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Abstract: Although seemingly effortless, the control of the human hand is backed by an elaborate
neuro-muscular mechanism. The end result is typically a smooth action with the precise positioning
of the joints of the hand and an exerted force that can be modulated to enable precise interaction
with the surroundings. Unfortunately, even the most sophisticated technology cannot replace such a
comprehensive role but can offer only basic hand functionalities. This issue arises from the drawbacks
of the prosthetic hand control strategies that commonly rely on surface EMG signals that contain
a high level of noise, thus limiting accurate and robust multi-joint movement estimation. The use
of intramuscular EMG results in higher quality signals which, in turn, lead to an improvement in
prosthetic control performance. Here, we present the evaluation of fourteen common/well-known
algorithms (mean absolute value, variance, slope sign change, zero crossing, Willison amplitude,
waveform length, signal envelope, total signal energy, Teager energy in the time domain, Teager
energy in the frequency domain, modified Teager energy, mean of signal frequencies, median of signal
frequencies, and firing rate) for the direct and proportional control of a prosthetic hand. The method
involves the estimation of the forces generated in the hand by using different algorithms applied to
iEMG signals from our recently published database, and comparing them to the measured forces
(ground truth). The results presented in this paper are intended to be used as a baseline performance
metric for more advanced algorithms that will be made and tested using the same database.

Keywords: intramuscular electromyography; prosthetic hand control; proportional myocontrol;
electromyography signal features; isometric joint force; embedded EMG processing

1. Introduction

The anatomy concerning the muscles controlling the human hand demonstrates the
complexity of the system responsible for the control of voluntary movement. The majority
of muscles controlling hand and finger movements are located in the forearm, and they
have long, sometimes multiple tendons crossing several joints, sometimes acting on several
fingers. Thus, the control of hand and individual finger movements involves a complex
pattern of neural activation and the inhibition of several muscles, ultimately resulting in
a smooth action with the precise positioning of the joints with a force that is gradually
adapted to interact with the surroundings [1].

The underlying mechanics and mechatronics in hand prostheses have been signifi-
cantly improved in recent decades [2,3] and present-day hand prostheses are capable of a
multitude of movements. However, most hand amputees, even if using a hand prosthesis
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with state-of-the-art technology, can only perform basic motor hand functions, such as
opening and closing pre-selected grasps. This gap between the ability of contemporary
prosthetic hands to produce dexterous movements and the actual rudimentary functionality
of such hands when provided to amputees poses a challenge for researchers and companies
in the field of prosthetics.

The real bottleneck preventing the optimal use of a prosthetic hand in a dexterous
manner is the control part. More precisely, the methods for decoding velocities and forces
of individual digits and the wrist, while interpreting the desire to move the joints of
a prosthetic hand by a user, are still far from being intuitive and robust [4]. In most
commercial high-end implementations, surface electromyography (sEMG) is used as a
link between the amputee and the machine (prosthetic hand) [5–9]. However, due to
the low spatial resolution and non-stationarity of sEMG, even the most sophisticated and
computationally expensive algorithms are not able to extract enough information to provide
robust and smooth control that resembles the behavior of the unimpaired hand. Namely, the
machine learning and deep learning strategies applied on sEMG signals [10–14] commonly
only detect the intention of an amputee to execute specific hand movements/gestures
without being able to extract the desired force/velocity levels of individual joints in the
hand. Therefore, the control of a multi-joint prosthetic hand usually lacks the real-time
adjustment of grasps and ad hoc hand gestures that could enhance the sense of agency and
function of a prosthetic hand.

Some of the control solutions that provide a higher level of functionality for prosthetic
hands are oriented towards improving the quality of the signals used for control. To do
so, it is necessary to obtain EMG signals close to their source, thus avoiding distortion
and the loss of information that occurs due to mixing with signals from other muscles and
attenuation in biological tissue. Acquiring the EMG signal close to the desired muscle has
proven to yield superior results using fully implantable devices that record EMG signals
directly from the surfaces of multiple muscles [15], including signals from muscles deep
within the arm that are very difficult to single-out from the skin surface level. Furthermore,
instead of implanting the whole recording–transmitting device, it is possible to implant only
electrodes while having the associated electronics together with a power source outside
the body [16,17]. This approach simplifies the surgical implantation of electrodes and
the maintenance process, and the only complication is related to electrode leads failing
due to excessive stress or a limited (although large) number of wire-bending cycles. With
advances in surgical techniques to anchor the prosthesis using osseointegration [18,19], the
longevity of the implant is further increased, thus enabling a stable and reliable interface
between the human (residual muscles in the forearm) and the prosthetic hand. As a
consequence of surgical and technological advances, it has become possible to derive
control strategies that rely on high-quality intramuscular EMG (iEMG) signals [20] and
implement them in prosthetic devices based on implantable technologies [16,21]. With a
significant improvement in control signal quality, there is real potential to finally diminish
one of the primary reasons for amputees’ rejection of myoelectric prostheses, which is
limited controllability [22,23].

To contribute to the body of knowledge within the field of prosthetic control, our
previous effort was directed towards obtaining and disseminating a database of iEMG
signals [24] that could be used for developing and testing novel hand control strategies. The
database uniquely combines highly selective iEMG measurements obtained using fine-wire
intramuscular EMG electrodes [25] with isometric forces of individual fingers and the wrist
during various hand gestures recorded using a custom-made measurement device [26].
The implicit novelty of this database is the availability of isometric hand forces elicited
through a sinewave tracking task with visual feedback that then enables the evaluation
of regression-based control algorithms. To provide a solid baseline of the prosthetic hand
control performance, simulated offline through the utilization of the database, the present
study evaluates common/well-known/simple computational methods in the scope of
recorded iEMG and force signals. The methods described in the paper are utilized to
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show (1) the (root mean square) error between the measured and the estimated hand
joints forces, and (2) the similarity of the shapes of measured and estimated forces through
cross-correlation. The secondary objective of the present study is to evaluate if the common
algorithms are suitable for real-time application with high sampling-rate iEMG signals. To
show the relevance of common algorithms with realistic inputs, and also to serve as the
reference for more computationally complex algorithms, the processing time is evaluated on
various embedded and PC platforms. The purpose of the battery of tests conducted within
this paper is to facilitate future studies using the same database by providing common
baseline results.

