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Abstract: In the field of high accuracy dual-axis rotational inertial navigation system (RINS), the
calibration accuracy of the gyroscopes and accelerometers is of great importance. Although rotation
modulation can suppress the navigation error caused by scale factor error and bias error in a static
condition, it cannot suppress the scale factor errors thoroughly during the maneuvering process of the
vehicle due to the two degrees of rotation freedom. The self-calibration method has been studied by
many researchers. However, traditional calibration methods need several hours to converge, which is
unable to meet the demand for quick response to positioning and orientation. To solve the above
problems, we do the following work in this study: (1) we propose a 39-dimensional online calibration
Kalman filtering (KF) model to estimate all calibration parameters; (2) Error relationship between
calibration parameters error and navigation error are derived; (3) A backtracking filtering scheme is
proposed to shorten the calibration process. Experimental results indicate that the proposed method
can shorten the calibration process and improve the calibration accuracy simultaneously.

Keywords: inertial measurement unit (IMU) calibration; strapdown inertial navigation system (SINS);
Kalman filter; gradient descent

1. Introduction

Rotational inertial navigation systems (RINS) have reached high accuracy of naviga-
tion in recent years [1,2]. A RINS consists of three gyroscopes, three accelerometers, and
one rotational table. the inertial measurement unit (IMU) is installed inside the two-axis
rotation table [3]. The accuracy of RINS highly depends on the accuracy of the accelerome-
ters and gyroscopes, hence, the calibration parameters of the IMU are very important [4].
The RINS makes the online self-calibration of IMU a real, self-calibration is an effective way
to improve the navigation performance of RINS [5].

Many researchers have studied the INS calibration method [6–9]. Ren et al. proposed a
multi-position self-calibration method for dual-axis RINS [10]. In [11], Zhang et al. analyzed
the multi-position calibration method for IMU. In [12], an eight-position self-calibration
method for a dual-axis RINS. Syed et al. proposed a multi-position calibration method for
MEMS inertial navigation systems [13]. Jiang et al. in [14] have proposed a 36-dimensional
KF for systematic calibration. Wen et al. have added gyro-accelerometer asynchronous
time as a state variable in self-calibration KF [15]. Jing et al. in [1] have analyzed the data
of the gyroscope to improve the accuracy of the calibration. In [16], Song et al. have added
inner lever-arm parameters for RINS, which denotes the distance between the sensitive
center of the accelerometer and the center of rotation of the IMU. Based on previous
research, the authors have derived a complete IMU calibration error model. However, a
higher filtering dimension means slower computation and slower convergence. Nowadays,
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the demand for the rapid response of navigation equipment is higher, and it will be very
inappropriate to self-calibration for a few hours before utilization. It should be noted that
in high accuracy INS applications (the accuracy of the gyro is better than 0.01 ◦/h, generally
ring laser gyro or fiber optic gyro), the systematic calibration process can last for 3 h.

Hence, many researchers have utilized the backtracking navigation method to shorten
the filtering time, this method has been applied in initial alignment widely to shorten the
alignment time. Yan et al. proposed a reverse navigation algorithm for INS gyrocompass
in-movement alignment [17]. Li has applied the backtracking navigation method in un-
derwater vehicle applications [18]. In [19,20], the authors have proposed a backtracking
integration for fast attitude determination-based initial alignment. Li et al. utilized a back-
tracking navigation scheme for autonomous underwater vehicles [20]. In the application
field of RINS, Song et al. proposed a rapid initial alignment scheme for dual-axis RINS [21].
Based on the previous studies, the backtracking navigation scheme has been proved that
can effectively shorten the alignment time in the INS initial alignment process. However,
there are few studies have applied the backtracking scheme in RINS calibration method.

The backtracking scheme can be applied to the RINS calibration method in theory.
However, we need to propose a rotation scheme that can excite all the calibration parameter
errors during the rotation process. Hence, a detailed observability analysis is needed.
In [15], the authors have analyzed the observability of the 19-position rotation scheme.
Tang et al. has utilized piecewise constant systems (PWCS) and singular value decompo-
sition (SVD) method to provide the observability analysis of KF [22]. Cai et al. provided
an observability analysis for IMU in a three-axis rotation table [23]. In [24], the authors
have studied the observability of strapdown INS alignment. However, the decoupling
relationship between the calibration parameters and navigation velocity error has not been
studied in previous studies. Therefore, there is a lack of a specific theoretical guide for the
rotation path design to excite all the calibration parameter errors.

To solve the above problems, an improved online fast calibration method for dual-
axis RINS based on a backtracking scheme is proposed in this paper. The self-calibration
method has been studied by many researchers. However, traditional calibration methods
need several hours to converge, which is unable to meet the demand for quick response to
positioning and orientation. Kalman filtering has both accuracy and real-time performance,
but the convergence is slow, so our method can ensure short-term convergence and the real-
time performance of the algorithm. The processer we utilize in dual-axis RINS is DSP6748,
it has lower computing power because it is a low-power chip. So KF is used in the system.
To solve the above problems, we do the following work in this study: (1) we propose a
39-dimensional online calibration Kalman filtering (KF) model to estimate all calibration
parameters; (2) Error relationship between calibration parameter errors and navigation
error is derived, which can be a theoretical guide for the design of calibration rotation
path; (3) A backtracking filtering scheme is proposed to shorten the calibration process.
Experimental results indicates that the proposed method can shorten the calibration process
to 1 h and improve the calibration accuracy (within 0.5 ppm) simultaneously.

The remainder of this paper is organized as follows: Section 2 gives reference def-
initions of the proposed calibration method. In Section 3, we derive a 39-dimensional
filtering model and analyze the error relationship between calibration parameters error and
navigation errors. In Section 4, the online self-calibration method based on the backtracking
scheme, is provided. A rotation test is carried out in Section 5 to verify the effectiveness of
the proposed method. In Section 6, we give the conclusions.

