the vehicle. In use cases such as parking or navigation at very low speed, area-view images
provide the necessary range. However, detecting distant objects is important when driving
at higher speed in urban environment. Therefore, we also utilize the narrow 60◦ FoV frontal
camera, mounted behind the windshield, in order to extend the detection range. A detailed
description of our 2D perception solution is presented in [52].

Our hardware resources are limited and our system requirements impose that our 2D
perception solution runs in at least 10 FPS. In order to satisfy these constraints, we develop
semantic image segmentation for the area-view images and instance segmentation only for
the front area-view image and the front narrow FoV image. Panoptic image segmentation
is implemented for the front area-view image. The instance and panoptic segmentation can
be easily extended to other views when using more powerful hardware.

For semantic segmentation we implement a lightweight fully convolutional neural
network (FCN) based on ERFNet [33], which has an encoder–decoder architecture. Results
of the semantic segmentation for the four cameras are illustrated in Figure 5. For instance
segmentation we employ the single-stage RetinaMask [37] network.

In order to solve conflicts between the semantic class provided by the instance and
semantic segmentation, we develop a fusion scheme [53] for panoptic segmentation. We
observe the following problems that are solved by our solution: low-resolution instance
masks (28× 28) are upsampled to match the input image resolution and results in raw
object borders, semantic segmentation of large objects is problematic and classes belonging
to the same category are often confused. The idea is to match pixels from the semantic
and instance segmentation at category level and perform a region-growing algorithm in
order to propagate the instance identifier and instance segmentation class, which is more
stable. Figure 6 shows the output of the instance segmentation process performed for
the two cameras, as well as the panoptic segmentation resulting from the fusion with the
semantic segmentation.
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Figure 5. Semantic segmentation of the four area-view images: front, right, rear and left. The semantic
perception provides 360◦ coverage, where each image has a 160◦ FoV.

60° FOV CAMERA
INSTANCE 

SEGMENTATION

160° FOV CAMERA 
INSTANCE 

SEGMENTATION

160° FOV CAMERA 
SEMANTIC 

SEGMENTATION

160° FOV CAMERA 
PANOPTIC 

SEGMENTATION

Figure 6. Comparison of the front narrow FoV and the front area-view instance segmentation. The
apparent sizes of objects is larger in the 60◦ FoV image than the area-view image. By introducing
the narrow FoV image, we increase the instance segmentation depth range. We provide instance,
semantic and panoptic segmentation on the front area-view image.

3.5. 3D Point Cloud Segmentation

We adopt a two-step strategy for 3D point cloud segmentation: first, the road sur-
face information is extracted from each LiDAR cloud individually, which provides a first
separation between LiDAR measurements originating from the road and those from obsta-
cles. This is then followed by a 3D obstacle detection step for which we propose a voxel
representation that supports fusion across LiDAR sensors. Thus, we exploit the different
viewpoints of each LiDAR scanner in order to obtain a better detection of obstacles in a
single pass. Non-road LiDAR points obtained in the first step are fused (and densified) into
a single voxel space representation. For each 3D obstacle we provide both the traditional
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cuboidal representation as well as blobs of connected voxels, which can more accurately
capture the occupied space of hanging or non-cuboidal obstacles.

Figure 7 top, illustrates the initial layer/channel representation of LiDAR data on
which the road surface detection is carried out, where 3D measurements are ordered
by their layer (vertical) and channel (horizontal) angles. Figure 7 bottom, shows the
preliminary road/obstacle classification of the panoramic data which takes into account
the local slope information.

Figure 7. (Top): Layer/channel representation of the front left LiDAR output (the logarithm value
of the inverse depth is shown for visualization), (Bottom): Preliminary classification results (road—
blue/obstacles—red).

The voxel representation covers a space of interest centered on the ego vehicle, with a
square shape in the bird’s-eye view. The top view area covered is 160 × 160 m, with a voxel
size of 16 × 16 × 16 cm, with the ego vehicle in the center. Each obstacle measurement is
inserted into the voxel space, and voxels are marked as obstacles accordingly. However,
one important issue must be accounted for: depending on the orientation of an obstacle
facet relative to the LiDAR, or the distance from the ego car, obstacle measurements that are
adjacent in the layer/channel space might not be connected in the Euclidean voxel space
(Figure 8).