2. Materials and Methods
2.1. Subjects

Fourteen male able-bodied volunteers aged between 25 and 57 years (mean 39 years)
participated in the study which was divided into two protocols. As the volunteers were
equally divided between protocols and two of the volunteers were included in both proto-
cols, the final database contained sixteen files, eight for each protocol. All the volunteers
signed an informed consent, and the study was approved by the Regional Ethical Review
Board in Lund, Sweden (Dnr 2017-297).

2.2. Recorded Signals

The signals database [24] was recorded in a setup that included intramuscular fine-
wire EMG electrodes in a differential recording configuration, with volunteers performing
a set of hand gestures in a timely fashion and the acquisition of isometric hand forces using
a custom-made measurement device.

The iEMG signals were recorded from 9 forearm muscles divided into 2 groups which
were associated with the 2 levels of amputation:

• The short residual limb (SRL) protocol targeted the following muscles: flexor carpi ra-
dialis (FCR), extensor carpi radialis (ECR), pronator teres (PT), flexor digitorum profun-
dus (FDP), extensor digitorum communis (EDC), and abductor pollicis longus (APL);

• The long residual limb (LRL) targeted the following muscles: flexor digitorum pro-
fundus (FDP), extensor digitorum communis (EDC), abductor pollicis longus (APL),
flexor pollicis longus (FPL), extensor pollicis longus (EPL) and extensor indicis pro-
prius (EIP).

The positioning of the fine-wire electrodes was performed by a senior consultant in
clinical neurophysiology. The signals picked up by the pairs of fine wires (in differential
recording configurations) were amplified and digitalized using the Quattrocento biomedical
amplifier system from OT Bioelettronica, Torino, Italia. The amplifier had a common mode
rejection ratio (CMMR) higher than 95 dB, an input resistance higher than 1011 Ω on the
entire bandwidth, and a noise level lower than 1 µVRMS. To reduce the interferences induced
in the leads between the fine wires and the amplifier, shielded differential preamplifiers
were used in close proximity to the fine-wire skin entry points. In parallel with the iEMG
recordings, forces resulting from hand muscles contractions were also recorded using the
measurement device which kept the hand stationary during the procedure. In total, 9 force
gauges picked up the resulting hand forces: one per finger (D2 (index finger)–D5 (little
finger)), two for the thumb, and three for the wrist. The recording protocol was guided
by an automated graphical user interface which, in a strictly timed manner, displayed
commands and cues to the volunteer. It also provided feedback on the exerted force which
was crucial for force matching/tracking tasks. An example of this functionality is the
sine wave tracking task which started by instructing the volunteer to perform maximal
voluntary flexion and the extension of a finger, thumb or the wrist, the adduction–abduction
of the thumb, or the pronation–supination of the wrist. Although the inserted electrodes
targeted only a subset of the muscles involved in the abovementioned hand movements,
the protocol was consistent for all volunteers and all electrode placements. This way, it was
possible to compare muscle synergies and crosstalk between iEMG channels, which is not
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in the focus of this study, but might be of interest for other studies that use the database.
Then, the software generated a low-frequency sine wave with an amplitude equal to 20%
of the maximal voluntary flexion/extension and a frequency of 0.1 Hz and displayed it in
the same graph with the finger or wrist force that the volunteer produced (see Figure 1).
The idea here was that the volunteer would match the computer-generated sine wave by
continuously eliciting an equivalent force.
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Figure 1. Measurement setup. The participants were following the slowly changing sine wave
(repetition frequency was 0.1 Hz) with a finger DoF by producing isometric contractions. The forces
were acquired by the force measurement device and displayed in real-time on the screen. Fine-wire
electrodes were taped at the skin entry point to prevent accidental pulls. To reduce induced noise,
the preamplifiers were placed as close as possible to the entry points of the fine wires. In addition,
the wires between the entry point and preamplifiers were taped to the skin. The metal frame of the
force measurement device was grounded to reduce powerline noise.

Although the measurement protocol included various hand gestures, for the scope of
this paper, only the sine tracking data were used because the aim of this paper is to produce
the direct and proportional control of a multi-joint prosthetic hand.

As the iEMG was recorded at 10 kHz, the force data were up-sampled for easier
manipulation. In addition, the commands and cues presented to the volunteers were
recorded for the offline segmentation of the measurements into individual finger/wrist
movements. The Matlab data container files (*.mat) can be found here: (https://figshare.
com/s/06f113bd74ecf6384729 (accessed on 2 June 2022)).

2.3. Signal Pre-Processing

As the methods presented in this paper are intended for online implementation,
the recorded signals were minimally pre-processed. Namely, the powerline noise was
superimposed with the iEMG signal, which was relatively weak compared to the sEMG.
To remove the powerline base frequency (f0) and its harmonics (f0 × i, i = 2, 3, 4 . . . ),
which also exceeded iEMG signal amplitude, a band-stop comb filter comprising third-
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order Butterworth notch filters (f0 = 50 Hz and ∆f = ± 2 Hz) was applied to the recorded
signals [27]. The next pre-processing step was the segmentation of recorded signals based
on the automatic data labeling performed during the recordings. In this stage, force
outputs were divided between positive and negative values or phases (flexions–extensions,
adductions–abductions, pronations–supinations) so that they could be independently
associated with different muscles. Finally, as the last step preceding the algorithm stage,
optimal matchings between targeted muscles, elicited movements and the force gauges
were established. On top of that, within the selected force channel, a phase (positive or
negative) was associated with the actions of specific muscles. In other words, for each
iEMG signal (muscle) there was an associated hand movement that specifically activated
the muscle where the fine-wire electrode was placed. Furthermore, there was a sensor
within the force measurement device that registered the force generated by the muscle
contraction of interest. For example, activation in the PT muscle was always associated
with the command to pronate the forearm and the elicited force was measured by the
sensor designated for the measurement of wrist pronation. Nevertheless, for some muscles,
there could be a variety of different matchings for different subjects due to the multi-
compartment nature of the muscles in which the fine-wire electrodes were anchored or
the individuals’ strategies for producing the commanded contractions. Such examples
include the FDP, which could flex any of the D3–D5 fingers depending on the activated
compartment, or EDC, which extended the D2–D4 fingers. Furthermore, depending on
individuals’ synergies, APL could be more active during the command to push the thumb
to the left (right-handed setup) or upwards. An example of the signal pre-processing
method is shown in Figure 2.
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Figure 2. Schematic representation of the signal pre-processing and testing of algorithms steps.
For each iEMG channel (left side, blue signals), the MAV feature was extracted. In the following
step, the MAV features were normalized for each movement based on only two first sine tracking
periods (out of 10 repetitions). Hand and wrist forces (right side) were divided into positive (teal)
and negative phases (red signals), after which individual phases were normalized (0–1) for each
movement. To establish a correlation between iEMG channels (differential wires) and the phases
of the force channels, a systematic evaluation of RMSE metrics between normalized MAV features
and forces was conducted. The result of this process was a lookup table connecting iEMG channel,
force channel (gauge), force phase, and movement (see the file “Fine-wire force-emg pairs” provided
in the database paper [24]). The example signals are based on subject 4’s FPL muscle and thumb
flexion/extension.
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The iEMG–movement–force matchings were initially selected based on the signal-
to-noise ratio of iEMG within different segments (movements) and refined based on the
minimal root mean square error (RMSE) between a normalized force gauge output and the
estimated force using the MAV algorithm.