2. Reference Definitions

In the filtering process of the calibration method, the reference definitions are shown
as follows:

The earth-centered inertial frame (i-frame): o locates on the center of the earth, oxi
points to the vernal equinox, ozi is the earth’s axis of self-rotation, the inerital information
are measured in this reference.
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Earth-centred frame (e-frame): o locates on center of the earth, oxe points to the central
meridian, oze is the earth’s axis of self rotation.

IMU frame (I-frame): o locates on the rotation center of the IMU, oxI , oyI and ozI
points to the IMU’s right, forward, and upward, respectively.

vehicle frame (b-frame): o locates on the rotation center of the vehicle, oxI , oyI and ozI
points to the vehicle’s right, forward, and upward, respectively.

navigation frame (n-frame): The navigation coordinate system is the selected coordi-
nate system when calculating the navigation parameters. In this paper, the east-north-up
(E-N-U) geographic coordinate system is used as the navigation coordinate system.

gyro sensitive frame (g frame): Non-orthogonal reference frame aligned with gyro-
sensitive axes.

accelerometer-sensitive frame (a frame): Non-orthogonal reference frame aligned with
accelerometer-sensitive axes.

3. Sefl-Calibration Filtering Method Design
3.1. IMU Error Model

The main measurement components of the IMU are the three-axis gyro component
and the three-axis accelerometer component. The input and output models of the gyro and
accelerometer can be expressed as [15]:{

K−1
G Ng = Tg′

g ω
g
ig + bg + vg

K−1
A Na = Ta′

a f a
s f + f I

A2 + ba + va
(1)

where, KG is the scale factor matrix (consists of scale factors of three gyros) of gyroscope, KA is
the scale factor matrix of accelerometers, vg is the noise vector of gyros, va is the noise vector of
accelerometers, ω

g
ig is the angular velocity sensed by gyros. g-frame and a-frame denotes the gy-

roscope and accelerometer’s sensitive axes, g-frame and a-frame are non-orthogonal references.

Ng=
[

Ng
x Ng

y Ng
z
]T

is the primitive output of the gyroscopes, Na=
[

Na
x Na

y Na
z

]T

is the primitive output of the accelerometers. ω
g
ig and f a

s f are angular velocity and spe-
cific force vector. KG = diag

(
Kgx, Kgy, Kgz

)
and KA = diag

(
Kax, Kay, Kaz

)
are scale factor

matrix of the gyroscopes and accelerometers respectivley. bg =
[

KG0x KG0y KG0z
]T

and ba =
[

KA0x KA0y KA0z
]T are the bias vectors of gyroscopes and accelerometers. Ac-

celerometer second-order nonlinear coefficient specific force sensitive term (which can be esti-
mated in high accuracy accelerometers like quartz accelerometer) is described as: f I

A2=M f KA2,

where M f = diag
((

f a
s f x

)2
,
(

f a
s f y

)2
,
(

f a
s f z

)2
)

is the matrix composed of the square term of the

theoretical specific force sensitive to the triaxial accelerometer. KA2 =
[

KA2x KA2y KA2z
]T

is the second-order nonlinear coefficient vector of the accelerometer, it is a part of scale fator.
Write the orthogonal gyro and accelerometer coordinate systems after coordinate frame

g′ and a′ are compensated by the axis misalignment angle matrix Tg′
g and Ta′

a , respectively.
The Equation (1) can be rewritten as: ω

g
ig =

(
Tg′

g

)−1(
K−1

G Ng − bg − vg
)

f a
s f =

(
Ta′

a

)−1(
K−1

A Na − f I
A2 − ba − va

) (2)

As shown in Figure 1, since the measurement information of the gyroscope and
accelerometer needs to be projected into the I system in the inertia calculation, this paper
defines that the measurement center of the gyroscope coincides with the sensitive center of
the IMU coordinate system, and the oxI axis of the IMU coordinate system coincides with
the sensitive axis oxg of the gyroscope.
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Figure 1. The conversion relationship between the non-orthogonal coordinate frame of the gyro and
the orthogonal coordinate frame of the IMU.

Hence, the installation matrix can be written as:

T I
g ≈

 1 0 0
−γ

g
yz 1 0

γ
g
zy −γ

g
zx 1

 (3)

T I
a = C I

pT p
a ≈

 1 −ηz ηy
ηz − ϑyz 1 −ηx
−ηy + ϑzy ηx − ϑzx 1

 =

 1 γa
xz −γa

xy
−γa

yz 1 γa
yx

γa
zy −γa

zx 1

 (4)

where γ denotes the installation angles, T p
a ≈

 1 0 0
−ϑyz 1 0
ϑzy −ϑzx 1

, ϑij is the sensitive

non-orthogonal angles from p-frame to a-frame, p-frame is the othogonal reference (The

p-frame is a transition orthogonal coordinate system), C I
p ≈

 1 −ηz ηy
ηz 1 −ηx
−ηy ηx 1

, ηi is

the non-orthogonal angles from I-frame to p-frame.
Furthermore, the effect of the inner lever arm r I is considered. The inner lever arm

refers to the distance vector from the IMU sensitive center (IMU rotation center) to the
three-axis accelerometer. When the carrier moves angularly, the inner lever arm will cause
the tangential acceleration and centripetal acceleration that the accelerometer is sensitive
to. Since the installation error angle of the accelerometer is a small angle, only the inner
lever arm in the direction of the sensitive axis of the accelerometer is considered, and the
rotational angular acceleration is not considered, the specific force-sensitive term f I

r of the
inner lever arm of the accelerometer can be expressed as [15]:

f I
r=Mωr I (5)

where, Mω=diag
[(

ωI
iIy

)2
+
(
ωI

iIz
)2,
(
ωI

iIx
)2
+
(
ωI

iIz
)2,
(
ωI

iIx
)2
+
(

ωI
iIy

)2
]
, rI=

[
rI

x rI
y rI

z

]T
.

