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Abstract: The information about optical flow, i.e., the movement of pixels between two consecutive
images from a video sequence, is used in many vision systems, both classical and those based on
deep neural networks. In some robotic applications, e.g., in autonomous vehicles, it is necessary to
calculate the flow in real time. This represents a challenging task, especially for high-resolution video
streams. In this work, two gradient-based algorithms—Lucas–Kanade and Horn–Schunck—were
implemented on a ZCU 104 platform with Xilinx Zynq UltraScale+ MPSoC FPGA. A vector data
format was used to enable flow calculation for a 4K (Ultra HD, 3840 × 2160 pixels) video stream
at 60 fps. In order to detect larger pixel displacements, a multi-scale approach was used in both
algorithms. Depending on the scale, the calculations were performed for different data formats,
allowing for more efficient processing by reducing resource utilisation. The presented solution allows
real-time optical flow determination in multiple scales for a 4K resolution with estimated energy
consumption below 6 W. The algorithms realised in this work can be a component of a larger vision
system in advanced surveillance systems or autonomous vehicles.

Keywords: optical flow; multi-scale; 4K resolution; FPGA; real-time processing; vision system;
Lucas–Kanade algorithm; Horn–Schunck algorithm

1. Introduction

Motion detection is one of the most important elements in the field of image processing
and analysis. This motion can result from a change in the position of an object, a camera or
both of them. For a human, this task is easy and natural, even when comparing just two
images, as in Figure 1. In addition, this is due to our evolutionary adaptation, as movement
usually means a potential threat that needs to be quickly analysed and reacted to.

In the simplest case, the motion can be detected by subtracting two subsequent frames
from a video sequence. This allows to see where the movement (change) has occurred,
but does not provide significant information about its direction and speed. However, this
information is essential in more advanced vision systems. Hence, the concept of optical
flow was introduced, i.e., a vector field describing the movement of a pixel between two
images from a sequence, in which two values are associated with each pixel—its horizontal
and vertical displacements. The ratio of these two values makes it possible to determine
the direction of the movement, while their magnitude allows to determine the speed.

Algorithms that perform this type of task are increasingly used in everyday life. They
are very popular in autonomous vehicles for detecting and tracking pedestrians or other
vehicles. They are also widely used in aerial platforms for obstacle detection, stabilisation,
and navigation. Other areas, in which optical flow determination algorithms are used,
include monitoring and surveillance systems, gesture recognition and control, 3D scene
reconstruction, self-displacement estimation, object segmentation, and depth estimation.
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Figure 1. Exemplary frames from Camera motion sequence [1]. (a) Previous frame; (b) next frame.

In the last 40 years, many different methods have been proposed to determine optical
flow. The first group of methods is based on gradient calculations, analysing the spatial and
temporal movements of pixels and then finding a minimum of certain functions. Examples
of such algorithms include the work of Horn and Schunck (HS) [2] or Lucas and Kanade
(LK) [3]. They are simple yet effective and relatively easy to parallelise, thus they can
operate in real time. These methods are presented in more detail in Section 2. The research
on more efficient ways to determine the flow has led, over time, to the use of variational
methods, such as TV-L1 [4], which is based on the HS algorithm.

The second group consists of block methods, sometimes called correlation methods, in
which the operation scheme is based on determining the maximum correlation of a certain
area between two frames. The displacement of this area is equivalent to the determined
optical flow. The most widely used metric in this task is SSD (sum of squared differences)
in a small neighbourhood (context) W. In this type of methods, as the calculations in
bigger neighbourhoods are very costly, many scales are often used, e.g., in the work of
Anandan [5]. In addition, a common approach is to restrict the analysis to predetermined
characteristic points (e.g., corners). This results in a sparse flow, but the results are less
prone to errors. However, to obtain dense flow, such as those in gradient-based algorithms,
an additional operation (potentially a complex interpolation) is needed.

The third group contains the approaches based on phase properties and analysis
in the frequency domain, which was first proposed in the work of Fleet and Jepson [6].
Noticeable differences in results can be caused by, for example, changes in illumination,
to which phase methods are much more robust. These methods use Gabor filters and
the Fourier transform. However, the biggest disadvantage of the phase-based approach
is its high computational complexity and the need to use hardware platforms that allow
parallel computations. Therefore, there are relatively few publications dedicated to them in
the literature.