2.4. Testing of Algorithms

The algorithm evaluation procedure was designed with a specific prosthesis-use
scenario. The performance of the algorithms was tested in a similar fashion as that shown
in Figure 2 by using the optimal pairings between the iEMG channels, the phases of the
force channels, and the movements found during the signal pre-processing stage. It was
envisioned that the full setup should be as quick as possible. In line with this principle,
only the first two of ten sine tracking periods per tracking task were selected to normalize
the outputs of the algorithm for force estimations (similar to the previous study [28]), while
the following tracking periods were used only for evaluating the performances of the
algorithms. Such a condition results in fast calibration that requires only two repetitions of
slowly increasing and decreasing isometric force elicited by muscles during various hand
movements. Although in the case of amputees there is no possibility of tracking muscle
forces, the same principle still applies as the only purpose of the initial calibration is to
match muscle activity and forces, and to normalize force output. Thus, in the realistic
scenario, the amputee will be asked to slowly increase and decrease force while imagining
specific hand movements [29].

The testing of the iEMG algorithms for extracting signal features was also performed
in a manner that corresponded to the real-time application. To achieve this requirement,
all algorithms were implemented within the moving/sliding windows of different widths
where the computed value was adjoined with the last (newest) sample from the window.
This scenario corresponds to the direct control of a prosthesis degree of freedom in real-time
using a single muscle.

The algorithms selected for evaluation are already well-known from numerous publi-
cations in the field of prosthetics [30–32]. Due to relatively poor sEMG signal quality, these
algorithms are often used only for feature extraction, while some machine learning algo-
rithms are used to extract relevant information regarding muscle activation. The following
algorithms were systematically used in conjunction with the recorded iEMG signals and
evaluated against measured forces.

1. Mean Absolute Value

Mean absolute value (MAV) is the favored EMG feature in many myoelectric control
applications [33,34]. It is calculated within a moving average window of the rectified
iEMG signal.

2. Variance

Variance (Var) is the mean value of the square of the deviation of the signal [35]. As
the mean of iEMG is close to zero, the equation can be simplified for faster calculations.

3. Slope Sign Change

Slope sign change (SSC) is a time-domain method used to estimate the frequency
feature of the iEMG signal [36]. The calculation of the SSC relies on counting changes
between positive and negative slopes among three consecutive samples. To limit SSC
calculation only to periods with iEMG activity, the threshold function is imposed in the
feature extraction method.

4. Zero Crossing

Zero crossing (ZC) is the function that counts the number of consecutive EMG samples
that change signs within the sliding window [33]. Similarly to the SSC calculation, the
threshold function is imposed to remove the calculation of ZC during periods without
pronounced EMG activity.
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5. Willison Amplitude

Willison amplitude (WA) is a measure related to the superimposed action potentials
that make the EMG signal [37]. The WA is the number of consecutive differences between
consecutive samples that exceed the set threshold.

6. Waveform Length

Waveform length (WL) is the cumulative length of the waveform over the time win-
dow [38].

7. Envelope

The signal envelope (ENV) is calculated as the root mean square over the time window.

8. Total signal energy

The total signal energy (Etot) is defined as the sum of spectral amplitudes calculated
using fast Fourier transformation.

9. Teager energy in time domain

The Teager energy operator is a non-linear operator that can track the energy and
identify the instantaneous frequencies and instantaneous amplitudes of signals at any
instant. It strongly correlates with the nature of the iEMG signal which comprises individual
action potentials [39–41]. Teager energy in the time domain (Ttd) was calculated using
the Teager–Kaiser energy operator. The resulting values were then smoothed using a
moving average filter defined in the same manner as the sliding windows present in
other algorithms.

10. Teager energy in frequency domain

Another implementation of the Teager energy operator is in the frequency domain (Tf)
using fast Fourier transformation [42].

11. Modified Teager energy

The modified Teager energy (Tf_mod) is similar to the Teager energy operator in the
frequency domain (Tf) with the only difference being that the frequencies are not squared.

12. Mean of signal frequencies

Mean of signal frequencies (MNF) is calculated from the windowed iEMG power
spectrum as the average frequency [43].

13. Median of signal frequencies

Median of signal frequencies (MDF) is calculated as the frequency at which the power
spectrum is divided into two regions with equal power [43].

14. Firing rate

The calculation for the firing rate (FR) iEMG signal feature is performed by implement-
ing the algorithm presented in [21]. The algorithm is based on counts of action potentials
within the iEMG signal that are larger than the set threshold.

The mathematical formulas used to compute algorithms are given in Table 1.
To provide greater insight into the iEMG signal properties, the abovementioned com-

putational methods were optimized to provide the lowest discrepancies between measured
and estimated forces. The optimization (parameter exploration) was performed in a brute-
force manner by testing all combinations of parameters within defined ranges. The rationale
behind this method is to provide outputs for the incrementally increasing parameters in
order to obtain the gradual evolution of error between measured and estimated force. The
main reason for having such data is to identify trade-offs between force estimation error
and computational complexity.
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Table 1. Formulas used to compute algorithms that were evaluated. N denotes window length, xn

is the n-th iEMG sample within the current window, M is the number of frequency bands, Pn is the
spectral power of the n-th frequency band, fn is the central frequency of the n-th frequency band, and
AP the number of detected action potentials over the threshold within the sliding window function.

