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Abstract: This study determined if using alternative sleep onset (SO) definitions impacted accelerometer-
derived sleep estimates compared with polysomnography (PSG). Nineteen participants (48%F)
completed a 48 h visit in a home simulation laboratory. Sleep characteristics were calculated from the
second night by PSG and a wrist-worn ActiGraph GT3X+ (AG). Criterion sleep measures included
PSG-derived Total Sleep Time (TST), Sleep Onset Latency (SOL), Wake After Sleep Onset (WASO),
Sleep Efficiency (SE), and Efficiency Once Asleep (SE_ASLEEP). Analogous variables were derived
from temporally aligned AG data using the Cole–Kripke algorithm. For PSG, SO was defined as
the first score of ‘sleep’. For AG, SO was defined three ways: 1-, 5-, and 10-consecutive minutes
of ‘sleep’. Agreement statistics and linear mixed effects regression models were used to analyze
‘Device’ and ‘Sleep Onset Rule’ main effects and interactions. Sleep–wake agreement and sensitivity
for all AG methods were high (89.0–89.5% and 97.2%, respectively); specificity was low (23.6–25.1%).
There were no significant interactions or main effects of ‘Sleep Onset Rule’ for any variable. The
AG underestimated SOL (19.7 min) and WASO (6.5 min), and overestimated TST (26.2 min), SE
(6.5%), and SE_ASLEEP (1.9%). Future research should focus on developing sleep–wake detection
algorithms and incorporating biometric signals (e.g., heart rate).

Keywords: accelerometer; polysomnography; algorithm; sleep; Cole–Kripke

1. Introduction

Sleep regulates all major physiological systems and can have a clinically meaningful
impact on metabolic and cognitive health [1–8]. The accurate and reliable measurement
of sleep metrics is, therefore, essential due to the mediating effect of sleep on numerous
health outcomes [1–8]. Polysomnography (PSG) is the gold standard tool for understanding
physiological processes related to sleep. However, PSG is often cost-prohibitive, collected in
clinical settings unfamiliar to participants, and requires trained technicians to operate and
process data. The cumbersome instrumentation used with PSG can shorten sleep duration
and decrease sleep quality, particularly during the first night experiencing PSG [9]. Wrist-
worn accelerometers provide an inexpensive alternative for the multi-night assessment
of several sleep characteristics. Accelerometers can be deployed in ecological settings
and provide a less obtrusive method of sleep measurement with the dual capability of
measuring other human behaviors, such as physical activity and sedentary behaviors.

Consumer wearable accelerometers continue to grow in popularity, partially due to
increased accessibility, social trends, and technological advancement [10]. Since consumers
can rely heavily on wearable devices to provide behavioral information, including sleep
characteristics, focusing on metric accuracy will allow for improved public health recom-
mendations. As consumer-grade devices do not provide access to raw data, evaluating
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candidate algorithms from research-grade device data is a necessary step in understanding
metric performance before applying the algorithms in a wider context.

Previous studies in healthy adults have detailed the tendency for accelerometers to
overestimate sleep and underestimate waking, compared with polysomnography [11–14].
These systematic errors often occur when accelerometers poorly distinguish between sleep
and sedentary supine waking periods (e.g., lying recumbent while reading or watching tele-
vision) [12,15–17]. The Sleep Onset Latency (SOL) period is a primary example of a seden-
tary supine waking period susceptible to high misclassification error. Varying methods
exist for defining SOL, and the method is often dictated by either the algorithm [12,18,19]
or user-defined epoch scoring settings [20–22]. For instance, the widely used Cole–Kripke
algorithm [23] requires 60 s epochs for sleep–wake scoring, while the Oakley algorithm
can be applied with 15, 30, 60, or 120 s epochs at low, medium, and high sensitivity count
thresholds [20–22]. Alongside algorithm selection, researchers can define how sleep onset
is scored. For instance, sleep onset may be defined as the first ‘sleep’ epoch, while other
operational definitions of sleep onset require multiple consecutive epochs of ‘sleep’ [19,24].
Accordingly, recent efforts have been made to improve the accuracy of accelerometer classi-
fication during the SOL period in patients with Obstructive Sleep Apnea and/or Periodic
Limb Movement Disorder [15], as well as children and adolescents [25].

Still, few studies have addressed accelerometer errors due to the misclassification of
epochs as ‘Sleep’ or ‘Wake’ during periods of the wake-to-sleep transition, particularly
during SOL, despite the widespread use of accelerometers in sleep analyses. While optimal
sleep onset scoring lengths have been proposed for adults with Obstructive Sleep Apnea
and Periodic Limb Movement in Sleep (5 min) [15], as well as children (3 min) and ado-
lescents (20 min) [25], there is no established sleep onset ruling for healthy adults. Sleep
onset periods of 1, 5, and 10 min are commonly available settings. The optimization of
sleep–wake detection algorithms, particularly during periods of high misclassification,
would enhance the utility of accelerometers to provide a more accurate assessment of
avital health behavior. Therefore, the purpose of this study was to determine if applying
alternative sleep onset (SO) definitions (1, 5, 10 min of immobility), that have been most
commonly used in other populations, would improve the accuracy of the commonly used
Cole–Kripke algorithm in the classification of accelerometer-derived sleep measurements
in healthy adults, compared with PSG.

2. Materials and Methods
2.1. Participants

Twenty healthy participants (50%F; Age = 24.6 ± 2.7 years; BMI (mean ± SD = 24.3
± 3.6 kg/m2 [Range = 19.4–31.7 kg/m2])) completed a 48 h visit within a laboratory that
simulated an apartment-style home. This was a secondary data analysis from a study
designed to validate home-based health monitoring technologies. Participants had no
known sleep disorders. Due to the “first-night-effect” (decreased sleep duration and quality
during initial PSG night) [9], only the second night was used in the present analysis. PSG
data were recorded for twenty participants, but one participant was excluded due to
PSG equipment malfunction; therefore, data from 19 participants were included for these
analyses. Informed consent was obtained from all participants prior to study participation.
The study protocol was approved by the University of Massachusetts Amherst IRB.