More popular, especially in recent years, is another group of methods. The main
limitation of gradient-based algorithms is the assumption of a small pixel displacement.
The proposed new approach has enabled the detection of larger ones, as it is based on the
detection and matching of features points and then on the minimisation of a certain function.
Therefore, solutions such as SIFT Flow [7] have been proposed, where a well-known SIFT
(scale-invariant feature transform) algorithm is used to detect and match feature points
and later calculate optical flow, regardless of the displacement between frames. To obtain
dense flow, an energy function is used in which assumptions of a constant pixel brightness
and smoothness of the flow are included. Another solution of this type is LDOF (large
displacement optical flow) [8], in which the authors match specific regions determined
by a segmentation algorithm using multiple scales. Interestingly, the matching uses the
Horn–Schunck method, as it can find a better candidate than the nearest neighbour method.
To obtain a dense flow from a sparse one, a variational approach is used, in which multiple
elements are taken into account: pixel brightness, gradient, matched regions, and detected
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edges. However, these methods are computationally demanding and not suitable for
real-time operation.

In recent years, neural networks have become very popular in many tasks, with
particular emphasis on convolutional networks and deep learning. Therefore, a new group
of algorithms has also emerged for the optical flow determination task, which is based on
deep convolutional neural networks (DCNNs).

First of the notable solutions was FlowNet [9], where two architectures were used:
FlowNetSimple, in which two images were fed to the input of the network as one with
a larger third dimension, and FlowNetCorr with a correlation layer, where the merging
of features from two images took place in a small neighbourhood. A continuation of
this work resulted in the publication of FlowNet 2.0 [10] and FlowNet 3.0, which better
handle disruptions and small displacements, ensures smoother flow and better preserved
edges. Another solution is SPyNet [11], which uses a pyramid of images and an individual
network (with only 5 layers) for each of 5 scales, with the networks trained independently.
A certain development of SPyNet is Deeper SPyNet [12] with several improvements to
the network structure to reduce the dimensions of the convolutional masks and to add
more layers.

Currently, one of the best networks for optical flow is LiteFlowNet [13], which uses
a multi-scale approach. However, in this case, instead of generating a pyramid of images,
a pyramid of features was generated. Thus, in the warping stage, modifications were
performed in the feature space rather than by moving pixels in the image. The applica-
tion also uses regularisation to reduce the influence of noise and smooth the flow, while
conserving the edges. The continuation of the work resulted in LiteFlowNet2 [14] and
LiteFlowNet3. Compared to their predecessor, these networks yield higher accuracy flow
in shorter time, as the authors made some changes to the training process and the architec-
ture of the network. A solution with a comparable accuracy and size to LiteFlowNet2 is
PWC-Net [15] and its successor PWC-Net+. The authors used a similar approach—in the
multi-scale method, a feature pyramid is constructed instead of an image pyramid. The
whole structure of the method is quite complex, as it uses different networks for feature
extraction, optical flow determination, and post-processing of the flow.

In summary, in the optical flow determination task (as in many others), DCNN-based
solutions have become state of the art in terms of accuracy. The trend in new solutions
is not only to increase the accuracy, but also to reduce the number of parameters of the
network and the processing time. However, they cannot process very high-resolution video
streams in real time due to their complexity and number of parameters—the best solutions
(such as LiteFlowNet2) can process up to 25–30 frames per second on Nvidia 1080 GTX
GPU for the images of size 1024 × 436 pixels, which is nearly 20× smaller than a frame in
4K resolution. They also require a huge amount of training data and do not have as strong
of a theoretical background as the “classical” methods do.

Currently, the main challenges in the field of optical flow are the occurrence of large
displacements and overlaps, accurate detection of object edges, removing the artefacts,
correct operation in different weather conditions, and processing high-resolution data
in real time. One of the mentioned problems—detection of large displacements—can be
solved by using the multi-scale method. The reason for its use is due to the assumptions
present in the “traditional” methods, which only allow for the correct determination of
small displacements. More details about this method are presented in Section 2.3.