Algorithm Acronym Formula

1 Mean absolute Value MAV MAV = 1
N

N
∑

n=1
|xn|

2 Variance Var Var = 1
N−1

N
∑

n=1
x2

n

3 Slope sign change SSC
SSC =

N−1
∑

n=2
f [(xn − xn−1)× (xn − xn+1)]

f (x) =
{

1, i f x ≥ threshold
0, otherwise

4 Zero crossing ZC
ZC =

N−1
∑

n=2
[sgn(xn × xn+1)× f [xn − xn+1]]

f (x) =
{

1, i f x ≥ threshold
0, otherwise

5 Willison amplitude WA
WA =

N−1
∑

n=1
f [|xn − xn+1|]

f (x) =
{

1, i f x ≥ threshold
0, otherwise

6 Waveform length WL WL =
N−1
∑

n=1
|xn − xn+1|

7 Envelope ENV ENV =

√
1
N

N
∑

n=1
x2

n

8 Total signal energy Etot Etot = 1
M−1

M−1
∑

n=1
Pn

9 Teager energy in time domain Ttd Ttdn = x2
n − (xn−1 ∗ xn+1)

+ window-based moving average

10 Teager energy in frequency
domain Tf Tf =

M−1
∑

n=1
Pn ∗ f 2

n

11 Modified Teager energy Tf_mod Tf_mod =
M−1
∑

n=1
Pn ∗ fn

12 Mean of signal frequencies MNF MNF = ∑M
n=1 Pn∗ fn

∑M
n=1 Pn

13 Median of signal frequencies MDF MDF
∑

n=1
Pn =

M
∑

n=MDF
Pn

14 Firing rate FR FR =
M
∑

n=1
AP

The computational complexity of individual algorithms is estimated theoretically and
practically. For the theoretical computational complexity, which is completed in big O
notation, the algorithms were analyzed down to the basic arithmetic operations. The results
for theoretical computational complexity are given in Table 2. The practical computational
complexity of the algorithms was evaluated as the execution time for different window
sizes. To ensure that the processing was not biased by the specific processor architecture,
the tests were repeated on different platforms:

1. PC with Intel i7-6700K, 64-bit processor at 4 GHz;
2. Teensy 4.0 with Cortex-M7, 32-bit processor at 600 MHz;
3. Teensy 3.6 with Cortex-M4, 32-bit processor at 180 MHz;
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4. BLE-Nano with Cortex-M0 (NRF51822), 32-bit processor at 16 MHz;
5. Arduino-Nano with ATmega328, 8-bit processor at 16 MHz.

Table 2. Parameters and the ranges in which they were varied for different algorithms.

Algorithm Computational Complexity (O) Window Size Range Threshold Range

1. MAV O(n) (50–1050) ms NA

2. Var O(n) (50–1050) ms NA

3. SSC O(n) (50–550) ms 0–4 ×MAV (rest)

4. ZC O(n) (50–550) ms 0–4 ×MAV (rest)

5. WA O(n) (50–550) ms 0–4 ×MAV (rest)

6. WL O(n) (50–1050) ms NA

7. Env O(n) (50–1050) ms NA

8. Etot O(n × log(n)) (50–1050) ms NA

9. Ttd O(n) (50–1050) ms NA

10. Tf O(n × log(n)) (50–1050) ms NA

11. Tf_mod O(n × log(n)) (50–1050) ms NA

12. MNF O(n × log(n)) (50–1050) ms NA

13. MDF O(n × log(n)) (50–1050) ms NA

14. FR O(n) (50–1050) ms 85th–99th quantile

The implementation on the PC platform was performed with Matlab 2018b (The
MathWorks, Natick, MA, USA) scripts where the timing was an average of all sliding
window computations within the whole signal. It should be noted that the execution time
of algorithms on the PC platform was not deterministic nor constant, as the operating
system (Windows 10, Microsoft Corporation, Redmond, WA, USA) was not in real time.
To minimize the variability of the execution time required for single window processing,
the results were based on the averaged values for all signals and all subjects. Thus, the
execution times on the PC platform are given only for inter-algorithm comparison. The
implementations on other real-time platforms were written and compiled in the Arduino
IDE environment using a single-precision floating-point format (float32) which guarantees
the same conditions for all three processors. All functions, except for fast Fourier trans-
formation (FFT), were written using basic mathematical operations. The Arduino library
(github.com/kosme/arduinoFFT (accessed on 18 February 2022)) was modified for single
precision and used as an FFT function in Arduino IDE. The exact duration of individual
algorithm executions was measured by pulling a single digital output port during the
computations. Furthermore, for the processors based on the Cortex-M4 or M7 architecture,
some of the algorithms were implemented using CMSIS-DSP functions that are highly
optimized for these types of operations.

The parameter included in all the algorithms that was varied was window size. An
additional parameter present in some of the algorithms was the threshold (SSC, ZC, WA,
and FR) which was also varied together with the window size. The list of varied parameters
is shown in Table 2.

The range of window sizes tested within this study was 50–1050 ms, which is wider
than that of the state of the art [32,44–46]. There are several reasons for extending the
range of tested window width. First, we wanted to provide computational/practical
evidence of an optimal range of window sizes that should be used in conjunction with
iEMG signals. Secondly, a wider window impacts computational time, which in turn results
in increased controller delay, which has been identified as one of the obstacles in providing
intuitive prosthetic control [9,47]. As microprocessor technology is continuously advancing,
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there is a need to update general knowledge regarding computational time for different
EMG feature extraction algorithms, window widths, and processor architectures. Thus,
providing both quantitative and qualitative information about algorithm performances,
even for wide window sizes, should be beneficial for future studies. The increment of the
sliding window width for all algorithms was set to 100 ms to provide 10 equally spaced
evaluation points. The thresholds for SSC, ZC, and WA were defined as signal “dead zones”
and, as in [33], were based on the system noise. In this study, we estimated the noise by
calculating the MAV of the EMG during the rest period. The MAV (rest) was computed
from the first 100 ms of each segmented movement (isometric contraction) which did not
contain voluntary iEMG, as the command for initiating muscle contraction was delayed in
order to enable the subject to focus on the subsequent hand movement. For the purpose of
estimating the optimal dead zone range, thresholds between 0 and Q ×MAV were used,
where Q was the multiplier of the MAV (rest) value. The parameter Q was varied in the
range (0–4) with 0.2 increments during the exploration of the parameters. The threshold
for the FR algorithm was calculated as a quantile of the iEMG signal during the first full
period of the sine tracking task and it varied between the 85th and 99th quantile with
1 quantile increments.