Figure 8. The farthest part (encircled with red, (top image)) of the lateral side of the bus has
consecutive LiDAR measurements that are not connected in the voxel space ((bottom-left image):
side view, red voxels). After densification, the introduction of the intermediate voxels (gray) provides
an increased level of connectivity ((bottom-right image): side view).

The densification of the voxel space is achieved by inserting intermediate obstacle
voxels between the originally-adjacent LiDAR measurements. Both vertical and horizontal
connectivity are exploited. Two obstacle measurements are adjacent in the following
configuration:
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(a) (vertical) Adjacent layers and the same channel, and the 3D distance between the
measurements is below a threshold

(b) (horizontal) The same layer and adjacent channel values, and the 3D distance
between the measurements is below a threshold.

For the second situation (horizontal connectivity), an additional constraint must be
imposed regarding the planarity of the surface where the intermediate voxels are inserted.
This is needed in order to avoid unwanted joining of nearby independent obstacles. The
local angle of the 3D measurements is evaluated along each layer (from the previous,
current and next channel measurements). Intermediate voxels are inserted only for those
obstacle measurements where this angle is close to 180 degrees (should belong to a surface
that is close to planar). Computing the location of intermediate voxels that must be inserted
can be quickly solved using Bresenham’s line algorithm (3D version).

By densifying the voxel space, we ensure that measurements adjacent in the panoramic
representation are connected, by having intermediate voxels forming uninterrupted paths
between them even in cases with no intermediate measurements. The intermediate and
occupied voxels allow the extraction of 3D obstacles as connected components. These are
found through a breadth-first search which generates a set of candidates for which multiple
features (size, voxel count, LiDAR 3D point count, etc.) are calculated, which allows for
some of them to be discarded if their features are outside of expected ranges. Finally, for
each obstacle blob, the oriented cuboid is computed with a low complexity approach based
on random sample consensus fitting of L-shapes, described in [54]. Results are shown in
Figure 9.

Figure 9. Individual obstacles are detected in the voxel space (red voxels), and valid obstacles are
represented as oriented cuboids (green).

3.6. Low-Level Fusion: Spatio-Temporal and Appearance Based Representation

The Geometric and Semantic Fusion module aggregates data from the two execution
threads and generates the spatio-temporal and appearance-based representation (STAR)
by projecting all the motion-corrected 3D points onto every raw and segmented image
using the associated calibration parameters of each sensor (see Figure 10). This process,
which attaches RGB and semantic information to all points that project onto the 2D data,
can become a computational bottleneck, prompting us to use a complex, multi-threaded
execution scheme, that takes place for each received 3D cloud once 2D segmentation results
become available.

Equations (5)–(7) present the mechanism for projecting 3D points pci onto the un-
warped images based on the cylindrical image plane representation, using the camera
intrinsic matrix Kcam and the 3D coordinate transform TL

cam, provided by the calibration
procedure for each pair of camera cam and LiDAR L. Here, the function point_to_cylinder
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computes coordinates at which rays extending towards pci intersect the cylindrical surface
of the (modelled) image plane.

[u, v, 1]T = Kcam · point_to_cylinder(TL
cam pci) (5)

point_to_cylinder([xc, yc, zc, 1]T) = [asin(xc/r), yc/r, 1]T (6)

r =
√

x2
c + z2

c (7)

Figure 10. The Low-level fusion process: Raw and semantic information from the camera is fused
with the projected 3D points (left column, from (top) to (bottom)) to produce an enhanced 3D point
cloud (STAR, (right)).

Occlusion handling is an important practical problem which arises during sensor
fusion and we address it with two different approaches. They both use semantic and depth
information: one fast approach relying on projecting onto a low-resolution virtual image
and one more costly approach which applies corrections to each image column.

Semantic labels from occluding objects seen in camera images can be mistakenly
propagated to 3D points belonging to the occluded objects during the information fusion
process between the LiDAR point cloud and semantic segmentation images. The occlusion
handling algorithm presumes objects to be either static or that their position has been
corrected (which in turn requires additional information).