2.2. Study Details
2.2.1. Polysomnography

Participants notified the technicians when they were ready to attempt night-time sleep.
A standard PSG montage was used, following International 10-20 System guidelines. An
Embletta MPR ST+ Proxy (Embla Systems, Natus Neurology, Middleton, WI, USA) was
used to sample data at 500 Hz. The MPR was equipped with 16-channel electroencephalog-
raphy leads (EEG; F3, F4, C3, C4, O1, O2, M1, M2, GRD/REF), electromyography (EMG;
3 sub-mental leads), and electrocardiography (ECG; R/L Arm). Participants also wore
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thoracic and abdominal respiratory belts, a nasal cannula, and thermistor, all of which were
synced to the MPR unit. All impedances were under 10 kΩ upon completion of PSG setup.
PSG and accelerometer data were temporally aligned for epoch-by-epoch comparison and
merged by participant and timestamp. All devices were initialized on the same computers
to ensure clock synchronization.

2.2.2. Accelerometers

Participants wore an ActiGraph GT3X+ (ActiGraph, Pensacola, FL, USA) tri-axial
accelerometer (AG) on their non-dominant wrist. The accelerations were sampled at
80 Hz by a 12-bit analog to digital converter with a dynamic range of +/− 6G. Upon
study completion, data were downloaded and extracted from the AG non-volatile memory.
The accelerations from 80 Hz data were collapsed in 1 s epochs using ActiLife software
(v. 6.13.4). The 1 s count data were then collapsed into 60 s epochs using a custom R Script
(R Studio Software v. 1.2.5042, RStudio, Boston, MA, USA) as per the requirements for the
Cole–Kripke sleep scoring algorithm (‘actigraph.sleepr’). The Cole–Kripke algorithm uses
a sliding weighted average window to score 60 s epochs as ‘Sleep’ or ‘Wake’ based upon
x-axis (anteroposterior body position; parallel to forearm) count data [26]. The data and
custom R script are available upon request.

2.3. Data Processing

Night-time sleep was recorded on both nights by an American Academy of Sleep
Medicine (AASM)-certified technician. Sleep stages were scored in 30 s epochs by an
AASM-certified technician according to AASM standard procedures [27]. Sleep technicians
noted ‘Lights Out’ and ‘Awake’ time. Awake was identified as the last PSG epoch scored as
‘Sleep’. Time in Bed (TIB) was identified as the time between ‘Lights Out’ and ‘Awake’.

From the included participants (n = 19), portions of PSG data were unable to be scored
from n = 6 participants (range = 17 to 246 min missing); these missing epochs were excluded
from further processing and analyses, in both the PSG and ActiGraph data. The majority
of disrupted PSG data instances (n = 4) occurred at the end of the night, which simply
truncated the data from those participants. When PSG data were interrupted in the middle
of the night, the corresponding accelerometer and unscored PSG data were removed. Data
from the beginning and end of the night were then temporally synchronized between
devices. The first 30 s epoch of every minute of PSG data was taken as the representative
value for that minute and time aligned with the corresponding AG minute, to satisfy the
Cole–Kripke algorithm requirement (60 s epoch) and eliminate any intra-minute conflicts
in the PSG data.

Sleep Onset (SO) was defined by three commonly applied rules based on 1, 5, and
10 consecutive minutes of ‘Sleep’ with no ‘Wake’ score (SO1-min [28,29], SO5-min [15],
SO10-min [18,30,31], respectively; Figure 1). The following sleep measures were extrapolated
from the PSG data using the three SO rules: Total Sleep Time (TST; total minutes scored
as ‘Sleep’ within TIB range), Sleep Onset Latency (SOL; total minutes scored as ‘Wake’
between ‘Lights Out’ and ‘Sleep Onset’), Sleep Efficiency (SE (%) = (TST/TIB) × 100), Effi-
ciency Once Asleep (SE_ASLEEP (%) = TST/(TIB-SOL) × 100), and Wake After Sleep Onset
(WASO; total minutes scored as ‘Wake’ between ‘Sleep Onset’ and ‘Awake’). Analogous
sleep measures were calculated from AG data.

2.4. Statistical Analysis

Agreement between devices, at the 60 s epoch level, was calculated as the percentage
of correctly identified ‘Sleep’ and ‘Wake’ epochs by AG, using the PSG scored data as the
criteria. Sensitivity was calculated as the percentage of correctly identified ‘Sleep’ epochs.
Specificity was calculated as the percentage of correctly identified ‘Wake’ epochs. Cohen’s d
effect sizes were used to assess differences in sleep measures, according to the device (PSG
vs. AG) and SO rule (SO1-min, SO5-min, and SO10-min). To allow comparability with previous
studies, standard Cohen’s d effect size ranges were used to determine the magnitude of
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effect (negligible = < 0.2; small = 0.2–0.49; moderate = 0.5–0.79; large ≥ 0.8) [32]. Linear
mixed-effects regression models were used to further corroborate the calculated effect
sizes. Participant was used as the random effect, while ‘Device’ and ‘Sleep Onset Rule’
were fixed effects. Full and reduced models were compared using a likelihood ratio test to
determine if there was an interaction between main effects (‘Device’ × ‘Sleep Onset Rule’).
The interactions were not statistically significant at the alpha = 0.05 level. As a result, we
used reduced models that only included main effects of ‘Device’ and ‘Sleep Onset Rule’ for
all sleep measures.
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Figure 1. Example of implementation of sleep onset rules for a single participant. Note: Representa-
tion of a single night processed using the three sleep onset rules for a mock participant. SO1 min = Sleep
Onset defined as first epoch scored as ‘Sleep’; SO5 min = Sleep Onset defined as first 5 consecutive
epochs scored as ‘Sleep’; SO10 min = Sleep Onset defined as first 10 epochs scored as ‘Sleep.’.