2.5. Evaluation

The outputs of the algorithms were evaluated with respect to the elicited force which
served as the ground truth. As previously stated, both estimated and measured forces
were normalized using only the first two full periods of the sine tracking task. The metrics
selected for the evaluation of the algorithms included root mean square error (RMSE) and
cross-correlation (Pearson), as in [28]. As the data used to compare different algorithms
and window sizes did not follow the normal distribution determined by the Lilliefors test,
we used the Friedman test with Bonferroni post hoc correction to assess the statistically
significant differences of the medians.

3. Results

A sample of the measured and estimated forces is shown in Figure 3.
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In addition to the theoretically calculated computational complexity of each algorithm,
the first performance parameter of the tested algorithms was the execution time across
different platforms. These results are presented in Table 3. As mentioned before, execution
times on the PC platform were influenced by the implementation in Matlab, while the
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execution times on other platforms could be directly compared as they used the same
source codes.

Table 3. Computational times for different algorithms across different platforms. Each column except
for the last is normalized with respect to the quickest algorithm. The values presented in parenthesis
are the result of using CMSIS-DSP functions which were possible only for some platforms. In the
case of similar or longer processing times of the CMSIS-DSP compared with native functions, the
parenthesized values are omitted. The bottom row contains information about the absolute processing
time in the case of a 128-sample-wide window. The last column presents the mean of the individually
normalized processing times of each algorithm. Values indicated by bold text are the ones with the
best performance.

Algorithm PC Cortex-M7 Cortex-M4 Cortex-M0 ATmega328 Mean

1. MAV 1.4 1 1 7.8 1.4 2.5

2. Var 1.5 1.5 (1) 1.5 (1) 1 1 1.2

3. SSC 3.3 1 1.3 11.3 3.2 4.0

4. ZC 2.9 1.5 1.7 7.9 2 3.2

5. WA 4.7 4 (1.5) 3.3 (1.5) 6.4 1.6 4.2

6. WL 1 3 (1.5) 2.7 (1.5) 10.8 2.7 4.8

7. Env 1.1 1.5 (0.5) 1 (0.8) 1.2 1 1.1

8. Etot 5.3 20 (7.5) 170.5 (15.3) 160.5 31 65.6

9. Ttd 1.1 1 1.5 23.4 4.3 6.3

10. Tf 5.4 20.5 (9.5) 170.0 (18.2) 162 31.5 66.3

11. Tf_mod 5.4 20 (9.5) 170.0 (18) 161.2 31.6 66.1

12. MNF 5.6 20.5 (9.5) 170.0 (17.7) 167.1 32.1 68.3

13. MDF 16.4 20.5 (9.5) 170.2 (17.2) 182.7 35.1 78.1

14. FR 41.2 3.5 3.0 6.2 1.4 11.1

1 = 6.9 µs 1 = 2 µs 1 = 6 µs 1 = 0.56 ms 1 = 1.52 ms

As the aim of this paper is to evaluate the possibility of direct force tracking using
only iEMG signals, the most appropriate performance evaluation metric was the root mean
square error (RMSE) between the measured and the estimated force signals. This was also
the most rigorous metric, as it showed sample-to-sample difference without any time-lag
compensation between the measured and estimated joint forces. The RMSE results for each
finger movement and each subject (6 iEMG channels × 16 datasets) were aggregated to
enable stronger statistical analysis (see Figure 4).

As the cumulative RMSE data did not follow a normal distribution, the Friedman test
with Bonferroni correction for multiple comparisons was used to assess the differences
between the algorithms. The results of the statistical analysis are summarized in Table 4.
Most notably, there was a highly statistically significant difference (p < 10−6) between
the mean ranks of MNF, MDF and FR and the rest of the algorithms. In addition, other
statistical differences could also be found between some of the other algorithms, as shown
in Table 4. This table was derived from the best performances of each algorithm and for
each signal, regardless of the algorithm parameters (such as window size).
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Table 4. Statistical significance between algorithms for both RMSE and cross-correlation. Green
indicates statistically significant difference (p < 0.05; Bonferroni-corrected) for the RMSE metric and
orange indicates significant difference (p < 0.05; Bonferroni-corrected) for the cross-correlation metric.
The cases of significant differences for both metrics are marked with * on the cross-correlation part of
the table. Grey indicates diagonal fields.

MAV Var SSC ZC WA WL Env Etot Ttd Tf Tf_
mod MNF MDF FR

MAV * * * *

Var * * *

SSC * * *

ZC * * *

WA * * *

WL * * * *

Env * * *

Etot * * *

Ttd * * *

Tf * * *

Tf_mod * * *

MNF *

MDF *

FR

The cross-correlations between the measured and estimated forces are provided in
Figure 5. This metric is complementary to RMSE as it quantifies the similarity of the signal
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shapes. Cross-correlation and RMSE provided different insights into matching between
measured and estimated forces, and the statistical analysis showed different statistical
differences between the algorithms.
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In addition to comparing different algorithms, this paper shows the impact of parame-
ters associated with individual algorithms on the RMSE and cross-correlation metrics. For
all the algorithms, the computational sliding window size was used as a variable parameter.
The range for this parameter was broader than in other relevant publications [48]—between
50 ms and 1050 ms—so as to obtain optimal values and assess the algorithms’ performances
in extreme setups. Furthermore, some of the algorithms were based on two adjustable
parameters: window size and a threshold. Thus, during the algorithm evaluation, both
of the parameters were independently varied within the broad range of values. Figure 6
depicts the impact of the variable window size on the MAV algorithm metrics, but a similar
behavior could be seen in all of the one-parameter algorithms (see Appendix A section).
The MAV algorithm was chosen as an example, as it is commonly used in myoelectric
applications [30].