Ignoring the noise term in Equation (1), the calibration models of the gyro and ac-
celerometer components in the IMU coordinate system can be expressed as:{

ωI
iI = K−1

G Ng −ωI
0

f I
s f = K−1

A Na − f I
A2 − f I

0
(6)
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The error equation is the differential equation of the above equations, based on
Equations (2) and (6). ωI

0 is the gyro bias vector, f I
0 is the accelerometer bias vector.

3.2. 39-Dimensional Kalman Filtering Model

The error parameters of the system-level filter self-calibration include two categories.
The first category is the various error parameters involved in the IMU measurement error
model; the second category is the observation error parameters represented by the outer
lever arm error. The outer lever arm error refers to the sensitivity of the IMU. The distance
error vector from the center to the center of the turntable will stimulate the observation
velocity error and the observation position error when the IMU rotates [15]. The outter
lever arm are written as δl I , The relationship between the corresponding true value and
the measured value can be expressed as: l I=l̃ I − δl I . Bsed on the previous analysis,
combined with the inertial navigation error equation, attitude misalignment angle error
φn=

[
φn

E φn
N φn

U
]T, the velocity error δvn=

[
δvn

E δvn
N δvn

U
]T and the position error

δp =
[

δL δλ δh
]T into the state vector into consideration, the state variable of the KF

can be written as:

XC =

[
(φn)T (δvn)T (δp)T (

Xg
)T

(Xa)
T
(

δl I
)T

]T
(7)

where, Xg =
[

δkg
11 δkg

21 δkg
31 δkg

22 δkg
32 δkg

33 εx εy εz
]T .

Xa = [ δka
11 δka

21 δka
31 δka

12 δka
22 δka

32
δka

13 δka
23 δka

33 ∇x ∇y ∇z δKTa
x δKTa

y δKTa
z ]T

. δkg
ij is the element of

K−1
G , εi (ωI

0) is the gyro bias, δka
ij is the element of K−1

A , and∇x ( f I
0) is the accelerometer bias.

The state transform funciton can be written as:

ẊC = FCXC + GCWC (8)

where, FC represents the state transition matrix, GC represents the system noise driving matrix, WC

denotes the system nosie matrix, εI
w =

[
εI

wx εI
wy εI

wz

]T
and∇I

w =
[
∇I

wx ∇I
wy ∇I

wz

]T

are the random noise matrix of gyroscopes and accelerometers. FC amd GC can be
written as:

FC =


−
(
ωn

in×
)

F12 F13 F14 03×18 03×3(
f n

s f×
)

F22 F23 03×9 F25 03×3

03×3 F32 F33 03×9 03×18 03×3
030×39

 (9)

GC =

 −Cn
I 03×3

03×3 Cn
I

033×6

 (10)

where, Cn
I is the transform matrix from I-frame to n-frame. ωie represents the earth self-

rotatoin angular velocity. ωn
in is the angular velocity of n-frame to i-frame. L is the latitude.

RM denotes the radius of curvature of the meridian circle, RN represents the the radius of
curvature of the unitary circle, h is the height of the IMU. The elements of the FC are shown
as: F12 = M2, F13 = M1 + M3, F14 = −Cn

I Mg, F22 = −
[
(vn×)F12 +

(
2ωn

ie + ωn
en
)
×
]
,

M1 =

 0 0 0
−ωie sin L 0 0
ωie cos L 0 0

,

M2 =

 0 − 1
RM+h 0

1
RN+h 0 0
tan L

RN+h 0 0

, M3 =


0 0 vN

(RN+h)2

0 0 − vE
(RN+h)2

vEsec2L
RN+h 0 − vE tan L

(RN+h)2

,
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F23 = (vn×)(2M1 + M3),

F25 = Cn
I Ma, F32 =

 0 1
RM+h 0

1
(RN+h) cos L 0 0

0 0 1

, F33 =


0 0 − vN

(RN+h)2

vE sec L tan L
RN+h 0 − vE sec L

(RN+h)2

0 0 0

.

Mg=

[
ω̃ I

ibx I3×3

[
01×2

ω̃ I
iIy I2×2

] [
02×1
ω̃ I

iIz

]
I3×3

]
,

Ma =
[

f̃ I
s f x I3×3 f̃ I

s f y I3×3 f̃ I
s f z I3×3 M̃ f 2 M̃ω I3×3

]
, where,

M̃ f = diag
[(

f̃ I
s f x

)2
,
(

f̃ I
s f y

)2
,
(

f̃ I
s f z

)2
]

,

M̃ω=diag
[(

ω̃ I
iIy

)2
+
(
ω̃ I

iIz
)2,
(
ω̃ I

iIx
)2

+
(
ω̃ I

iIz
)2,
(
ω̃ I

iIx
)2

+
(

ω̃ I
iIy

)2
]

.

To establish the measurement equation of the dual-axis RINS system-level self-calibration
filtering method, the measurement information should be determined first. The velocity
and position measurement equation is expressed as follows:{

ṽn
mea = ṽn + C̃n

I

[
(ω̃I

iI − C̃ I
nω̃n

ie)× l̃ I
]

p̃n
mea = p̃ + F̃32C̃n

I l̃ I (11)

where, C̃n
I=[I3×3− (φn×)]Cn

I represents the calculated attitude matrix with attitude misalignment.
The measurement transform equation can be written as:

Zn
C =

[
Zn

Cv
Zn

Cp

]
=

[
ṽn

mea − vn
obv

p̃mea − pobv

]
= HCXC + VC

(12)

where Zn
C denotes the measurement vector, HC is the measurement matrix,

HC=

[
H11 I3×3 H13 H14 03×18 H16
H21 03×3 H23 03×9 03×18 H26

]
(13)

where H21 = F32

[(
Cn

I l I
)
×
]
, H23 =


1 0 −

(Cn
I l I)y

(RM+h)2

sin L(Cn
I l I)x

(RN+h)cos2L 1 − (Cn
I l I)x

(RN+h)2 cos L
0 0 1

, H26 = F32Cn
I .

So far, the derivation of the 39-dimensional filtering equation is completed.