The sparse depth map (raw) representation, denoted by D(x; y) is obtained by project-
ing the 3D measurements onto each image, sparsely adding distance information to pixels
where possible, with the other pixels marked accordingly. An intermediary operation aims
to increase the density of the depth map by considering cells of fixed size s (e.g., 10 × 10 px)
and constructing a lower-resolution depth map by taking the minimum distance in each cell.
In practice, this can be implemented by creating the low-resolution image directly, which
reduces computation time significantly and achieves the same results. The low-resolution
image has values equal to the local minimum in an s by s box:

Dlr(x; y) = mini;jD(i; j) | x = [i/s]; y = [j/s] (8)

Besides sparsity, another common problem is the lack of measurements due to non-
reflective surfaces of objects from the scene. To address this issue we propose two correction
schemes: one based on the dilation of the measurements and the other based on convex
hull estimation.
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Since LiDAR point layers fall farther apart onto objects which are closer, measurements
are dilated in the horizontal and vertical direction based on the distance. The dimensions
of the dilation kernel are given by: drows = min(4; 20/dist), dcols = min(1; 5/dist), where
dist is the distance of the 3D point, making the the window size inversely proportional
to it (the scalar values were selected empirically, with a higher kernel size needed on the
vertical direction due to higher sparsity). This operation does not affect the execution time
significantly since it only applies to points within a 20 m range.

Semantic information allows us to treat each object class differently. Occluding ob-
jects can only be from the following semantic classes: construction, pole, traffic light,
traffic sign, person, rider, car, truck, bus, train, motorcycle, bicycle, building or vegetation.
Point measurements from other classes, such as road or lane markings, cannot occlude
other objects.

Occlusions are detected using the generated dense depth map by simply marking
projected points which have a larger distance than the corresponding cell from the depth
map as occluded. Semantic classes associated to such points should be ignored as they
originate from an occluding object. Figure 11 illustrates the resulting low-resolution
depth map.

Figure 11. Low resolution depth map and its corrected version - scene depicts a car close by on the
left, a car in the middle farther away and foliage on the right. Color encodes the distance from red
(close) to blue (far), up to 20 m. Positions with no measurements default to infinity.

An alternative, more computationally costly, approach was also implemented. It
performs a column-wise completion and relies on estimating the lower envelope of the
measurements for a single object based on the semantic labels. More precisely, we consider
each column from the depth map and segment it according to the semantic labels. For
each segment, after finding the lower envelope we update the depth values to match those
from the envelope. This predicts the depth linearly between two measurement points and
eliminates farther measurements.

3.7. STAR-Based Classification and Enhanced Detection

Once the LiDAR measurements are enhanced with semantic information while also
considering occlusions, the process of object classification can be performed in order to
provide class labels to each object cuboid. In order to increase robustness to outliers caused
by mislabeled 3D measurements (such as those on the border of dynamic obstacles or
on thin objects), a statistical method is adopted. The following steps are performed for
computing the semantic class for each detected object:

• The semantic class is first transferred from the individual 3D measurements to their
corresponding voxels, handling conflicting measurements by labeling the entire con-
taining voxel as unknown

• A semantic class frequency histogram is generated for each 3D obstacle, based on the
contained voxels, enabling a statistical based approach for the final decision step:

– The most frequent class is selected as the 3D object class
– Up to 3 additional, most likely classes can be also provided, allowing further

refinement of the object class during subsequent tracking processes
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Results for obstacle classification are presented in Figure 12. The enhanced semantic
information of the 3D points can be further exploited to refine the detected objects by
separating grouped obstacles of different classes or different instances of the same class. A
strategy was developed to analyze the distribution of classes or instances in an obstacle. If
at least two dominant classes/instances are detected (frequency over a threshold), then new
centroids of individual obstacles are computed and voxels are reassigned to each obstacle
(nearest centroid).

Figure 12. Results of Object Detection and Classification. Top-Left: Input LiDAR Point Cloud,
Bottom-Left: STAR Point Cloud, Top-Right: Segmented Objects, Bottom-Right: Classified Objects.