In the case of two-parameter algorithms (SSC, ZC and FR), the second parameter is
the threshold. SSC and ZC use a threshold to exclude events within a dead zone, while
FR relies on the signal amplitude percentile-based threshold to detect motor units firing
above it (above the noise level). Figures 7 and 8 show the RMSE and cross-correlations
for the SSC and FR algorithms when two parameters were varied. A figure depicting the
performance of ZC during the two-parameter sweep is similar to SSC, and is available in
the Appendix A section. The results presented in Figure 7 show that, in the case of FR,
both parameters influence the performance of the algorithm, while SSC (and ZC) is more
sensitive to threshold changes (as in Figure 8).
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4. Discussion

The central part of the paper is the database of iEMG signals that we have recently
published [24] that are suitable for developing and testing novel algorithms for prosthetic
control. Thus, to make upcoming methods developed using our database comparable, there
is a need to establish a golden standard based on simple, well-established computational
methods. For this purpose, the set of common algorithms/methods that are usually
utilized only for EMG feature extraction was selected. However, instead of only being
used the first stage of a prosthesis control scheme, in the scope of this study, they were
elevated to present the sole link between muscle activation and prosthetic hand actuators.
It has to be noted here that the paper does not present any computational novelties per
se, but its contribution is the combination of unique datasets and well-known, common
feature extraction algorithms. The results presented in the paper can be divided into three
categories: (1) the comparison between different algorithms in terms of RMSE and cross-
correlation metrics; (2) the exploration of the influence of the algorithms’ parameters on
the RMSE and cross-correlation metrics; and (3) the estimation of the computational times
of algorithms for various embedded and PC platforms.

An analysis of the RMSE metric of different algorithms showed statistically significant
differences between FR and all other algorithms. This clear advantage of FR is some-
what unexpected, as some of the other algorithms are commonly used, and preferred, for
prosthetic control, especially in commercially available systems [4]. We hypothesize that
the main reason for such performances with the FR algorithm was the high quality of
iEMG recordings that selectively picked up the activity of agonist muscles during isometric
force generation. In addition, with the small electrode area, only a few motor units were
predominately present in the iEMG signals; thus, it was possible to estimate the firing rate
of motor units with high precision, compared with the case of surface EMG signals which
incorporated the firings of tens or hundreds of motor units. On the other end of the algo-
rithm spectrum, frequency-based algorithms relying on dominant frequency within a time
window (MNF and MDF) consistently underperformed compared to the other algorithms.
With the iEMG signals that were used, these algorithms predominately acted as methods
to detect muscle activity, with a sharp rise upon the initiation of muscle contraction and a
mostly flat response during contraction. Again, we hypothesize that this behavior was due
to the selective nature of the recorded iEMG samples containing sparse motor unit action
potentials, compared with the superficial EMG samples which comprised superimposed
action potentials. This, in the case of highly selective iEMG, indicates that mean and median
signal frequency were more related to the shape of individual action potentials. On the
other hand, in the case of superficial EMG, frequency measures of the signal were more
related to the sheer number of the superimposed action potentials which corresponded to
the muscle force. The analysis of the cross-correlation metric was less deterministic in terms
of clear overperforming and underperforming algorithms. As in the case of the RMSE
metric, FR generally estimated force shape better than the other algorithms, while MNF and
MDF tended to distort the iEMG-based force estimation more than the other algorithms.

In addition, the optimal window size for different algorithms was also investigated
in the current study. A wide range of window sizes (50–1050 ms) was used to assess the
performance of the algorithms. The results indicating the best tradeoff between RMSE,
correlation, and the controller delay (due to the window size) for the MAV algorithm are
presented in Figure 6. There was no statistically significant difference in RMSE metrics
between 250 ms and the larger windows; thus, 250 ms should be favored in the use case
requiring minimal RMSE and controller latency. In the case of cross-correlation, with the
increase in the window size up to 450 ms, there was a statistically significant increase in
correlation metrics. As beyond this point there was no significant difference between the
calculated cross-correlations between estimated and measured force, 450 ms should be
used to obtain the best signal shape approximation if the MAV algorithm is to be used.
Examples for other algorithms are provided in the Appendix A section.
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The results of applying simple computational algorithms with this database could also
be compared to other studies. For example, Kamavuako et al. [28], in their study, used a sine
tracking protocol with isometric forces corresponding to two wrist DoFs, which is relatively
similar to the protocol used in this paper. The force level was >10% of the MVC level, which
was also the case in the study presented here. The results for the ten subjects reported by
Kamavuako et al. showed a mean RMSE of ~14% (range between 10% and 19%). These
values are in line with the best-performing algorithm (FR) from our study which had a
median RMSE of 17.8% (Q1-13%; Q3-26%). For the other algorithms, there is partial overlap
with the results of Kamavuako et al.’s study (e.g., for MAV, median RMSE was 22.5% with
Q1-17%; Q3-29.6%). In terms of cross-correlation metrics, Kamavuako et al. achieved a
mean Pearson correlation coefficient of ~0.93 (range between 0.88 and 0.96). The results
of the presented study show a lover cross-correlation between the isometric forces and
the tested simple algorithms. The best-performing algorithm (FR) only partially falls into
the range reported by Kamavuako et al., with a median cross-correlation of 0.85 (Q1-0.75;
Q3-0.92), while for the other algorithms, only Q3 values were above 0.88. We hypothesize
that there are three potential causes of the somewhat worse results presented in this study
compared with the study performed by Kamavuako et al. Firstly, the algorithms used in
our study were very basic; the normalization of the outputs was based on only the first two
force sine tracking repetitions, and no additional optimization was performed. Secondly,
the correlations between some of the iEMG channels and the elicited joint forces were
labeled as “questionable” during the qualitative evaluation of signal quality completed by
the neurologist (check [24] for more information). Nevertheless, those pairings were still
included in this study as they represent realistic use cases where fine wires, or intramuscular
electrodes in general, were slightly misaligned with the targeted muscle, or migrated after
initial insertion. Thirdly, in the presented study, only direct control was considered (one
iEMG channel to estimate one joint force), while in the study completed by Kamavuako
et al. eight iEMG channels were used to estimate two wrist DoFs, therefore using more
information regarding muscle activity to estimate the resulting forces.

In terms of computational complexity, the approach of using simple feature extraction
algorithms as the main force regression method significantly reduces the necessary pro-
cessing power, which is an important step in the development of an embedded real-time
prosthetic hand controller. Preferably, the controller should provide an immediate joint
force output response to the user command to enhance the sense of agency of the prosthetic
hand. Due to the latencies of the motorized actuator system, the computational aspect of
the prosthesis control chain should have a delay below 125 ms [47] so that the total latency
of the prosthetic hand reaction stays below 300 ms, which is still considered acceptable [9].
To keep the computational latency as short as possible, one of the solutions is to increase
computational window overlap. Ideally, the sliding window increment of only one sample
would yield the smallest computational delay. However, this principle requires compu-
tation to be performed between consecutive EMG (or iEMG) samples, which in the case
of the iEMG used within this study should be completed within 100 µs. State-of-the-art
prosthetic hand control methods do not use such rigorous conditions, but permit window
overlaps of 50–300 ms [9,49].