3.3. Self-Calibration Parameter Error Excitation and Coupling Analysis

To carry out the coupling anaysis of each calibration parameters, the error propa-
gation law of each self-calibration parameters are derived first. Assuming that the ini-
tial state b-frame and n-frame are coincide (Cn

b (t) = I3), considering the case where
the y-axis of the IMU continues to rotate in the north direction at time period [0, T]
with an angular velocity ωr(ωr � ωie). The measured angular velocity can be ex-
pressed as: ω̃I

iI ≈
[

0 ωr 0
]T

+ δωI
iI . The measured specific force can be expressed

as f̃ I
s f =

[
−g sin(ωrT) 0 g cos(ωrT)

]T
+ δ f I

s f , the attitude transform matrix can be

described as Cn
I (t)=Cn

b (t)C
b
I (t). Ignoring higher-order episilon (more than two-order), The

measurement error due to the δKG and bias εI can be described as:
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δŻn
Cv
(
δKG, εI) ≈ (gn×)

∫ T
0 Cn

b (t)C
b
I (t)Mg(t)dt · Xg

≈ (gn×)
∫ T

0

 1 0 0
0 1 0
0 0 1

 cos(ωrT) 0 sin(ωrT)
0 1 0

− sin(ωrT) 0 cos(ωrT)

dt ·

 εI
x

ωrδkg
yy + εI

y
ωrδkg

zy + εI
z


=

 0 g 0
−g 0 0
0 0 0




sin(ωr T)
ωr

0 − cos(ωr T)−1
ωr

0 T 0
cos(ωr T)−1

ωr
0 sin(ωr T)

ωr


 εI

x
ωrδkg

yy + εI
y

ωrδkg
zy + εI

z


=

 gωrTδkg
yy + gTεI

y

g cos(ωrT)
(

δkg
zy +

εI
z

ωr

)
− g sin(ωr T)εI

x
ωr

− gδkg
zy − gεI

z
ωr

0



(14)

Ignoring higher-order epsilon, The measurement error due to the δKA and ∇I can be
described as:

δŻn
Cv
(
δKA,∇I)=Cn

I Ma(:, 1 : 12)Xa(:, 1 : 12)

≈

 cos(ωrT) 0 sin(ωrT)
0 1 0

− sin(ωrT) 0 cos(ωrT)

 −g sin(ωrT)δka
xx + g cos(ωrT)δka

xz +∇b
x

−g sin(ωrT)δka
yx + g cos(ωrT)δka

yz +∇b
y

−g sin(ωrT)δka
zx + g cos(ωrT)δka

zz +∇b
z



=


g sin(2ωrT)

2 (δka
zz − δka

xx) +
g
2 (δka

xz − δka
zx) +

g cos(2ωrT)
2 (δka

xz + δka
zx)+

∇b
x cos(ωrT) +∇b

z sin(ωrT)
−g sin(ωrT)δka

yx + g cos(ωrT)δka
yz +∇b

y
g
2 (δka

xx + δka
zz) +

g cos(2ωrT)
2 (δka

zz − δka
xx)−

g sin(2ωrT)
2 (δka

xz + δka
zx)−

∇b
x sin(ωrT) +∇b

z cos(ωrT)


(15)

Similarly, the measurement error due to the δKA2 can be described as:

δŻn
Cv(δKA2)=Cn

I M̃ f 2Xa(:, 13 : 15)

≈

 cos(ωrT) 0 sin(ωrT)
0 1 0

− sin(ωrT) 0 cos(ωrT)

 g2sin2(ωrT)δKAx2
0

g2cos2(ωrT)δKAz2


=

 g2 sin(2ωrt)(sin(ωrt)δKAx2 + cos(ωrt)δKAz2)/2
0

−g2sin3(ωrt)δKAx2 + g2cos3(ωrt)δKAz2


(16)

The measurement error due to the δr I can be written as:

δŻn
v
(
δr I) = Cn

I M̃ωXa(:, 16 : 18)

≈

 cos(ωrT) 0 sin(ωrT)
0 1 0

− sin(ωrT) 0 cos(ωrT)


 (ωr)

2δrI
x

0
(ωr)

2δrI
z


=

 (ωr)
2(cos(ωrT)δrI

x + sin(ωrT)δrI
z
)

0
(ωr)

2(− sin(ωrT)δrI
x + cos(ωrT)δrI

z
)


(17)

Based on Equations (14)–(17), The error propagation form of self-calibration parame-
ters under transposition excitation are summarized in Table 1:
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Table 1. Error propagation form of self-calibration parameters under transposition excitation.

Parameters δŻn
CvE

δŻn
CvN

δŻn
CvU

δkg
zy – g cos(ωrT) –

δka
yz – g cos(ωrT) –

δka
yx – −g sin(ωrT) –

δka
xz

g cos(2ωrT)
2

– − g sin(2ωrT)
2

δka
zx

g cos(2ωrT)
2

– − g sin(2ωrT)
2

δkg
yy gωrT – –

δka
xx − g sin(2ωrT)

2
– − g cos(2ωrT)

2

∇I
x cos(ωrT) – − sin(ωrT)

∇I
z sin(ωrT) – cos(ωrT)

εI
x – − g sin(ωrT)

ωr
–

εI
z – g cos(ωrT)−g

ωr
–

δKAx2 g2 sin(2ωrT) sin(ωrT)/2 – −g2sin3(ωrT)

δKAz2 g2 sin(2ωrT) cos(ωrT)/2 – g2cos3(ωrT)

δrI
x (ωr)

2 cos(ωrT) – (ωr)
2 sin(ωrT)

δrI
z −(ωr)

2 sin(ωrT) – (ωr)
2 cos(ωrT)

Based on Table 1, the error propagation forms of the δkg
zy and δkg

yz, δka
xz and δka

zx are the
same respectively. When the IMU rotates along the y-axis, the above two sets of installation
error parameters will always have a coupling relationship. Similarly, the IMU rotates along
the x-axis, The error propagation forms of the three groups of parameters δka

xy and δkg
yx,

δka
xz and δkg

zx, δka
zy and δka

yz are respectively the same. When the IMU rotates along the
z-axis, the error propagation forms of the δka

yx and δka
xy are the same.