3. Results

The median and interquartile range for each sleep measure is presented in Table 1.

Table 1. Descriptive statistics of sleep measures for device and sleep onset rule.

Device
Median (IQR)

Sleep Onset Rule
Median (IQR)

Sleep Measure PSG AG 1 5 10

TST
(min)

411.0
[321.0–447.0]

431.0
[348.0–465.0]

427.5
[347.3–456.3]

426.0
[347.0–456.3]

426.0
[332.8–453.3]

SOL
(min)

19.0
[10.0–34.0]

1.0
[0.0–8.0]

7.5
[0.3–18.3]

9.5
[1.3–18.3]

11.0
[5.3–23.3]
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Table 1. Cont.

Device
Median (IQR)

Sleep Onset Rule
Median (IQR)

Sleep Measure PSG AG 1 5 10

WASO
(min)

25.0
[13.0–32.0]

16.0
[10.0–29.0]

23.5
[13.5–31.3]

20.5
[13.0–31.3]

20.5
[13.0–31.3]

SE
(%)

89.0
[92.1–96.0]

94.7
[91.5–97.2]

91.7
[89.0–95.5]

91.7
[88.9–95.2]

91.5
[87.6–94.9]

SE_ASLEEP
(%)

93.5
[92.6–96.1]

96.1
[93.2–97.2]

95.5
[93.1–97.0]

96.5
[93.2–97.0]

96.5
[93.4–97.0]

3.1. Epoch-by-Epoch Agreement, Sensitivity, and Specificity

Binary epoch-by-epoch sleep/wake scores were used to calculate the agreement,
sensitivity, and specificity of AG, compared with PSG (Table 2). ‘Sleep Onset Rule’ did not
have a meaningful impact on agreement, sensitivity, or specificity. Sleep/wake agreement
and sensitivity were high (89.0–89.5% and 97.2%, respectively), while specificity was low
(23.6–25.1%).

Table 2. Epoch-by-epoch agreement, sensitivity, and specificity.

Agreement
(%)

Sensitivity
(%)

Specificity
(%)

1 89.0 97.2 25.1
5 89.2 97.2 23.7
10 89.5 97.2 23.6

3.2. Analysis of ‘Sleep Onset Rule’ and ‘Device’

There was no effect of ‘Sleep Onset Rule’ for any sleep measure. According to the effect
size analyses (Table 3), the AG significantly underestimated SOL (d = 1.09 to 1.46) and WASO
(d = 0.31 to 0.42), compared with PSG (1 min). Conversely, AG significantly overestimated
TST (d = −0.28 to −0.31), SE (d = −1.18 to −1.37), and SE_ASLEEP (d = −0.53 to −0.64).

Table 3. Effect of sleep onset rule on sleep measures.

Effect Size
Cohen’s d (95% CI)

Sleep Measure
PSG AG

5 10 1 5 10

TST
(min)

0.03
(−0.64, 0.69)

0.01
(−0.68, 0.69)

−0.31 *
(−1.03, 0.37)

−0.30 *
(−0.94, 0.37)

−0.28 *
(−1.01, 0.4)

SOL
(min)

−0.07
(−0.75, 0.60)

−0.13
(−0.78, 0.55)

1.46 ‡

(1.11, 2.59)
1.28 ‡

(0.92, 2.18)
1.09 ‡

(0.72, 1.84)
WASO
(min)

0.02
(−0.64, 0.69)

0.02
(−0.64, 0.74)

0.31 *
(−0.40, 0.93)

0.38 *
(−0.26, 1.02)

0.42 *
(−0.24, 1.00)

SE
(%)

0.05
(−0.64, 0.69)

0.11
(−0.52, 0.77)

−1.37 ‡

(−2.28, −0.82)
−1.32 ‡

(−2.15, −0.74)
−1.18 ‡

(−1.19, −0.60)

SE_ASLEEP (%) −0.02
(−0.70, 0.64)

−0.03
(−0.65, 0.62)

−0.53 †

(−1.22, 0.14)
−0.61 †

(−1.29, 0.00)
−0.64 †

(−1.37, −0.04)

PSG with 1 min sleep onset rule was used as the criterion measure for all effect size comparisons. * = small effect;
† = moderate effect; ‡ = large effect.

The linear mixed model estimates for ‘Device’ and ‘Sleep Onset Rule,’ along with their
95% confidence intervals, are represented in Figure 2. There were no significant interactions
or main effects of ‘Sleep Onset Rule’ for any sleep measure. Consistent with the effect size
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analyses, there was a main effect of ‘Device’ where AG overestimated TST (26.2 min), SE
(6.5%), and SE_ASLEEP (1.9%), but underestimated SOL (19.7 min) and WASO (6.5 min).
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the 95% confidence interval around the bias for each estimate.

4. Discussion

The purpose of this study was to determine if applying alternative sleep onset (SO)
definitions, which have been beneficial in improving measurement accuracy in other
populations, would improve the accuracy of the commonly used Cole–Kripke algorithm in
the classification of accelerometer-derived sleep measurements in healthy adults, compared
with PSG. The AG underestimation of SOL was the primary source of the overestimation of
TST. However, alternative SO rules (SO1-min, SO5-min, SO10-min) did not impact agreement
statistics and there was no main effect of SO rule for any sleep metric.

4.1. Agreement, Sensitivity, and Specificity

In the present study, agreement and sensitivity were high, whilst specificity was low.
Our results are consistent with most studies demonstrating moderate-to-high agreement
and sensitivity between AG and PSG at the expense of specificity [33]. The high agreement
may be partially due to the population studied. When Sleep Efficiency is high (>80%), as
seen in typical healthy adults [34,35], accelerometers tend to overestimate sleep epochs and
underestimate waking epochs [12,36,37]. The current study is consistent with this previous
research; agreement between devices was high, and AG-derived TST and SE were both
overestimated. These data are congruent with several similar studies on healthy or athletic
populations [12,36,37].
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4.2. Total Sleep Time

The AG overestimated TST, compared to PSG. The tendency for accelerometers
to overestimate TST has been well-documented using a variety of devices and
algorithms [12,19,28–30,36,38,39]. Relatively few studies have reported the underestima-
tion of TST [40,41] or null findings [19,41–43]. Regardless of the SO rule applied in the
current study, the AG overestimated TST by 26.2 min, which is within the range of pre-
viously reported overestimations of TST using the same device and algorithm (8.1 to
81.1 min) [19,28,36].