Many solutions published have been realised on a general purpose processor. How-
ever, several complex methods are too computationally demanding to satisfy the re-
quirement of working in real-time, especially for high-resolution video streams. Cur-
rently available cameras allow high-resolution image acquisition—from the HD standard
(1280 × 720 pixels) through Full HD (1920 × 1080 pixels) to 4K (3840 × 2160 pixels). This
improves the accuracy of the analysis, but at the same time presents a major computational
challenge. Interesting alternatives can be found in the literature, such as ref. [16] in which
the authors calculate the flow using a neural network for 4K images reduced 4× in each
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dimension and then reconstruct it in the original resolution—however, with this approach,
there is a risk of losing some details. With the increasing popularity of embedded systems
that enable the acceleration of specific calculations, multiple vision-based algorithms have
been implemented on them, presenting real-time operation with low energy consump-
tion. Therefore, optical flow algorithms can also be implemented on devices operating in
a parallel manner, such as graphics processing units (GPUs) or field programmable gate
arrays (FPGAs). In both cases, numerous solutions have already been published—for the
former, mainly DCNN-based, which are outside the scope of this work, while for the latter,
a comprehensive review is presented in Section 3.

The main contributions of this paper are as follows:

• Proposition of an architecture able to process Horn–Schunck and Lucas–Kanade
optical flow computation algorithms in multi-scale versions in real-time in Ultra HD
(4K) resolution on an FPGA platform, which, to our best knowledge, has not been
done before.

• Efficient implementation of the multi-scale method, taking advantage of processing
different number of pixels simultaneously depending on the scale and without using
additional external memory to store temporal values.

The structure of the paper is as follows. Section 2 presents theoretical aspects of
the optical flow determination by the HS and LK algorithms along with the multi-scale
method. Section 3 is devoted to the publications in which optical flow algorithms were
implemented on FPGA platforms. In Section 4, the proposed hardware implementation
of the OF algorithms is presented in details. The evaluation of the proposed solution is
presented in Section 5, while the last Section 6 contains a summary of the implementation,
along with ideas for future work.

2. The Horn-Schunck and Lucas-Kanade OF Computation Algorithms

To obtain correct optical flow values using gradient-based optical flow algorithms,
certain assumptions have to be met. The first is the small displacement of the object between
two consecutive frames, which is usually met for objects that move slowly. In other cases,
additional modifications are necessary—e.g., increasing the frame rate (fps) in the image
acquisition device or using a multi-scale method. The second assumption is the constant
pixel brightness (in greyscale) between consecutive image frames. For two frames captured
at moments in time, denoted as t and t + 1, the equation associated with the pixel brightness
for the image I can be written as Equation (1) and differentiated with respect to time, as in
Equation (2).

I(x(t), y(t), t) = I(x(t + 1), y(t + 1), t + 1) = const (1)

dI(x(t), y(t), t)
dt

= 0 (2)

where x and y correspond to the horizontal and vertical location of the pixel in the image.
When the expression is expanded into Taylor series, an approximation can be made by

omitting derivatives of orders higher than the first. This yields the initial Equation (3) in
gradient optical flow methods.

∂I
∂x

∂x
∂t

+
∂I
∂y

∂y
∂t

+
∂I
∂t

= 0 (3)

where:
∂I
∂x , ∂I

∂y—spatial derivatives,
∂I
∂t — temporal derivative,
∂x
∂t , ∂y

∂t —optical flow.

This equation can be written in a more compact form (Equation (4)), using the pixel
offset defined as (u, v).

Ixu + Iyv + It = 0 (4)
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In a general case, it is impossible to obtain an unambiguous solution of the equation
with two unknowns (u, v). For this reason, several methods have been proposed in the
literature to solve this problem—both global and local ones. In the global methods, the
features of the entire image are taken into account, while in the local methods, the value of
the determined flow is obtained only on the basis of the neighbouring pixels (usually by
calculating their average). In this work, both approaches are presented in the subsections
below and then implemented on a hardware platform—the HS algorithm (global method)
and the LK algorithm (local method).

2.1. Horn–Schunck Algorithm

In the work of Horn and Schunck [2], the authors proposed an additional assumption
to solve Equation (4) that the optical flow should be smooth over the entire image. Therefore,
for each pixel, the calculated flow is similar in a small neighbourhood. Such a problem
formulation made it possible to reduce it to the minimisation of a function denoted as
Equation (5). In the expression, two parts can be distinguished. One is responsible for
the constant brightness of a pixel (like in Equation (4)). The other is responsible for the
regularisation of the flow across the image, expressed as the sum of the squared magnitudes
of the spatial gradients calculated on flow components u and v. Its effect can be controlled
by changing the constant numeric value of the parameter α.