Although there are 1–3 sets of coupling relationships in the installation errors of
the gyro and the accelerometer during the horizontal rotation of the three sensitive axes
of the IMU, such coupling relationships can be decoupled in turn through a specific
indexing method.

Except for the coupling term in the installation error, there is no error term in the same
propagation form during the horizontal rotation of the three sensitive axes of the IMU.
According to the error propagation form of each system-level self-calibration parameter,
the longest error propagation period is 2π/ωr (derived by Equation (17)).

Based on the previous analysis, the rotation path of the self-calibration can be designed
as Table 2 [15]:
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Table 2. Rotation path of self-calibration process.

Time
Rotation Axis (Inner (I)

(z-Axis of IMU)/Outer (O)
(x-Axis of IMU))

Rotation Angle
along I/O Axis

Attitude after Rotation (XYZ)
(East-North-Upward)

0 s - - ENU

180 s O +90◦ EUS

270 s O +180◦ EDN

360 s O +180◦ EUS

450 s I +90◦ UWS

540 s I +180◦ DES

630 s I +180◦ UWS

720 s O +90◦ SWD

810 s O +180◦ NWU

900 s O +180◦ SWD

990 s O +90◦ DWN

1080 s O +90◦ NWU

1170 s O +90◦ UWS

1260 s I +90◦ WDS

1350 s I +90◦ DES

1440 s I +90◦ EUS

1530 s O +90◦ ESD

1620 s O +90◦ EDN

1710 s O +90◦ ENU

The angular rotation rate is set as 20 ◦/s (the angular rate is not unique, usually 5 ◦/s
to 20 ◦/s are commonly used), after finishing the last rotation, stay static until 1800 s to end
the calibration process.

In [15] the error parameters errors of IMU scale factors and biases are proved observ-
able. Therefore, we need to analyze the observability of inner lever arms and accelerometer
second-order factors in this study. Using the PWCS and SVD methods, the observability
using the designed excitation path is shown as follows in Table 3.

Table 3. The observability degree of each state.

State Variable Singular Value State Variable Singular Value

δKAx2 232.6811 δKAy2 197.5225

δKAz2 51.2133 δrI
x 43.6781

δrI
x 30.7752 δrI

x 22.1765

4. Self-Calibration Process Based on Backtracking Scheme

The reverse navigation algorithm is a time-reversed algorithm based on the forward
navigation algorithm. It is usually used to prolong the filtering time so that the filter can
complete the convergence in a relatively short time. In the process of reverse navigation,
the speed of the solution needs to be reversed. The reverse navigation algorithm can be
rewritten as the following:
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Cn
bk−1 = Cn

bk(I3 + TsΩ̃
b
nbk)

−vn
k−1 = −vn

k + Tsan
nbk−1

(18)

where, Ωb
nbk = (ωb

nbk×).
The detailed derivation of reverse navigation method has been fully explained in

reference [17], hence, reverse navigation process can be summarized as:

←
C

n
bp =

←
C

n
bp−1(I + Ts

←
Ω

b
nbp)

←v
n
p =

←v
n
p−1 + Ts

←a p−1,p
←
Lp =

←
Lp−1 + Ts

←v
n
Np−1/(RM +

←
h p−1)

←
λp =

←
λp−1 + Tsvn

Ep−1 sec
←
Lp−1/(RN +

←
h p−1)

←
h p =

←
h p−1 + Ts

←v
n
Up−1

(19)

where, p = m− k + 1.
As shown in Equation (19), the algorithm form of the reverse navigation algorithm is

similar to that of the forward navigation. It only needs to invert the speed, the angular rate
of the earth’s rotation, and the stored gyro output,

In the process of reverse navigation, due to the minus output of the gyroscope, the out-
put of the gyroscope can be written as:

F14 = −Cn
b

[
Ng

x I3×3

[
01×2

Ng
y I2×2

] [
02×1
Ng

z

]
−I3×3

]
(20)

Other filter variables are consistent with the forward self-calibration filter model.
To complete the self-calibration process of the dual-axis RINS in a short time, it is

necessary to propose a method to enable the self-calibration filter to be able to convergence
is accomplished rapidly. Therefore, this paper proposes a fast self-calibration algorithm ar-
chitecture based on a backtracking scheme, the architecture is shown in Figure 2 as follows:

Saving the gyro data, accelerometer data 
during coarse alignment process

Coarse Alignment Process

The initial attitude values of the 
backtracking process are the result of 

the coarse alignment. It should be 
noted that the gyro output, earth self-
rotation rate are set as minus values.

Backtracking process

Using the stored IMU data in 
navigation computer memory to 

calculate, the saving process is till 
carry on during this process

Reset the 
position as 
the initial 

position at 
the beginning 

of the 
process.

Forward Process

Using the stored IMU data in 
navigation computer memory to 

calculate, the saving process is till 
carry on during this process

t0
coarset

c a l ibt

Dt

Preparation for Self-Calibration

Self-Calibration Process Based on 
Backtrackcing Scheme

Using the alignment results 
and estimated calibration 

parameters as the navigation 
initial values 

Navigation Process

Figure 2. Diagram of self-calibration process based on backtracking scheme.

The 39D KF method is to decouple the error through the specified indexing sequence,
to decouple the relationship between the navigation error and the IMU error, and use
Kalman filtering to estimate. To ensure the linearity of the KF, we usually set initial cali-
bration parameters at the beginning of the filtering process. The self-calibration filtering
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process-based backtracking scheme proposed in this paper makes full use of IMU informa-
tion. Under the condition that the initial calibration parameters are set (inaccurate) (the
coarse alignment is necessary, providing a coarse attitude can guarantee the linearity of the
Kaman filter), the RINS can obtain an initial attitude after coarse alignment. The raw data
of the IMU is stored at the same time. Then, utilize the attitude value after coarse alignment
as the initial attitude value, utilize the stored gyroscope and accelerometer data to perform
the reverse self-calibration process, and continue to store the IMU data. After the reverse
filtering process end, the forward filtering process is performed from the initial moment,
because the calculation rate of the self-calibration filtering process is faster than the rate of
storing the data, and the final forward filtering process will end at time tcalib, which can
catch up with the data stored in real-time and finally enter into the navigation process.