In the present study, we used the ActiGraph GT3X+ with the Cole–Kripke algorithm.
Despite the widespread use of the GT3X+ device to measure patterns of activity and
inactivity, few studies have used the same device to estimate sleep measures in healthy
adults [19,28,36]. Two of these studies reported relatively large TST overestimations (62.3,
81.1 min) [28,36], compared with the present study (26.2 min). One previous study reported
no significant difference in TST between AG and PSG (14.0 min) [19]. Interestingly, the two
studies demonstrating large overestimations in TST included middle-aged participants
with wide Body Mass Index (BMI) ranges (20–45, 17.7–45.2) [28,36]. The study reporting no
significant differences in TST was performed in a healthy young adult population, with a
cohort of similar age and anthropometrics to the present study [19]. These data suggest
age and health status (e.g., BMI) may impact estimates of sleep metrics, including TST.
Together, the ActiGraph GT3X+ accelerometer and Cole–Kripke algorithm appears to be
better suited for estimating TST in healthy young adults than middle aged and older adults
with high BMI.

4.3. Sleep Onset Latency

The AG underestimated SOL by 19.7 min, compared to PSG, which is
similar to previous studies on healthy adults, regardless of the device or algorithm
used [12,21,28,29,36–38,41–48]. Studies using the ActiGraph GT3X+ and Cole–Kripke algo-
rithm have reported underestimations of SOL ranging from 6.4 to 15.1 min [19,28,36,46]. To
the best of our knowledge, no study to date has demonstrated an overestimation of SOL in
healthy adults.

The underestimation of SOL can be attributed to the poor ‘Wake’ epoch detection
capability of accelerometers, supported by the low specificity observed in the present study.
The underestimation of SOL and low specificity are well-documented issues when using
accelerometers to measure sleep [15,17,33]. Studies on children and sleep-disordered adults
have aimed to address the issue of SOL underestimation by applying various rules to
define sleep onset. For instance, Chae and colleagues used sleep onset definitions of 4, 5, 6,
and 15 min immobility with no more than 1 min interrupted by a ‘wake’ score, with sleep-
disordered participants (Obstructive Sleep Apnea, Periodic Limb Movement Disorder) [15].
The 5 min rule outperformed other sleep onset definitions [15]. We adopted an approach
similar to studies that demonstrated improvements in SOL estimation by applying three
Sleep Onset Rules (1 min, 5 min, and 10 min) [15,25]. We did not observe differences for
any sleep measures among sleep onset rules, suggesting the need for alternative methods
to address SOL underestimation errors due to poor sleep–wake detection.

4.4. Wake after Sleep Onset

Our results are similar to previous studies demonstrating an underestimation of
WASO, with biases ranging from 1.4 to 60.2 min [12,19,21,28,29,31,36,37,43,46,49,50]. Studies
that used the GT3X+ and Cole–Kripke algorithm reported some of the lowest (1.4 min) [19]
and highest (46.8–60.2 min) [28,36] underestimations of WASO. The source of WASO
underestimation is likely the same as SOL underestimation, which is the poor ‘Wake’ epoch
detection of accelerometers. Supporting this claim, the only other study to report specificity
while using the GT3X+ and Cole–Kripke algorithm found a low specificity (35%) [19]. While
the authors did not report SOL, there was a slight underestimation of WASO (1.4 min)
within their sub-sample of healthy young adult men [19].
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4.5. Sleep Efficiency

In the present study, we observed an overestimation of AG-derived SE, compared
with PSG (1.9%), which can be attributed to the inaccurate prediction of sleep during still
waking periods (underestimating SOL and WASO). Our results are consistent with other
studies using the ActiGraph GT3X+ and Cole–Kripke algorithm, with overestimations of
1.3% [19], 12.6% [28], and 18.3% [36], respectively.

As an exploratory aim, we investigated the influence of removing waking epochs,
from the PSG- and AG-derived data, at the beginning of the night, to determine if SE
estimates would improve. The effect size for SE_ASLEEP was attenuated, compared with
SE, and the regression analysis indicated that SE_ASLEEP was not significantly different
from PSG. With the elimination of the wake-to-sleep transition time (SOL; a time that is
known to be a source of misclassification), the underestimation of WASO by the ActiGraph
improved the SE_ASLEEP accuracy. To the best of our knowledge, no other studies to date
have explored the elimination of the wake-to-sleep transition when comparing AG versus
PSG-derived SE. The consistent overestimation of SE with the GT3X+ and Cole–Kripke
algorithm is likely due to the overestimation of TST, since two of the studies using this
device and algorithm also reported the overestimation of TST [28,36]. Supporting this
notion, the study reporting the highest overestimation of TST was the same to report the
highest overestimation of SE [36].

Although the overestimation of ‘sleep’ epochs (e.g., TST and SE) adversely affect the
agreement between AG and PSG, the primary source of error is the underestimation of
‘wake’ epochs (e.g., WASO and SOL). Previous studies reporting the overestimation of
‘sleep’ epochs and the underestimation of ‘wake’ epochs also report disproportionally high
sensitivities (96.7–99.0%) and low specificities (14.3–48%) [12,29,37,44,46]. Importantly,
these previous studies utilized a variety of devices, algorithms, and user-defined settings,
highlighting the universal importance of improving ‘wake’ epoch detection to improve
wearable device accuracy.