E =
∫∫

[(Ixu + Iyv + It)
2 + α2(||∇u||2 + ||∇v||2)]dxdy (5)

The Horn–Schunck (HS) algorithm is a global method for determining the optical flow.
Therefore, a global minimum of the function is searched for, whose increasingly accurate ap-
proximations can be obtained in an iterative manner using the formulas Equations (6) and (7).

un+1 = un −
Ix(Ixun + Iyvn + It)

α2 + I2
x + I2

y
(6)

vn+1 = vn −
Iy(Ixun + Iyvn + It)

α2 + I2
x + I2

y
(7)

where:

un, vn—average velocity in the neighbourhood.

2.2. Lucas–Kanade Algorithm

Lucas and Kanade [3] proposed a different approach to solve the Equation (4). Instead
of searching for the global minimum of a function, the authors considered a small neigh-
bourhood of each pixel. This idea is based on the observation that a pixel moves in the same
way as its nearest neighbours. Therefore, the assumption introduced in their algorithm
(LK) only needs to be satisfied locally, contrary to the HS algorithm. For n pixels from the
surrounding area, denoted as p1, p2, . . . , pn, the equation related to the pixel brightness can
be written in matrix form as Equation (8).

Ix(p1) Iy(p1)
Ix(p2) Iy(p2)

...
...

Ix(pn) Iy(pn)


(

u
v

)
= −


It(p1)
It(p2)

...
It(pn)

 (8)
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To simplify the notation of subsequent calculations, the following symbols can be
introduced in Equation (9).

A =


Ix(p1) Iy(p1)
Ix(p2) Iy(p2)

...
...

Ix(pn) Iy(pn)

, d =

(
u
v

)
, b = −


It(p1)
It(p2)

...
It(pn)

 (9)

In the expression obtained in this way, there are more equations than unknowns, thus
the problem posed can be reduced to the minimisation of the expression of Equation (10),
as proposed by the authors of the algorithm.

Ad = b −→ min ‖Ad− b‖2 (10)

To determine the solution of d, the equation was multiplied by ATW on both sides,
which led to Equation (11). The weight matrix W takes into account a different impact of
the pixels depending on their distance from the analysed pixel. In the simplest case, W
can be a unitary matrix, while using a Gaussian-like mask increases the weights of the
closest pixels.

(ATWA)d = ATWb (11)

This equation can also be written in equivalent form (Equation (12)), in which the
products of individual derivatives are summed together with the corresponding weights wi.(

∑ wi Ix Ix ∑ wi Ix Iy

∑ wi Ix Iy ∑ wi Iy Iy

)(
u
v

)
= −

(
∑ wi Ix It

∑ wi Iy It

)
(12)

The existence of a solution to this equation depends on the invertibility of the matrix
ATWA. In other words, if its determinant is different from 0, there is an optical flow
expressed by Equation (13). (

u
v

)
= (ATWA)−1 ATWb (13)

In reality, the invertibility of the matrix ATWA does not always guarantee a correct
solution. For this reason, additional conditions are proposed in the literature in which
the eigenvalues of this matrix are taken into account—they cannot be too small, and their
quotient cannot be too large. Determining whether the eigenvalues of a matrix satisfy these
conditions is usually done by a comparison with a threshold.

2.3. Multi-Scale Method

In many practical applications, the presented optical flow calculation algorithms are
not sufficient, mainly due to the presence of fast moving objects or insufficiently high
sampling rate of the acquisition device. In such situations, the multi-scale approach is most
widely used. It differs from the standard version (i.e., single scale) in the usage of the same
image in multiple resolutions during the calculations.

First, an image pyramid is constructed for each of the input images that are used to
calculate the optical flow as in [5]. The frame is downscaled multiple times (usually no
more than 3, which means 4 scales in total) and the dimensions of the image are usually
reduced twice between the scales. Next, the optical flow is determined for the pair of
images in the smallest scale (“top of the pyramid”) according to the selected algorithm
(HS, LK or other). The resulting flow is then upscaled to the size of a larger scale—both
the dimensions of the vector field and its values are increased (usually twice). Then, the
previous frame is modified according to the optical flow by shifting the pixels to calculated
places (this is often referred to as warping). The purpose of such a procedure is to make
a motion compensation, so in larger scales, the assumption of a small pixel displacement
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is not violated. Then, using a modified previous frame and a downscaled current frame,
the optical flow is calculated again, but this time in a larger scale. The entire computation
scheme is repeated until the flow is calculated for a pair of images in the initial size.