Given the above explanations, the self-calibration based on the backtracking scheme
can be summarized as follows:

1. The information from the accelerometer and gyroscope are stored in the memory in
real-time during the time period from the start (time 0) to the end (time tcoarse) of the
coarse alignment stage of the dual-axis RINS, and the coarse alignment process ends
at time tcoarse. We obtain attitude information with an acceptable error.

2. The process of reverse self-calibration filtering starts at the end of the coarse alignment
of the dual-axis RINS (time tcoarse), and the process of reverse self-calibration filtering
towards the start of the coarse alignment stage (time 0), using the stored gyro data,
the angular velocity of the earth’s rotation, and the reverse self-calibration The velocity
at the initial moment of filtering needs to be negated. At the same time, in the process
of reverse self-calibration filtering, the information of the gyroscope and accelerometer
are still stored in the memory of the navigation computer.

3. After the reverse self-calibration filtering process ends, the program executes to
the start time of the coarse alignment stage (time 0), and from this time onwards,
the forward self-calibration filtering process is performed without modifying all the
parameters of the Kalman filter used in the previous stage, the velocity at time 0
calculated using the reverse self-calibration filter needs to be reversed. At the same
time, the stored gyro information and the Earth’s rotation angular rate also need to
be returned to the normal state from the previous inversion state (no need to invert).
Since the calculation rate of the navigation computer is not fast enough to be ignored,
the forward self-calibration filtering process needs to catch up with the stored time
tcalib until.

4. The above three steps are the implementation process of the fast self-calibration
algorithm based on backtracking navigation. At present, most navigation computers
are equipped with large-capacity storage elements such as DDR2, SD card, etc., so
that the online fast self-calibration algorithm of dual-axis RINS can be realized.

It should be noted that if the filter still does not fully converge after one round of
retrospective filtering calibration, the next round of retrospective filtering and calibration
can be performed. The reverse filtering process starts from the previous tcalib, and the
subsequent process is the same as before.

5. Experimental Results and Analysis

To verify the effectiveness of the proposed self-calibration method based on the back-
tracking scheme, we conduct a static test to evaluate the accuracy of the calibration parame-
ters. The dual-axis we utilize in this study is shown in Figure 3. The dual-axis RINS realize
the dual-axis turntable with 3D-IMU.



Sensors 2022, 22, 5036 12 of 17

Figure 3. Dual-axis RINS.

The structure of the dual-axis RINS is shown as follows Figure 4, and the IMU is
installed inside the dual-axis turntable to realize the self-contained dual-axis RINS.

Figure 4. Structure of the Dual-axis RINS.

The gyroscope we use in the RINS is a laser ring gyro (RLG), the accuracy of the
RLG is 0.003 ◦/h (100 s, 1σ), with a 1 ppm (1σ) of scale factor repeatability. The quartz
accelerometers have an accuracy of 20 µg ( 1σ). The sampling frequency of the IMU is
1000 Hz. To show the calibration process more clearly, the raw plot of the IMU is shown
in Figure 5.
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The RINS is fixed in a marble, the algorithm is implemented on the digital signal
processer (DSP) chip. We use the method in reference to [10] as a comparison. The self-
calibration process lasts 30 mins (the backtracking process also lasts 30 min, with the
same data). We use a high-accuracy three-axis turntable to calibrate the IMU parameters as
reference [25], this method requires a high-accuracy turntable, the IMU needs to be removed
from the dual-axis RINS, as the accuracy of the dual-axis turntable is not high enough
(especially horizontal accuracy).The traditional method is described in [15] . The estimation
curves of the IMU parameters are shown in Figures 6–9, the dotted line part is the reverse
filtering process, and the solid line part is the forward filtering process. We can find out all
parameters are converged after the backtracking scheme ended.
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Figure 9. Estimation curves of inner lever arm and accelerometer quadratic coefficient errors.

To verify the estimation accuracy of the parameters, the estimated parameters can be
summarized as Table 4.
Table 4. Estimation results of different methods.

Estimated Parameters Proposed Method Traditional Method Reference Values

εx −0.01345 ◦/h −0.03953 ◦/h −0.01955 ◦/h

εy 0.012587 ◦/h 0.04478 ◦/h 0.01685 ◦/h

εz 0.04521 ◦/h 0.1023 ◦/h 0.04002 ◦/h

∇x 412.23 µg 415.22 µg 412.75 µg

∇y −812.36 µg −813.56 µg −813.74 µg

∇z 694.25 µg 691.57 µg 695.12 µg

δkg
xx 206,263.25 ◦/h/pulse 206,269.44 ◦/h/pulse 206,263.25 ◦/h/pulse

δkg
yy 206,269.34 ◦/h/pulse 206,260.98 ◦/h/pulse 206,268.87 ◦/h/pulse

δkg
zz 206,267.22 ◦/h/pulse 206,268.74 ◦/h/pulse 206,267.84 ◦/h/pulse

δka
xx 98,021.66 m/s2/pulse 98,020.97 m/s2/pulse 98,021.39 m/s2/pulse

δka
yy 98,015.23 m/s2/pulse 98,019.37 m/s2/pulse 98,015.54 m/s2/pulse

δka
zz 98,036.94 m/s2/pulse 98,031.52 m/s2/pulse 98,036.56 m/s2/pulse
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Table 4. Cont.