4. Evaluation and Results
4.1. 2D Evaluation

Image Segmentation Dataset: The image segmentation networks are trained and eval-
uated on the UP-Drive dataset. The dataset is large and diverse, and images have been
recorded with our prototype vehicle in several cities, highways and country roads in north-
ern Germany. Sequences were acquired during daytime, at various times of the day to
capture diverse lighting conditions and during several months in three seasons: spring,
summer and autumn. Moreover, recordings were taken in sunny and cloudy weather,
but also in adverse weather conditions with heavy rain. The area-view dataset contains
19,562 frames from all four views which are manually annotated for semantic and instance
segmentation. There are 23 semantic classes and 6 classes for instance segmentation. We
create a training split with 15,782 images and a validation split with 3780 images. The
narrow FoV front dataset is smaller and has been created in the last stages of the project.
There are 1869 images which are annotated using the same methodology. We train on
1495 images and validate on 374.

Evaluation Metrics: For semantic segmentation, we employ the mean Intersection over
Union (mIoU) metric. We evaluate instance segmentation using AP@[.5:.05:.95] (Average
Precision over classes and 10 IoU levels).

Inference Time: We measure the inference time including all post-processing steps (such
as NMS) on a NVIDIA GTX 1080 GPU with a batch of one image.

4.1.1. Semantic Segmentation Results

The segmentation network is fully convolutional and can be easily optimized with
the TensorRT library [45]. We also quantize the network in INT8, reducing the inference
time four times at full image resolution. The results and inference times for semantic
segmentation of area-view images are presented in Table 1.
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Table 1. Evaluation of the semantic segmentation network on area-view images corresponding to
front, left, back, right views. 1280× 640—INT8 (in bold) is integrated in the final solution.

Resolution mIoU Inference Time (ms)

1280 × 640—FP32 67.87 20
1280 × 640—INT8 65.10 9

In Figure 13 we present qualitative results for semantic segmentation in adverse
weather conditions with heavy rain. Despite the fact that raindrops partially cover the
camera lens, we obtain good semantic segmentation results.

Figure 13. Semantic segmentation results in adverse weather conditions with heavy rain.

4.1.2. Instance Segmentation Results

The limited hardware and the time constraints enable us to segment instances only
from the front view, which provides the most useful information for navigation. In Table 2,
we report the evaluation results of the instance segmentation network on the front area-
view images. We train with multiple resolutions and obtain 36.8 box mAP, 30 mask mAP
in 66 ms inference time. Although lowering the resolution decreases significantly the
processing time, the accuracy is substantially degraded. Since the apparent size of objects
in the area-view image is small, even for medium distance, we observe a decrease in
detection range for small resolutions. Table 2 also includes the results for the narrow FoV
camera instance segmentation network. In the final solution, we adopt the 832× 416 image
resolution and obtain 28.7% box mAP, 21.4% mask mAP with an inference time of 44 ms.
The network is optimized with the TensorRT library in FP32 precision.

Table 2. Evaluation of the instance segmentation network on area-view images corresponding to
front, left, back, right views and narrow FoV images on the front view. Inference time is measured on
a single image. The bolded configuration is integrated in the final solution.

Resolution mAP Box mAP Mask Inference Time (ms)

Area-view images

1280 × 640—FP32 36.8 30 66
832 × 416—FP32 30.1 24.8 44
640 × 320—FP32 26.4 21.6 33

Narrow FoV images

960 × 604—FP32 30.2 22.8 58
832 × 416—FP32 28.7 21.4 44
640 × 320—FP32 23.4 18.3 33

4.1.3. Inference Time

We measure the inference time of the 2D semantic perception system in Table 3.
Image unwarping of the four area-view images, along with the image undistortion, are
implemented on the GPU and account for 6 ms processing time. The semantic image
segmentation of the four area-view images takes 36 ms, the instance segmentation of the
front area-view image takes 66 ms, while the instance segmentation of the front narrow FoV
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image takes 44 ms. Panoptic segmentation is fast and runs in 5 ms. Once the image segmen-
tation for any image is available, we directly associate the semantic information with the
3D point cloud. The computational complexities for the modules are: 96 GFLOPs per image
for semantic segmentation (before INT8 optimization), 380 GFLOPs for the front area-view
instance segmentation and 162 GFLOPs for the front narrow FoV instance segmentation. A
10 FPS 2D perception system can be obtained with 360◦ semantic segmentation of area-view
images and instance segmentation of the front narrow FoV image.

Table 3. Time evaluation of the 2D semantic perception system.