Figure 2 shows a schematic computation procedure of the optical flow using the multi-
scale method using an exemplary sequence Camera motion from the MIT CSAIL dataset [1].
It can be concluded that in smaller scales, the optical flow gives rough information about
the overall object displacement, while in larger scales, the accuracy of the flow is increased.

Figure 2. Optical flow calculation scheme in the multi-scale method. An image pyramid is generated
for both frames from the sequence. Then, the optical flow is determined in the smallest scale, and its
results are used to modify the previous frame to perform the motion compensation. Next, the optical
flow is calculated in a bigger scale and the motion compensation is performed again—this procedure
continues to the biggest scale.

3. FPGA Implementations of Optical Flow Methods

Because of the considerable complexity of the hardware implementation of algorithms
on an FPGA platform, most published applications for optical flow determination have
been realised using gradient Lucas–Kanade and Horn–Schunck methods, which are rela-
tively simple. On the other hand, many complex algorithms are not suitable for hardware
implementation in a pipelined system because of the operations performed or insufficient
amount of available computing resources. However, apart from implementations of gradi-
ent methods, several papers can be found in the literature where other approaches have
been used to determine optical flow on an FPGA platform.

In the work [17], the optical flow calculation was based on tensors that determine the
orientation in the spatio-temporal domain. Using navigation as an exemplary task, the
authors noted that the speed of obtaining results is more important than their accuracy and
achieved a processing of 640 × 480 @ 64 fps video stream. The computations performed
on the tensors are very similar to those in the Lucas–Kanade algorithm. The authors used
temporal smoothing over 5 frames and a LUT (Look-Up Table)-based divider to reduce
resource utilisation.

A similar approach to the previous work was used in [18], where the authors compared
implementations on two platforms commonly used in vision-based tasks: FPGA and GPU.
As a result, a processing of 640 × 480 @ 150 fps was realised for GPU, while for FPGA, at
64 fps. However, according to the authors’ calculations, with applying some optimisations,
using a better platform and a memory controller, the frame rate could be increased to 300.
Perhaps the most interesting conclusion is the similarity of the results with 12× longer
implementation time on FPGA, which requires additional skills and experience for efficient
logic design. However, compared to GPUs, FPGAs are superior in several other aspects,
which include the ability to operate without a computer as a host, smaller size and power
consumption, and higher flexibility in programming.
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Among the hardware implementations of optical flow calculation on an FPGA plat-
form, block methods have also been used. In one of such works [19], a processing of
640 × 480 @ 39 fps video stream was realised using SAD (sum of absolute differences)
matching. An image pyramid of three levels was used in the algorithm to enable the
detection of larger displacements. In the algorithm, constant pixel brightness was assumed
as well as a similar movement of the blocks belonging to the same object, which led to the
minimisation of an energy function to eliminate irregular matches and smooth the flow.
The results obtained in the work were better than in classical gradient methods, but the
quality of the matching depends on many factors, including block size, search region, and
starting point.

3.1. Lucas-Kanade FPGA Implementations

Several implementations of the LK algorithm on FPGA platform have already been
published in the literature. In the vast majority of them, the authors focused on a single-scale
version, using similar components: low-pass filtering, derivatives calculation, summation
and matrix inversion. In addition, in most cases, an external memory controller was also
used, which was necessary to store and read the previous frame. Sometimes temporal
smoothing over multiple frames was used to reduce the impact of disturbances occurring
on single frames, but at the cost of increased memory utilisation.

In one of the first works [20] to address the implementation of the LK algorithm,
an architecture that allows the processing of 320 × 240 @ 30 fps video stream was de-
scribed. A floating point version of the matrix inversion module was used to reduce
resource utilisation.

Further work on the LK algorithm resulted in significant improvements in the system
throughput. In the publication [21], an architecture was presented that allowed the process-
ing of 800 × 600 @ 170 fps video stream. Thanks to the usage of high frame rate cameras
that allowed for more frequent image acquisition, the transitions between successive frames
were smoother and resulted in a reduction of used resources.

In a subsequent study by the same authors [22], the system realised allowed the
processing of 640 × 480 @ 270 fps video stream. Several versions of the LK algorithm were
presented, including ones that use a floating-point or a fixed-point module for the matrix
inversion. In addition, a version of the algorithm that returns approximate results at the
cost of a very small resource utilisation was also presented.