5. Summary and Conclusions

The present study contributes at least two novel additions to the study of accelerometer-
derived sleep measures: (1) the exploration of different sleep onset rules to improve sleep–
wake detection, a period of the wake-to-sleep transition with previously identified issues
of low specificity; and (2) the use of healthy young adults. Previous studies that have
explored the use of alternative sleep onset rules have only been conducted on children,
adolescents, and sleep-disordered adults [15,51]. Furthermore, the present study accounted
for the PSG ‘first-night-effect’ [9] by collecting data for two nights, but only analyzing data
from the second night. The utilization of a linear mixed-effects regression represents a
methodological advance, allowing us to appropriately address the non-normality in the
data and provide directly interpretable metrics of change to the sleep-onset rules.

The primary limitation of the present study was the use of a single algorithm and
device with one-wear location. This decision was made to simplify the aims of the present
study. Future studies may consider comparing multiple algorithms across several devices
and wear locations, which would require a larger sample size for adequate statistical power.
Within this narrow scope, our findings indicate that, regardless of sleep onset rule, the
Cole–Kripke algorithm applied to AG data misclassifies ‘wake’ periods while a person is
lying in bed as ‘sleep’.

More sophisticated approaches, including machine learning techniques, are currently
being developed [52,53] as alternative methods that could be used for improving the
wake-to-sleep transitions in healthy and diseased populations. Additionally, incorporating
biometric signals (e.g., heart rate, respirometry) related to physiological changes that occur
as one falls asleep, and are indicative of sleep, may be combined with the same actigraphy-
based device to increase the specificity of sleep measures. The development of validated
accelerometer data processing methods to improve sleep/wake detection will enhance
the portability and accessibility of ambulatory sleep monitoring in clinical populations.
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Improvements in accelerometer sleep/wake scoring, when developed in conjunction with
devices that incorporate biometric signals, will assist in minimizing the financial and
physical burdens of laboratory-based polysomnography tests. Improving sleep/wake
detection, and doing so in free-living environments, will allow researchers and clinicians to
scale-up sleep and health intervention efforts.

Author Contributions: Conceptualization, J.D.C., M.A.B. and J.R.S.; methodology, J.D.C., M.A.B.
and J.R.S.; software, J.D.C. and M.A.B.; validation, J.D.C., M.A.B. and J.R.S.; formal analysis, J.D.C.
and J.W.S.; investigation, J.D.C. and M.A.B.; resources, J.D.C., M.A.B. and J.R.S.; data curation,
J.D.C., M.A.B. and J.R.S.; writing—original draft preparation, J.D.C., M.A.B., J.W.S. and J.R.S.;
writing—review and editing, J.D.C., M.A.B., J.W.S. and J.R.S.; visualization, J.D.C., M.A.B., J.W.S. and
J.R.S.; supervision, M.A.B., J.W.S. and J.R.S.; project administration, J.D.C., M.A.B. and J.R.S.; funding
acquisition, M.A.B. All authors have read and agreed to the published version of the manuscript.

Funding: This project was completed with the generous funding of the Novartis Institute of Biomedi-
cal Research.

Institutional Review Board Statement: This study was conducted in accordance with the Declaration
of Helsinki, and approved by the Institutional Review Board of the University of Massachusetts
Amherst (ID: 2018-4642, 6/4/2018).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Not applicable.

Acknowledgments: Data for this project was generated at the University of Massachusetts Amherst
Center for Human Health & Performance and Sleep Monitoring Core. The authors would also like
to thank Jamie Allfisher for his contributions as the lead polysomnographic technologist on the
current project.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Watson, N.F.; Safwan Badr, M.; Belenky, G.; Bliwise, D.L.; Buxton, O.M.; Buysse, D.; Dinges, D.F.; Gangwisch, J.; Grandner,

M.A.; Kushida, C.; et al. Joint Consensus Statement of the American Academy of Sleep Medicine and Sleep Research Society on
the Recommended Amount of Sleep for a Healthy Adult: Methodology and Discussion Consensus. Sleep 2015, 38, 1161–1183.
[CrossRef] [PubMed]

2. Magee, C.A.C.A.; Caputi, P.; Iverson, D.C.D.C. Relationships between self-rated health, quality of life and sleep duration in
middle aged and elderly Australians. Sleep Med. 2011, 12, 346–350. [CrossRef] [PubMed]

3. Buxton, O.M.; Marcelli, E. Short and long sleep are positively associated with obesity, diabetes, hypertension, and cardiovascular
disease among adults in the United States. Soc. Sci. Med. 2010, 71, 1027–1036. [CrossRef] [PubMed]

4. Sonni, A.; Spencer, R.M.C. Sleep protects memories from interference in older adults. Neurobiol. Aging 2015, 36, 2272–2281.
[CrossRef]

5. Rogers, N.L.; Dorrian, J.; Dinges, D.F. Sleep, waking and neurobehavioural performance. Front. Biosci. 2003, 8, S1056–S1067.
[CrossRef]

6. Robertson, M.D.; Russell-Jones, D.; Umpleby, A.M.; Dijk, D.J. Effects of three weeks of mild sleep restriction implemented in the
home environment on multiple metabolic and endocrine markers in healthy young men. Metabolism 2013, 62, 204–211. [CrossRef]

7. Leproult, R.; Van Reeth, O.; Byrne, M.M.; Sturis, J.; Van Cauter, E. Sleepiness, Performance, and Neuroendocrine Function during
Sleep Deprivation: Effects of Exposure to Bright Light or Exercise. J. Biol. Rhythms 1997, 12, 245–258. [CrossRef]

8. Banks, S.; Dinges, D.F. Behavioral and physiological consequences of sleep restriction. J. Clin. Sleep Med. 2007, 3, 519–528.
[CrossRef]

9. Byun, J.-H.; Kim, K.T.; Moon, H.-J.; Motamedi, G.K.; Cho, Y.W. The first night effect during polysomnography, and patients’
estimates of sleep quality. Psychiatry Res. 2019, 274, 27–29. [CrossRef]