In the context of the iEMG used within the scope of this paper, which was sampled
at 10 kHz, the embedded implementations of MAV, Var, WA, WL, Env, and Ttd were able
to perform real-time control for the window sizes found to be optimal. In other words,
with window sizes up to 450 ms (4626 samples), the listed algorithms would execute
computations under 0.1 ms (running on a Cortex-M7), ensuring a window increment of
only a single sample. In the case of other time-domain algorithms (SSC, ZC and FR), the
increment should be more than two samples (>0.2 ms), which still fulfils the commonly
used computational delay requirement [47] by far. Finally, frequency-domain algorithms
require more time to compute, but with FFT library optimization, it is possible to obtain
updated control (sliding window increment) every 1 ms for window sizes up to 450 ms.
The computational time simulations carried out on Cortex-M7 clearly showed the ability
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of the implemented algorithms to run in real time, even with the high sampling rate used
in this study. In the case of commonly used estimation update rates (50–300 ms), most
of the tested algorithms with maximal tested window sizes were calculated within this
computational window. Only the FFT-based algorithms exceeded this range of acceptable
delays for window sizes longer than 256 samples when computed on Cortex-M0. In the case
of ATmega328, the main restriction was relatively limited RAM, which permitted tests on
window sizes of 128 samples or less. With advancements in microprocessor/microcontroller
technology, it is safe to assume that the computational load of calculating the algorithms
evaluated within this study would not present an issue, even with extreme conditions such
as low latency coupled with low power consumption.

A strong point regarding the methodology presented in this paper is the calibration
phase, which tunes the output of individual algorithms to match the level of the desired
joint force. This phase comprises only two repetitions of slowly increasing/decreasing
self-perceived muscle contractions in the case of amputees, or isometric muscle force in
the case of the signals used within this paper. Thus, the transfer function between iEMG
and the force of an actuated prosthetic hand joint is governed by self-selected maximal
muscle activity level. Although this method is intended for the recording/testing protocols
associated with this iEMG database (ten repetitions, two for tuning and eight for perfor-
mance evaluation), there are also implications for real-world prosthetic control strategies.
Specifically, based on our findings, by executing one or two slow muscle contractions per
controllable degree of freedom while recording iEMG, it should be possible to establish
direct muscle control. Therefore, the initial calibration process could be relatively quick
when compared with the machine learning methods that usually require a large number of
repetitions to build an accurate movement model.

A limitation of the results presented here is related to the dataset of iEMG signals
that was recorded and made publicly available [24]. Some of the findings presented in
this paper might be challenged with methods based on other iEMG signal databases or
real-time control approaches. Nevertheless, our intention is to provide baseline measures
for the proportional/direct control of a dexterous prosthetic hand using well-known and
extensively used computational methods. In this way, future studies using our iEMG
database as the base for developing and testing novel algorithms could use presented
results instead of independently implementing and optimizing “baseline” algorithms.
Another limitation of this study is that all evaluations were completed offline. Therefore, as
with any offline simulation study, the results should be taken with caution, as in real-time
application there is always an interaction between controller output and user control in a
closed-loop manner. Furthermore, physiological factors (such as fatigue or cognitive load)
and environmental obstruction can have a significant impact on the accuracy of any online
evaluated control method.

The methods presented in this study were devised in line with recent trends in pros-
thetic technology, namely, osseointegration [18], targeted muscle reinnervation (TMR) [46],
and intramuscular EMG recording [15]. Although the combination of these techniques is
currently not a clinical standard for prosthetic users, strong results of small sample studies
have shown the great potential of these methods to increase the usability of hand prostheses.
We assume that a combination of these techniques will become the state of the art in both
research studies and clinical applications; therefore, providing an appropriate iEMG signal
database alongside the evaluation of simple algorithms’ performances could be useful
in future studies. Furthermore, within this study, only a subset of the available muscles
were targeted by the fine-wire electrodes inserted through the skin to obtain representative
signals. The combination of osseointegration and TMR could enable the placement of
more intramuscular electrodes with greater precision during a surgical intervention, there-
fore establishing a genuine foundation for the direct/proportional control of prostheses’
individual degrees of freedom.
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Figure A1. RMSE (left) and cross-correlation (right) of var algorithm for different window sizes.
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Figure A2. RMSE (left) and cross-correlation (right) of WL algorithm for different window sizes.
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Table A1. Statistical significance between window sizes for var algorithm. Green indicates statistically
significant difference (p < 0.05; Bonferroni-corrected) for the RMSE metric, and orange indicates
significant difference (p < 0.05; Bonferroni-corrected) for the cross-correlation metric. Grey indicates
diagonal fields.
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Table A2. Statistical significance between window sizes for WL algorithm. Green indicates statistically
significant difference (p < 0.05; Bonferroni-corrected) for the RMSE metric, and orange indicates
significant difference (p < 0.05; Bonferroni-corrected) for the cross-correlation metric. Grey indicates
diagonal fields.
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Table A3. Statistical significance between window sizes for ENV algorithm. Green indicates statisti-
cally significant difference (p < 0.05; Bonferroni-corrected) for the RMSE metric, and orange indicates
significant difference (p < 0.05; Bonferroni-corrected) for the cross-correlation metric. Grey indicates
diagonal fields.
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Figure A3. RMSE (left) and cross-correlation (right) of ENV algorithm for different window sizes.
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Figure A4. RMSE (left) and cross-correlation (right) of Etot algorithm for different window sizes.

Table A4. Statistical significance between window sizes for Etot algorithm. Green indicates statisti-
cally significant difference (p < 0.05; Bonferroni-corrected) for the RMSE metric, and orange indicates
significant difference (p < 0.05; Bonferroni-corrected) for the cross-correlation metric. Grey indicates
diagonal fields.
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Figure A5. RMSE (left) and cross-correlation (right) of Ttd algorithm for different window sizes.

Table A5. Statistical significance between window sizes for Ttd algorithm. Green indicates statistically
significant difference (p < 0.05; Bonferroni-corrected) for the RMSE metric, and orange indicates
significant difference (p < 0.05; Bonferroni-corrected) for the cross-correlation metric. Grey indicates
diagonal fields.
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Figure A6. RMSE (left) and cross-correlation (right) of Tf algorithm for different window sizes.