Module Inference Time (ms)

Image unwarping and undistort × 5 6
Semantic segmentation × 4 36

Instance segmentation front 160◦ FoV image 66 (380 GFLOPs)
Panoptic segmentation front 160◦ FoV image 5
Instance segmentation front 60◦ FoV image 44 (162 GFLOPs)

Total 157

4.2. 3D Evaluation

Evaluation Data: We perform the 3D object evaluation on a custom dataset. While
evaluation on a public dataset would be ideal, the particular sensor configuration to
which our perception pipeline is fine tuned to, both the Image and LiDAR chains, does
not allow for this. Thus, we carry out the evaluation on a set collected by one of the
vehicle demonstrators outfitted with the complete sensor payload. Objects of interest (i.e.,
cars, pedestrians, trucks, bicyclists) are manually annotated as cuboids in 3D space for
comparison with the system’s classified output. Scenes were selected so that they best
represented urban scenarios, with vehicle and pedestrian traffic, most of them recorded in
damp conditions.

Constraints: Objects only partially visible in the LiDAR data were annotated based
on a set of typical dimensions, even though the measurements covered only a portion of
the entire cuboid. This decision stems from requirements of other intended uses of the
annotated dataset. Another decision in performing the evaluation was limiting it to the
road environment including the drivable and sidewalk areas in each frame, where the
annotated objects can be found.

Evaluation Metrics: The traditional Intersection-over-Union metric, based on the inter-
section and union of areas (2D) or volumes (3D) between the detection and ground truth
boxes, cannot accurately measure the agreement between the two due to the annotation
strategy. To solve this, we propose a metric that is more resilient: a score is computed by
counting the number of common (intersecting) 3D points of the cuboids being compared
and dividing it to the number of total distinct 3D points that are inside any of the two
volumes. Going further, we denote this metric as Point Intersection-over-Union (PIoU).
While this measure is still sensitive to, for example, the number of ground points included
in the cuboids, it is currently the best way to measure the localization capabilities. The
PIoU metric enables evaluation of average, per frame, precision and recall, which then
allow the computation of the average precision (AP) score.

Results: Table 4 shows the average, per frame, precision and recall values, with the
perception area split into three intervals, at 25 and 50 m. When computing these scores, we
considered a PIoU of 0.5 for objects closer than 25m and 0.3 for the rest. The classification
and detection refinement shows a slightly lower accuracy and recall in comparison with
the independent LiDAR based object detection, due to the added complexities of the
classification task.
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Table 4. Average Frame Precision and Recall results (%) at three different ranges, with and without
taking into account the classification.

Avg. Frame Precision Avg. Frame Recall

Range (m) 0–25 25–50 50–70 0–25 25–50 50–70

Detection &
Classification 91.12 82.53 75.09 84.96 84.39 66.55

Detection 92.76 83.56 75.99 86.71 86.11 70.58

We evaluated the Average Precision (AP) metric by computing the area under the
Precision-Recall curve, obtained by varying the threshold detections are considered valid,
based on their associated confidence score. The obtained result of 71.65% covers the entire
road area, up to a distance of 70m and considers all classes for the 1557 evaluated objects.

Figure 14 shows how the PIoU score varies for detections at different ranges (computed
for each detection’s best paired ground truth object, if one exists). The horizontal axis
maps several ranges into which the PIoU value can fall, with the y-axis representing the
percentage of detections out of the total number associated with each interval. For the close
range, over 75% of detections have an associated PIoU value greater than 0.85, while the
medium range interval exhibits over 68% of detections with a localization score of over
0.7, which drops to 53% for the longest range interval. At this range, 23% of detections
are scoring below 0.5. When analyzing this data, it is important to note the fact that
many of the evaluation frames were taken in wet conditions, where moving vehicles are
trailed by a spray of water particles which are picked up by the LiDAR scanners. Our
annotations exclude these trails, yet some detections include them, due to significant 3D
point clusters present.
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Figure 14. The Point IoU Histograms, for the three distance intervals.
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Our software, running on its dedicated PC, outputted results at a rate of 5 FPS, or 6 FPS
if the instance segmentation of the front wide angle camera was disabled (normal semantic
segmentation still being computed). Figure 15 presents the average processing times for
the individual components and the way the CPU and GPU threads are parallelized. It must
be noted that this includes the data pre-processing step performed by the Flow Manager
component (20 ms), which is necessary for online operation but is typically overlooked in
offline-only solutions. Given the design constraints (areas with speeds limited to 30 km/h),
coupled with the range of the perception system and the parallel operation over multiple
processing nodes of the entire autonomous system’s components (perception, tracking,
localization, scene understanding, navigation), the overall system latency was sufficiently
low to allow proper operation in safe conditions.