A partially modified approach to the Lucas–Kanade algorithm was used in the work
of [23]. The proposed system allowed processing of 1200 × 680 @ 500–700 fps video stream.
This approach differed from the traditional one, as the calculations were performed for
groups of several pixels instead of individual ones. In addition to this, a verification of the
results was applied—values smaller than a set threshold were zeroed.

Reducing the use of external memory was the motivation of the work [24], which was
able to process 800 × 600 @ 196 fps video stream. The idea of reduced external memory
usage was based on the fact that only 25% of pixels were stored for each frame. In the
case of the first image, pixels with odd indexes were saved into memory; for the second,
pixels with even indexes; for the third, again with odd indexes, and so on. Based on the
pixels from different frames, an image was reconstructed, which then fed up the module
responsible for calculating the derivatives. The image fragments stored in memory were
the results of Gaussian blurring, so the differences between pixels on successive frames
were small and allowed correct results to be obtained.

In [25], the Vivado HLS tool was used for the hardware implementation of the Lucas–
Kanade algorithm for the processing of 1920 × 1080 (Full HD) @ 123 fps video stream.
In this work, a different scheme for summing elements in the window was suggested.
Instead of repeatedly calculating the sum of elements in columns, these values were stored
in additional registers, adding to them elements from the right-hand side column of the
sliding window and subtracting elements from the left-hand side column. This allowed
fast and effective summations in windows of size up to 53 × 53 pixels (px), making the
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results more consistent for moving objects. Several optimisations of resource utilisation
were also proposed—specifically for Block RAM and DSP multipliers.

To determine the motion of fast-moving objects, the number of image frames captured
per second can be increased if the camera allows that. Increasing the image acquisition rate
reduces the pixel displacement between two consecutive frames. If this approach is not
feasible, a multi-scale method can be used in the algorithm. However, due to its complexity
and the necessity of a pyramid image generation, such hardware implementations are rare.

In work [22], a multi-scale version of the Lucas–Kanade algorithm was realised for
640 × 480 @ 32 fps video stream, fulfilling the requirement for real-time processing. In
addition to the modules used in the single-scale version, several additional components
were added. To generate a pyramid of images, an approach based on selecting every second
pixel in every second row was used, while in order to upscale the image twice, bilinear
interpolation was used. A separate module was dedicated to image warping and motion
compensation. The results obtained were median-filtered to remove single incorrect values
and then summed from different scales to visualise the final result.

In the literature, there are examples of simplified approaches to dividing operation dur-
ing matrix inversion in the LK algorithm. The authors of the paper [26] assumed that since
the pixel displacement is small, the calculated flows would have small values—specifically,
between −5 and +5 pixels. Thus, it was possible to limit the output values of the divider,
and the operation itself was reduced to bit shifts and cascades of comparators. This limita-
tion of the flow values forced the authors to use a multi-scale method with three pyramid
levels, which was controlled by a state machine. Unfortunately, neither the resolution nor
the frequency of the processed data was included in the paper.

Our previous work [27] of the multi-scale LK algorithm on FPGA was able to process
1280 × 720 (HD) @ 50 fps video stream. Typical modules used in the LK algorithm were
implemented—conversion to greyscale, Gaussian blur, derivatives calculation, summations
in a window 5 × 5 px, matrix inversion and thresholding of the results. The modules used
in the multi-scale version (downscaling, upscaling, warping and flows summation) were
implemented similarly to those found in the work [22]. The lessons learnt and ideas for
possible improvements were used to implement the LK algorithm in this work.

Some works focus on specified optical flow processors, realised as VLSI architectures.
In one of these works [28] a multi-scale version of the LK algorithm was implemented
firstly on FPGA, then on designed VLSI processor. On the latter, the authors achieved
processing of 640 × 480 (VGA) @ 30 fps video stream with three scales, using only 600 mW
of energy. The authors used a filter that combined information from the next frame with
the current frame instead of using them separately. The proposed architecture was also
able to process four pixels simultaneously, using four processors.

Another work is [29], in which the authors proposed adaptive multi-scale processor
able to process the LK algorithm with different density, precision, energy consumption and
number of scales (up to 4). The architecture was verified on the Nexys 4 FPGA board, and
the processor itself can process 640 × 480 (VGA) @ 16 fps video stream, while using only
24 mW of energy.