Table A6. Statistical significance between window sizes for Tf algorithm. Green indicates statistically
significant difference (p < 0.05; Bonferroni-corrected) for the RMSE metric, and orange indicates
significant difference (p < 0.05; Bonferroni-corrected) for the cross-correlation metric. Grey indicates
diagonal fields.
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Table A7. Statistical significance between window sizes for Tf_mod algorithm. Green indicates
statistically significant difference (p < 0.05; Bonferroni-corrected) for the RMSE metric, and orange
indicates significant difference (p < 0.05; Bonferroni-corrected) for the cross-correlation metric. Grey
indicates diagonal fields.
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Figure A7. RMSE (left) and cross-correlation (right) of Tf_mod algorithm for different window sizes.
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Figure A8. RMSE (left) and cross-correlation (right) of MNF algorithm for different window sizes.

Table A8. Statistical significance between window sizes for MNF algorithm. Green indicates statisti-
cally significant difference (p < 0.05; Bonferroni-corrected) for the RMSE metric, and orange indicates
significant difference (p < 0.05; Bonferroni-corrected) for the cross-correlation metric. Grey indicates
diagonal fields.
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Figure A9. RMSE (left) and cross-correlation (right) of MDF algorithm for different window sizes. 
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Figure A10. RMSE (left) and cross-correlation (right) for ZC with different thresholds (Q multipliers 
of MAV at rest) and window widths (actual value of Q is shown/10). 
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Figure A9. RMSE (left) and cross-correlation (right) of MDF algorithm for different window sizes.

Table A9. Statistical significance between window sizes for MDF algorithm. Green indicates statisti-
cally significant difference (p < 0.05; Bonferroni-corrected) for the RMSE metric, and orange indicates
significant difference (p < 0.05; Bonferroni-corrected) for the cross-correlation metric. Grey indicates
diagonal fields.
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Figure A10. RMSE (left) and cross-correlation (right) for ZC with different thresholds (Q multipliers
of MAV at rest) and window widths (actual value of Q is shown/10).
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11. Malešević, N.; Marković, D.; Kanitz, G.; Controzzi, M.; Cipriani, C.; Antfolk, C. Vector Autoregressive Hierarchical Hidden
Markov Models for Extracting Finger Movements Using Multichannel Surface EMG Signals. Complexity 2018, 2018, 9728264.
[CrossRef]

12. Shuman, G.; Durić, Z.; Barbará, D.; Lin, J.; Gerber, L.H. Improving the Recognition of Grips and Movements of the Hand Using
Myoelectric Signals. BMC Med. Inform. Decis. Mak. 2016, 16, 65–83. [CrossRef] [PubMed]

13. Geng, W.; Du, Y.; Jin, W.; Wei, W.; Hu, Y.; Li, J. Gesture Recognition by Instantaneous Surface EMG Images. Sci. Rep. 2016, 6, 36571.
[CrossRef] [PubMed]

14. Atzori, M.; Cognolato, M.; Müller, H. Deep Learning with Convolutional Neural Networks Applied to Electromyog-raphy Data:
A Resource for the Classification of Movements for Prosthetic Hands. Front. Neurorobot. 2016, 10, 9. [CrossRef] [PubMed]

15. Smith, L.H.; Levi, J. Hargrove Comparison of Surface and Intramuscular EMG Pattern Recognition for Simultaneous Wrist/Hand
Motion Classification. In Proceedings of the 2013 35th Annual International Conference of the IEEE Engineering in Medicine and
Biology Society (EMBC), Osaka, Japan, 3–7 July 2013; pp. 4223–4226. [CrossRef]

16. Cipriani, C.; Segil, J.L.; Birdwell, J.A.; Weir, R.F. Dexterous Control of a Prosthetic Hand Using Fine-Wire Intramuscular Electrodes
in Targeted Extrinsic Muscles. IEEE Trans. Neural Syst. Rehabil. Eng. 2014, 22, 828–836. [CrossRef] [PubMed]

17. Farina, D.; Yoshida, K.; Stieglitz, T.; Koch, K.P. Multichannel Thin-Film Electrode for Intramuscular Electromyographic Recordings.
J. Appl. Physiol. 2008, 104, 821–827. [CrossRef]

18. Ortiz-Catalan, M.; Håkansson, B.; Brånemark, R. An Osseointegrated Human-Machine Gateway for Long-Term Sensory Feedback
and Motor Control of Artificial Limbs. Sci. Transl. Med. 2014, 6, 257re6. [CrossRef]

19. Ortiz-Catalan, M.; Brånemark, R.; Håkansson, B.; Delbeke, J. On the Viability of Implantable Electrodes for the Natural Control of
Artificial Limbs: Review and Discussion. BioMed. Eng. Online 2012, 11, 33. [CrossRef]

20. Merletti, R.; Farina, A. Analysis of Intramuscular Electromyogram Signals. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2009, 367,
357–368. [CrossRef]

21. Kamavuako, E.N.; Farina, D.; Yoshida, K.; Jensen, W. Relationship between Grasping Force and Features of Single-Channel
Intramuscular EMG Signals. J. Neurosci. Methods 2009, 185, 143–150. [CrossRef]

22. Biddiss, E.; Chau, T. Upper-Limb Prosthetics: Critical Factors in Device Abandonment. Am. J. Phys. Med. Rehabil. 2007, 86,
977–987. [CrossRef]

23. Salminger, S.; Stino, H.; Pichler, L.H.; Gstoettner, C.; Sturma, A.; Mayer, J.A.; Szivak, M.; Aszmann, O.C. Current Rates of
Prosthetic Usage in Upper-Limb Amputees–Have Innovations Had an Impact on Device Acceptance? Disabil. Rehabil. 2020,
in press. [CrossRef]

24. Malesevic, N.; Björkman, A.; Andersson, G.S.; Matran-Fernandez, A.; Citi, L.; Cipriani, C.; Antfolk, C. A Database of Multi-
Channel Intramuscular Electromyogram Signals during Isometric Hand Muscles Contractions. Sci. Data 2020, 7, 10. [CrossRef]

25. Rudroff, T. Kinesiological Fine Wire EMG. A Practical Introduction to Fine Wire EMG Applications; Noraxon: Scottsdale, AZ, USA,
2008; ISBN 0977162230.
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