Estimated Parameters Proposed Method Traditional Method Reference Values

δkg
yx 3.547′ 4.125′ 3.368′

δkg
zx −2.365′ −3.122′ −2.674′

δkg
zy 11.245′ 11.544′ 10.941′

δka
xy 9.124′ 9.426′ 9.221′

δka
xz 7.586′ 7.138′ 7.225′

δka
yx 1.747′ 1.529′ 1.596′

δka
yz −5.618′ −5.221′ −5.625′

δka
zx 3.027′ 3.291′ 3.171′

δka
zy 6.107′ 5.822′ 6.128′

δKAx2 −5.754 ppm −7.225 ppm −5.551 ppm

δKAy2 23.485 ppm 29.569 ppm 21.993 ppm

δKAz2 30.241 ppm 27.226 ppm 30.453 ppm

As shown in Table 4, the estimation accuracy of the proposed method is better than
the traditional method, especially the calibration parameters of gyros. The errors of gyro
biases estimated by the traditional method are 0.02 ◦/h to 0.03 ◦/h, using the proposed
method, the errors are only within 0.005 ◦/h. The errors of the gyro scale factors estimated
by the traditional method are more than 4 ppm.

Compared with the traditional self-calibration process, in a relatively short time,
the method proposed in this paper achieves high estimation accuracy, which can verify the
effectiveness of the proposed fast self-calibration method based on the backtracking scheme.

6. Conclusions

In the field of the rotational inertial navigation system, many fields (land and air-
craft) have put forward “three-self” performance requirements, namely self-checking,
self-alignment, and self-calibration. Although the traditional strapdown INS can realize
self-checking and self-alignment, it cannot realize self-calibration. In response to such
problems, dual-axis came into research, and the introduction of the dual-axis indexing
mechanism fundamentally solved the problem of self-calibration without disassembly
of IMU from the dual-axis turntable. Therefore, dual-axis RINS has received extensive
attention in the field of land navigation. The accuracy of the calibration parameters can
determine the navigation accuracy of RINS. The traditional self-calibration method needs
several hours to converge. To shorten the self-calibration time by more than 50 percent,
we propose a 39-dimensional online calibration Kalman filtering (KF) model to estimate
all calibration parameters. Error relationship between calibration parameter errors and
navigation errors are derived, which can be a theoretical guide for the design of calibration
rotation path. A backtracking filtering scheme is proposed to shorten the calibration pro-
cess. Experimental results indicate that the proposed method can shorten the calibration
process and improve the calibration accuracy simultaneously compared with the traditional
self-calibration method.

Author Contributions: J.L. designed and discussed the study, complied the models, conducted
the analysis, and interpreted the results. L.S. finished the experiment and analyzed the data. F.W.
supervised this study and wrote the manuscript. K.L. contributed to the discussion and background
of the study. L.Z. contributed to the discussion and polished English writing of the manuscript. All
authors have read and agreed to the published version of the manuscript.



Sensors 2022, 22, 5036 16 of 17

Funding: This work was supported by the General Project of Science and Technology Plan of Beijing
Municipal Education Commission (No. KM202010017011 and KM201910017006), Program of Beijing
Excellent Talents Training for Young Scholar (No. 2018000020124G089), the 2021–2023 Young Talents
Promotion Project of Beijing Association for Science and Technology, the Beijing Municipal Natural
Science Foundation (No. 4214070), Natural Science Foundation of Ningxia (2022AAC03757), Cross-
Disciplinary Science Foundation from Beijing Institute of Petrochemical Technology (No. BIPTCSF-
006), Beijing Urban Governance Research Base Project of North China University of Technology
(21CSZL34), National Natural Science Foundation of China (No. 42104175) and Teaching Reform
Project of Beijing Institute of Petrochemical Technology (No. ZDFSGG202103001).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: Thanks to Beihang University Wen Zeyang for the theoretical and experimen-
tal support.

Conflicts of Interest: No conflict of interest exists in the submission of this manuscript, and manuscript
is approved by all authors for publication. I would like to declare on behalf of my co-authors that
the work described was original research that has not been published previously, and not under
consideration for publication elsewhere, in whole or in part. All the authors listed have approved the
manuscript that is enclosed.

References
1. Jing, C.; Lei, W.; Zengjun, L.; Guohua, S.; Guojie, C. Calibration and data processing technology of gyroscope in dual axis

rotational inertial navigation system. Microsyst. Technol. 2017, 23, 3301–3309. [CrossRef]
2. Sui, J.; Wang, L.; Huang, T.; Zhou, Q. Analysis and self-calibration method for asynchrony between sensors in rotation INS.

Sensors 2018, 18, 2921. [CrossRef] [PubMed]
3. Chatfield, A.B. Fundamentals of High Accuracy Inertial Navigation; American Institute of Aeronautics and Astronautics:

Reston, VA, USA, 1997.
4. Wen, Z.; Yang, G.; Cai, Q. An improved calibration method for the IMU biases utilizing KF-based AdaGrad algorithm. Sensors

2021, 21, 5055. [CrossRef] [PubMed]
5. Liu, Z.; Wang, L.; Li, K.; Sui, J. An Improved Rotation Scheme for Dual-Axis Rotational Inertial Navigation System. IEEE Sens. J.