10. Piwek, L.; Ellis, D.A.; Andrews, S.; Joinson, A. The Rise of Consumer Health Wearables: Promises and Barriers. PLoS Med. 2016,
13, e1001953. [CrossRef]

11. Zinkhan, M.; Kantelhardt, J.W. Sleep Assessment in Large Cohort Studies with High-Resolution Accelerometers. Sleep Med. Clin.
2016, 11, 469–488. [CrossRef] [PubMed]

12. De Souza, L.; Benedito-Silva, A.A.A.; Pires, M.L.N.; Poyares, D.; Tufik, S.; Calil, H.M. Further Validation of Actigraphy for Sleep
Studies. Sleep 2003, 26, 81–85. [CrossRef] [PubMed]

http://doi.org/10.5665/sleep.4716
http://www.ncbi.nlm.nih.gov/pubmed/26194576
http://doi.org/10.1016/j.sleep.2010.09.013
http://www.ncbi.nlm.nih.gov/pubmed/21388876
http://doi.org/10.1016/j.socscimed.2010.05.041
http://www.ncbi.nlm.nih.gov/pubmed/20621406
http://doi.org/10.1016/j.neurobiolaging.2015.03.010
http://doi.org/10.2741/1174
http://doi.org/10.1016/j.metabol.2012.07.016
http://doi.org/10.1177/074873049701200306
http://doi.org/10.5664/jcsm.26918
http://doi.org/10.1016/j.psychres.2019.02.011
http://doi.org/10.1371/journal.pmed.1001953
http://doi.org/10.1016/j.jsmc.2016.08.006
http://www.ncbi.nlm.nih.gov/pubmed/28118871
http://doi.org/10.1093/sleep/26.1.81
http://www.ncbi.nlm.nih.gov/pubmed/12627737


Sensors 2022, 22, 5041 10 of 11

13. Marino, M.; Li, Y.; Rueschman, M.N.; Winkelman, J.W.; Ellenbogen, J.M.; Solet, J.M.; Dulin, H.; Berkman, L.F.; Buxton, O.M.
Measuring Sleep: Accuracy, Sensitivity, and Specificity of Wrist Actigraphy Compared to Polysomnography. Sleep 2013, 36,
1747–1755. [CrossRef] [PubMed]

14. Ancoli-Israel, S.; Cole, R.; Alessi, C.; Chambers, M.; Moorcroft, W.; Pollak, C.P. The role of actigraphy in the study of sleep and
circadian rhythms. Sleep 2003, 26, 342–392. [CrossRef]

15. Chae, K.Y.; Kripke, D.F.; Poceta, J.S.; Shadan, F.; Jamil, S.M.; Cronin, J.W.; Kline, L.E. Evaluation of immobility time for sleep
latency in actigraphy. Sleep Med. 2009, 10, 621–625. [CrossRef]

16. Pollak, C.P.; Tryon, W.W.; Nagaraja, H.; Dzwonczyk, R. How accurately does wrist actigraphy identify the states of sleep and
wakefulness? Sleep 2001, 24, 957–965. [CrossRef]

17. Tryon, W.W. Issues of Validity in Actigraphic Sleep Assessment. Sleep 2004, 27, 158–165. [CrossRef]
18. Paquet, J.; Kawinska, A.; Carrier, J. Wake detection capacity of actigraphy during sleep. Sleep 2007, 30, 1362–1369. [CrossRef]
19. Quante, M.; Kaplan, E.R.; Cailler, M.; Rueschman, M.; Wang, R.; Weng, J.; Taveras, E.M.; Redline, S. Actigraphy-based sleep

estimation in adolescents and adults: A comparison with polysomnography using two scoring algorithms. Nat. Sci. Sleep 2018,
10, 13–20. [CrossRef]

20. Kushida, C.A.; Chang, A.; Gadkary, C.; Guilleminault, C.; Carrillo, O.; Dement, W.C. Comparison of actigraphic, polysomnogrphic,
and subjective assessment of sleep parameters in sleep-disordered patients. Sleep Med. 2001, 2, 389–396. [CrossRef]

21. Fuller, K.L.; Juliff, L.; Gore, C.J.; Peiffer, J.J.; Halson, S.L. Software thresholds alter the bias of actigraphy for monitoring sleep in
team-sport athletes. J. Sci. Med. Sport 2017, 20, 756–760. [CrossRef] [PubMed]

22. Oakley, N. Validation with Polysomnography of the Sleep-Watch Sleep/Wake Scoring Algorithm Used by the Actiwatch Activity Monitoring
System; Mini Mitter Co., Inc.: Bend, OR, USA, 1997.

23. Cole, R.J.; Kripke, D.F.; Gruen, W.; Mullaney, D.J.; Gillin, J.C. Automatic Sleep/Wake Identification From Wrist Activity. Sleep
1992, 15, 461–469. [CrossRef] [PubMed]

24. Meltzer, L.J.; Westin, A.M.L. A comparison of actigraphy scoring rules used in pediatric research. Sleep Med. 2011, 12, 793–796.
[CrossRef] [PubMed]

25. Meltzer, L.J.; Walsh, C.M.; Peightal, A.A. Comparison of Actigraphy Immobility Rules with Polysomnographic Sleep Onset
Latency in Children and Adolescents. Sleep Breath 2015, 19, 1415–1423. [CrossRef] [PubMed]

26. Straczkiewicz, M.; Glynn, N.W.; Harezlak, J. On Placement, Location and Orientation of Wrist-Worn Tri-Axial Accelerometers
during Free-Living Measurements. Sensors 2019, 19, 2095. [CrossRef]

27. Berry, R.B.; Brooks, R.; Gamaldo, C.; Harding, S.M.; Lloyd, R.M.; Quan, S.F.; Troester, M.T.; Vaughn, B.V. AASM Scoring Manual
Updates for 2017 (Wersion 2.4). J. Clin. Sleep Med. 2017, 13, 665. [CrossRef]