Motion Correction 
12 ms

Point Cloud Segmentation 
90 ms

Instance Seg. 
(wide)
66 ms

Image Undistort
6 ms

Semantic 
Seg.

36 ms

Instance Seg. 
(narrow)
44 ms

Panoptic 
Seg.
5 ms

Total Execution Time – 193 ms

Obj. Classification 
& Refinement

10 ms

Flow
Manager

20 ms

Data Fusion 
50 ms

Figure 15. Execution flow and timing diagram with average processing times: the top blue 3D
processing chain running on the CPU in parallel with the one for 2D data, running on the GPU.

The enhanced perception system was extensively tested on-board the test vehicle
during drives in urban environments, with various adjustments being continuously added
so that the full-stack of software which enabled autonomous driving performed in safe pa-
rameters. Unlike offline, sandboxed operations, giving the system control of the car meant
taking extensive precautions for softly handling errors, enabling a graceful degradation
in case any of the complex components failed. The fine-tuned software was operated for
sessions longer than 60 min, with fewer than five interventions from the safety driver.

5. Conclusions

In this paper we have presented our multi-modal, multi-sensor, real-time-capable
360◦ environment perception solution which has been successfully integrated onto the au-
tonomous demonstrator developed in the UP-Drive project. The enhanced object detection
and classification relies on the enhanced 3D point cloud representation (STAR). This, in
turn, is obtained through the low-level fusion approach which combines geometric data
from five LiDAR scanners with semantic, instance and color information obtained from
a system of four fish-eye cameras covering the entire proximity of the vehicle, coupled
with a narrow FoV front camera used for longer ranges. The two sensor modalities are
processed independently, in parallel on the CPU and GPU, until the last fusion step, with
the results being outputted at 5 FPS when running on the on-board hardware. This was
enabled by a set of optimized deep learning based 2D semantic, instance and panoptic
segmentation algorithms along with a 3D point cloud segmentation based on computer
vision providing a rough object detection and classification. In the final step, the object
detection and classification is refined through the use of the enhanced point cloud. By
achieving these results, we fulfilled the overarching goals for the perception system in the
project, thus enabling autonomous operation in dynamic urban environments.

The developed segmentation models, along with various optimizations of our system’s
architecture, enabled the use of the entire Area View image area at a 1280× 640 resolution
with processing times of under 10 ms per image. The high-resolution increases the depth
range and quality of the segmentation, as does the inclusion of the front-facing narrow-
field-of-view camera. Our improvements regarding the execution times allowed integrating
the instance and panoptic segmentation for the front-area-view and narrow-field-of-view
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cameras, contributing to a better and deeper semantic view of the scene. Future expansions
in processing power will allow adding narrow-field-of-view cameras for all directions, as
well as permit the use of more complex and more accurate models. Advances in automatic
annotation generation, semi-supervised and un-supervised learning approaches will also
improve the quality, consistency and diversity of the training sets.

In order to reduce processing time of the perception system, the 3D point cloud seg-
mentation is done in parallel with the semantic segmentation. The enhancement of 3D
points with semantic information allows for 3D detection refinement and accurate 3D object
classification. More powerful hardware along with novel, faster 2D and 3D segmenta-
tion solutions could allow a serial approach starting with image semantic segmentation,
followed by the fusion of 2D semantic information with the 3D geometric data and the
3D object detection, and classification carried out on the semantically-enhanced 3D point
cloud. Improvements in the quality of sensor calibrations and synchronizations, in con-
junction with optimizations to occlusion handling for dynamic objects, are to be developed
further. Improving the robustness and accuracy of the enhanced perception solution can be
achieved by increasing the variety and redundancy of the 3D and 2D sensors. This can be
done by incorporating additional 3D sensors such as RADARs and solid state LiDARs, as
well as multiple 2D narrow-field-of-view and far-infrared cameras.
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