2017, 17, 4189–4196. [CrossRef]
6. Hua, M.; Li, K.; Lv, Y.; Wu, Q. A dynamic calibration method of installation misalignment angles between two inertial navigation

systems. Sensors 2018, 18, 2947. [CrossRef]
7. Bai, S.; Lai, J.; Lyu, P.; Xu, X.; Liu, M.; Huang, K. A system-level self-calibration method for installation errors in a dual-axis

rotational inertial navigation system. Sensors 2019, 19, 4005. [CrossRef]
8. Li, S.; Cheng, D.; Gao, Q.; Wang, Y.; Yue, L.; Wang, M.; Zhao, J. An improved calibration method for the misalignment error of a

triaxial magnetometer and inertial navigation system in a three-component magnetic survey system. Appl. Sci. 2020, 10, 6707.
[CrossRef]

9. Wu, Q.; Wu, R.; Han, F.; Zhang, R. A three-stage accelerometer self-calibration technique for space-stable inertial navigation
systems. Sensors 2018, 18, 2888. [CrossRef]

10. Ren, Q.; Wang, B.; Deng, Z.; Fu, M. A multi-position self-calibration method for dual-axis rotational inertial navigation system.
Sens. Actuators A Phys. 2014, 219, 24–31. [CrossRef]

11. Zhang, H.; Wu, Y.; Wu, W.; Wu, M.; Hu, X. Improved multi-position calibration for inertial measurement units. Meas. Sci. Technol.
2010, 21, 2010. [CrossRef]

12. Zheng, Z.; Han, S.; Zheng, K. An eight-position self-calibration method for a dual-axis rotational Inertial Navigation System. Sens.
Actuators A Phys. 2015, 232, 39–48. [CrossRef]

13. Syed, Z.F.; Aggarwal, P.; Goodall, C.; Niu, X.; El-Sheimy, N. A new multi-position calibration method for MEMS inertial navigation
systems. Meas. Sci. Technol. 2007, 18, 1897–1907. [CrossRef]

14. Jiang, Q.; Tang, J.; Han, S.; Yuan, B. Systematic calibration method based on 36-dimension Kalman filter for laser gyro SINS.
Hongwai Jiguang Gongcheng/Infrared Laser Eng. 2015, 44, 1579–1586.

15. Wen, Z.; Yang, G.; Cai, Q.; Sun, Y. Modeling and Calibration Of the Gyro-Accelerometer Asynchronous Time in Dual-Axis RINS.
IEEE Trans. Instrum. Meas. 2020, 70, 1–17. [CrossRef]

16. Song, T.; Li, K.; Sui, J.; Liu, Z.; Liu, J. Self-calibration method of the inner lever-arm parameters for a tri-axis RINS. Meas. Sci.
Technol. 2017, 28, 2017. [CrossRef]

17. Yan, G.M.; Yan, W.S.; Xu, D.M. On reverse navigation algorithm and its application to SINS gyrocompass in-movement Alignment.
In Proceedings of the 27th Chinese Control Conference, Kunming, China, 16–18 July 2008; pp. 724–729.

http://doi.org/10.1007/s00542-016-3171-1
http://dx.doi.org/10.3390/s18092921
http://www.ncbi.nlm.nih.gov/pubmed/30177629
http://dx.doi.org/10.3390/s21155055
http://www.ncbi.nlm.nih.gov/pubmed/34372290
http://dx.doi.org/10.1109/JSEN.2017.2703604
http://dx.doi.org/10.3390/s18092947
http://dx.doi.org/10.3390/s19184005
http://dx.doi.org/10.3390/app10196707
http://dx.doi.org/10.3390/s18092888
http://dx.doi.org/10.1016/j.sna.2014.08.011
http://dx.doi.org/10.1088/0957-0233/21/1/015107
http://dx.doi.org/10.1016/j.sna.2015.05.002
http://dx.doi.org/10.1088/0957-0233/18/7/016
http://dx.doi.org/10.1109/TIM.2020.3028436
http://dx.doi.org/10.1088/1361-6501/aa8758


Sensors 2022, 22, 5036 17 of 17

18. Li, W.L.; Wu, W.Q.; Wang, J.L.; Lu, L.Q. A fast SINS initial alignment scheme for underwater vehicle applications. J. Navigat. 2013,
66, 181–198. [CrossRef]

19. Chang, L.B.; Hu, B.Q.; Li, Y. Backtracking integration for fast attitude determination-based initial alignment. IEEE Trans. Instrum.
Meas. 2015, 64, 795–803. [CrossRef]

20. Chang, L.B.; Qin, F.J.; Li, A. A novel backtracking scheme for attitude determination-based initial alignment. IEEE Trans. Autom.
Sci. Eng. 2015, 12, 384–390. [CrossRef]

21. Song, T.; Li, K.; Wang, L.; Sui, J.; Wang, L. A rapid and high-precision initial alignment scheme for dual-axis rotational inertial
navigation system. Microsyst. Technol. 2017, 23, 5515–5525. [CrossRef]

22. Tang, Y.G.; Wu, Y.; Wu, M.; Wu, W.; Hu, X.; Shen, L. INS/GPS integration: Global observability analysis. IEEE Trans. Veh. Technol.
2009, 58, 1129–1142. [CrossRef]

23. Cai, Q.; Yang, G.; Song, N.; Liu, Y. Systematic calibration for ultra-high accuracy inertial measurement units. Sensors 2016, 16, 940.
[CrossRef] [PubMed]

24. Wu, Y.; Zhang, H.; Wu, M.; Hu, X.; Hu, D. Observability of strapdown INS alignment: A global perspective. IEEE Trans. Aerosp.
Electron. Syst. 2012, 48, 78–102.

25. Savage, P.G. Improved Strapdown Inertial System Calibration Procedures, Part 2, Analytical Derivations; WBN-14020-2; Updated
11 January 2018; Strapdown Associates, Inc.: Maple Plain, MN, USA, 2017. Available online: www.strapdownassociates.com
(accessed on 11 January 2018).

http://dx.doi.org/10.1017/S0373463312000318
http://dx.doi.org/10.1109/TIM.2014.2359516
http://dx.doi.org/10.1109/TASE.2014.2346581
http://dx.doi.org/10.1007/s00542-017-3286-z
http://dx.doi.org/10.1109/TVT.2008.926213
http://dx.doi.org/10.3390/s16060940
http://www.ncbi.nlm.nih.gov/pubmed/27338408
www. strapdownassociates. com

	Introduction
	Reference Definitions
	Sefl-Calibration Filtering Method Design
	IMU Error Model
	39-Dimensional Kalman Filtering Model
	Self-Calibration Parameter Error Excitation and Coupling Analysis

	Self-Calibration Process Based on Backtracking Scheme
	Experimental Results and Analysis
	Conclusions
	References