28. Dunican, I.C.; Murray, K.; Slater, J.A.; Maddison, K.J.; Jones, M.J.; Dawson, B.; Straker, L.M.; Caldwell, J.A.; Halson, S.L.;
Eastwood, P.R. Laboratory and home comparison of wrist-activity monitors and polysomnography in middle-aged adults. Sleep
Biol. Rhythms 2018, 16, 85–97. [CrossRef]

29. Markwald, R.R.; Bessman, S.C.; Reini, S.A.; Drummond, S.P.A.A. Performance of a portable sleep monitoring device in individuals
with high versus low sleep efficiency. J. Clin. Sleep Med. 2016, 12, 95–103. [CrossRef]

30. Laakso, M.-L.L.; Leinonen, L.; Lindblom, N.; Joutsiniemi, S.-L.L.; Kaski, M. Wrist actigraphy in estimation of sleep and wake in
intellectually disabled subjects with motor handicaps. Sleep Med. 2004, 5, 541–550. [CrossRef]

31. Peterson, B.T.; Chiao, P.; Pickering, E.; Freeman, J.; Zammit, G.K.; Ding, Y.; Badura, L.L. Comparison of actigraphy and
polysomnography to assess effects of zolpidem in a clinical research unit. Sleep Med. 2012, 13, 419–424. [CrossRef]

32. Cohen, J. A Power Primer. Psychol. Bull. 1992, 112, 155–159. [CrossRef] [PubMed]
33. Sadeh, A. The role and validity of actigraphy in sleep medicine: An update. Sleep Med. Rev. 2011, 15, 259–267. [CrossRef]

[PubMed]
34. Unruh, M.L.; Redline, S.; An, M.-W.; Buysse, D.J.; Nieto, F.J.; Yeh, J.-L.; Newman, A.B. Subjective and Objective Sleep Quality and

Aging in the Sleep Heart Health Study. J. Am. Geriatr. Soc. 2008, 56, 1218–1227. [CrossRef] [PubMed]
35. Desjardins, S.; Lapierre, S.; Hudon, C.; Desgagné, A. Factors involved in sleep efficiency: A population-based study of community-

dwelling elderly persons. Sleep 2019, 42, zsz038. [CrossRef] [PubMed]
36. Zinkhan, M.; Berger, K.; Hense, S.; Nagel, M.; Obst, A.; Koch, B.; Penzel, T.; Fietze, I.; Ahrens, W.; Young, P.; et al. Agreement of

different methods for assessing sleep characteristics: A comparison of two actigraphs, wrist and hip placement, and self-report
with polysomnography. Sleep Med. 2014, 15, 1107–1114. [CrossRef]

37. O’Hare, E.; Flanagan, D.; Penzel, T.; Garcia, C.; Frohberg, D.; Heneghan, C. A comparison of radio-frequency biomotion sensors
and actigraphy versus polysomnography for the assessment of sleep in normal subjects. Sleep Breath. 2015, 19, 91–98. [CrossRef]

38. Mikkelsen, K.B.; Ebajemito, J.K.; Bonmati-Carrion, M.A.; Santhi, N.; Revell, V.L.; Atzori, G.; Della Monica, C.; Debener, S.;
Dijk, D.-J.; Sterr, A.; et al. Machine-learning-derived sleep-wake staging from around-the-ear electroencephalogram outperforms
manual scoring and actigraphy. J. Sleep Res. 2019, 28, e12786. [CrossRef]

39. Montgomery-Downs, H.E.; Insana, S.P.; Bond, J.A. Movement toward a novel activity monitoring device. Sleep Breath. 2012, 16,
913–917. [CrossRef]

40. Sargent, C.; Lastella, M.; Halson, S.L.; Roach, G.D. The validity of activity monitors for measuring sleep in elite athletes. J. Sci.
Med. Sport 2016, 19, 848–853. [CrossRef]

http://doi.org/10.5665/sleep.3142
http://www.ncbi.nlm.nih.gov/pubmed/24179309
http://doi.org/10.1093/sleep/26.3.342
http://doi.org/10.1016/j.sleep.2008.07.009
http://doi.org/10.1093/sleep/24.8.957
http://doi.org/10.1093/sleep/27.1.158
http://doi.org/10.1093/sleep/30.10.1362
http://doi.org/10.2147/NSS.S151085
http://doi.org/10.1016/S1389-9457(00)00098-8
http://doi.org/10.1016/j.jsams.2016.11.021
http://www.ncbi.nlm.nih.gov/pubmed/28189461
http://doi.org/10.1093/sleep/15.5.461
http://www.ncbi.nlm.nih.gov/pubmed/1455130
http://doi.org/10.1016/j.sleep.2011.03.011
http://www.ncbi.nlm.nih.gov/pubmed/21689983
http://doi.org/10.1007/s11325-015-1138-6
http://www.ncbi.nlm.nih.gov/pubmed/25687438
http://doi.org/10.3390/s19092095
http://doi.org/10.5664/jcsm.6576
http://doi.org/10.1007/s41105-017-0130-x
http://doi.org/10.5664/jcsm.5404
http://doi.org/10.1016/j.sleep.2004.05.002
http://doi.org/10.1016/j.sleep.2011.12.003
http://doi.org/10.1037/0033-2909.112.1.155
http://www.ncbi.nlm.nih.gov/pubmed/19565683
http://doi.org/10.1016/j.smrv.2010.10.001
http://www.ncbi.nlm.nih.gov/pubmed/21237680
http://doi.org/10.1111/j.1532-5415.2008.01755.x
http://www.ncbi.nlm.nih.gov/pubmed/18482295
http://doi.org/10.1093/sleep/zsz038
http://www.ncbi.nlm.nih.gov/pubmed/30768200
http://doi.org/10.1016/j.sleep.2014.04.015
http://doi.org/10.1007/s11325-014-0967-z
http://doi.org/10.1111/jsr.12786
http://doi.org/10.1007/s11325-011-0585-y
http://doi.org/10.1016/j.jsams.2015.12.007


Sensors 2022, 22, 5041 11 of 11

41. Rupp, T.L.; Balkin, T.J. Comparison of Motionlogger Watch and Actiwatch actigraphs to polysomnography for sleep/wake
estimation in healthy young adults. Behav. Res. Methods 2011, 43, 1152–1160. [CrossRef]

42. Sánchez-Ortuño, M.M.; Edinger, J.D.; Means, M.K.; Almirall, D. Home is where sleep is: An ecological approach to test the
validity of actigraphy for the assessment of insomnia. J. Clin. Sleep Med. 2010, 6, 21–29. [CrossRef] [PubMed]

43. Pigeon, W.R.; Taylor, M.; Bui, A.; Oleynk, C.; Walsh, P.; Bishop, T.M. Validation of the Sleep-Wake Scoring of a New Wrist-Worn
Sleep Monitoring Device. J. Clin. Sleep Med. 2018, 14, 1057–1062. [CrossRef] [PubMed]

44. Chakar, B.; Senny, F.; Poirrier, A.-L.; Cambron, L.; Fanielle, J.; Poirrier, R. Validation of midsagittal jaw movements to measure
sleep in healthy adults by comparison with actigraphy and polysomnography. Sleep Sci. 2017, 10, 122–127. [CrossRef] [PubMed]

45. Shambroom, J.R.; Fábregas, S.E.; Johnstone, J. Validation of an automated wireless system to monitor sleep in healthy adults.
J. Sleep Res. 2012, 21, 221–230. [CrossRef]

46. Slater, J.A.; Botsis, T.; Walsh, J.; King, S.; Straker, L.M.; Eastwood, P.R. Assessing sleep using hip and wrist actigraphy. Sleep Biol.
Rhythms 2015, 13, 172–180. [CrossRef]

47. Tonetti, L.; Pasquini, F.; Fabbri, M.; Belluzzi, M.; Natale, V. Comparison of Two Different Actigraphs with Polysomnography in
Healthy Young Subjects. Chronobiol. Int. 2008, 25, 145–153. [CrossRef]

48. Uchida, S.; Endo, T.; Suenaga, K.; Iwami, H.; Inoue, S.; Fujioka, E.; Imamura, A.; Atsumi, T.; Inagaki, Y.; Kamei, A. Sleep evaluation
by a newly developed PVDF sensor non-contact sheet: A comparison with standard polysomnography and wrist actigraphy.
Sleep Biol. Rhythms 2011, 9, 178–187. [CrossRef]

49. Kosmadopoulos, A.; Sargent, C.; Darwent, D.; Zhou, X.; Roach, G.D. Alternatives to polysomnography (PSG): A validation of
wrist actigraphy and a partial-PSG system. Behav. Res. Methods 2014, 46, 1032–1041. [CrossRef]

50. Matsuo, M.; Masuda, F.; Sumi, Y.; Takahashi, M.; Yamada, N.; Ohira, M.H.; Fujiwara, K.; Kanemura, T.; Kadotani, H. Comparisons
of Portable Sleep Monitors of Different Modalities: Potential as Naturalistic Sleep Recorders. Front. Neurol. 2016, 7, 110. [CrossRef]

51. Meltzer, L.J.; Hiruma, L.S.; Avis, K.; Montgomery-Downs, H.; Valentin, J. Comparison of a Commercial Accelerometer with
Polysomnography and Actigraphy in Children and Adolescents. Sleep 2015, 38, 1323–1330. [CrossRef]

52. Sundararajan, K.; Georgievska, S.; te Lindert, B.H.W.; Gehrman, P.R.; Ramautar, J.; Mazzotti, D.R.; Sabia, S.; Weedon, M.N.; van
Someren, E.J.W.; Ridder, L.; et al. Sleep classification from wrist-worn accelerometer data using random forests. Sci. Rep. 2021,
11, 24. [CrossRef] [PubMed]

53. Van Hees, V.T.; Sabia, S.; Jones, S.E.; Wood, A.R.; Anderson, K.N.; Kivimäki, M.; Frayling, T.M.; Pack, A.I.; Bucan, M.;
Trenell, M.I.; et al. Estimating sleep parameters using an accelerometer without sleep diary. Sci. Rep. 2018, 8, 12975. [CrossRef]
[PubMed]

http://doi.org/10.3758/s13428-011-0098-4
http://doi.org/10.5664/jcsm.27706
http://www.ncbi.nlm.nih.gov/pubmed/20191934
http://doi.org/10.5664/jcsm.7180
http://www.ncbi.nlm.nih.gov/pubmed/29852899
http://doi.org/10.5935/1984-0063.20170021
http://www.ncbi.nlm.nih.gov/pubmed/29410741
http://doi.org/10.1111/j.1365-2869.2011.00944.x
http://doi.org/10.1111/sbr.12103
http://doi.org/10.1080/07420520801897228
http://doi.org/10.1111/j.1479-8425.2011.00506.x
http://doi.org/10.3758/s13428-013-0438-7
http://doi.org/10.3389/fneur.2016.00110
http://doi.org/10.5665/sleep.4918
http://doi.org/10.1038/s41598-020-79217-x
http://www.ncbi.nlm.nih.gov/pubmed/33420133
http://doi.org/10.1038/s41598-018-31266-z
http://www.ncbi.nlm.nih.gov/pubmed/30154500

	Introduction 
	Materials and Methods 
	Participants 
	Study Details 
	Polysomnography 
	Accelerometers 

	Data Processing 
	Statistical Analysis 

	Results 
	Epoch-by-Epoch Agreement, Sensitivity, and Specificity 
	Analysis of ‘Sleep Onset Rule’ and ‘Device’ 

	Discussion 
	Agreement, Sensitivity, and Specificity 
	Total Sleep Time 
	Sleep Onset Latency 
	Wake after Sleep Onset 
	Sleep Efficiency 

	Summary and Conclusions 
	References