In conclusion, there are multiple solutions working in real time on the FPGA platform,
whose crucial parameters are gathered in Table 1. However, most of the implementations
were realised for the single-scale version of the LK algorithm, which is the limiting factor for
detecting bigger pixel displacements, e.g., for fast-moving objects. Another drawback of the
existing solutions is a mostly low video resolution that can be processed, reducing or even
completely missing some visual information (such as small objects). The only solutions
working with the most popular high-resolution cameras are [25] (Full HD) and [27] (HD),
but the never-ending technological evolution hints towards even higher ones, such as
4K. Among the multi-scale versions of the LK algorithm, some existing solutions were
realised as very efficient custom processors while others on FPGAs, but all working in very
low resolution (VGA), often insufficient for modern applications. The closest competitor
is our previous work [27], which is capable of processing two scales in HD resolution.
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Therefore, we propose an architecture able to process the LK algorithm in 4K resolution in
real time, using multiple scales and with very small energy consumption, making it the
first implementation with such parameters.

Table 1. Hardware implementations of the LK algorithm on FPGA platform. Our solution works for
the highest video resolution compared to these available in the literature. It also uses the multi-scale
approach, which was realised only for VGA and HD resolutions.

Implementation Scales Resolution FPS Platform

Diaz [20] 1 320 × 240 30 Xilinx Virtex 2000-E

Diaz [21] 1 800 × 600 170 Xilinx Virtex II XC2V6000-4

Barranco [22] 1 640 × 480 270 Xilinx Virtex4 XC4vfx100

Kalyan [23] 1 1200 × 680 500 Altera Cyclone II

Seong [24] 1 800 × 600 196 Xilinx Virtex-6 LX760

Bagni [25] 1 1920 × 1080 123 Xilinx Zynq 7045-2

Murachi [28] 3 640 × 480 30 Custom 90nm CMOS

Smets [29] 3 640 × 480 16 Custom 40nm CMOS

Hsiao [26] 3 - - Xilinx Virtex-4 FX100

Barranco [22] 4 640 × 480 32 Xilinx Virtex4 XC4vfx100

Blachut [27] 2 1280 × 720 50 Xilinx Virtex-7 VC707

This work 2 3840 × 2160 60 Xilinx UltraScale+ ZCU 104

3.2. Horn-Schunck FPGA Implementations

One of the first works in which a hardware implementation of the Horn–Schunck
algorithm on an FPGA platform was realised is [30], where the processing of 256 × 256 @
60 fps video stream was achieved. To compute the derivatives, a “cube” of neighbouring
2 × 2 × 2 pixels was used. The third dimension of that “cube” was time, i.e., the previous
and the current frame. It was verified that 50–500 iterations are usually sufficient in the HS
algorithm. However, in this work, subsequent iterations were performed using consecutive
pairs of frames. This approach worked well, as the differences between frames were small.

In another paper [31], a hardware implementation of the Horn–Schunck algorithm
enabled the processing of 320× 240 video stream in real time with only eight iterations. The
distinguishing feature of this work was a different way of storing data in memory—the pix-
els for computing the derivatives were placed in different blocks of memory. This approach
allowed multiple values needed for further calculations to be read out simultaneously.

In the next work [32], the processing of 256× 256 @ 257 fps video stream was achieved.
Such a high frequency was obtained by using approximate division results, which can be
implemented as bit shifts, LUT tables or cascades of comparators. Additionally, different
clocks were used in operation to reduce the influence of the critical path. In the solution,
data buffering was also used—the pixels were transferred from an external RAM via VDMA
(video direct memory access) to a FIFO (first in, first out) queue and then to the input of the
HS module.

Another work is [33], where the processing of 640 × 512 @ 30 fps video stream was
carried out with 30 iterations of the HS algorithm. According to the authors, the presented
architecture is also capable of handling 20 fps of a 4K video stream. Small and limited
flow values were assumed, which allowed the use of a LUT table to obtain division results,
saving hardware resources. Two implementation approaches were also tested—iterative
with the use of an external RAM and pipelined—the latter was found to provide much
higher data throughput despite the higher resource utilisation.

In the work [34] an FPGA platform was used as an accelerator for cloud motion
analysis using the Horn–Schunck algorithm. According to the authors, the proposed
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application is theoretically capable of processing video streams of up to 3750 × 3750 pixels
in real time. In order to speed up the computation, the derivatives were calculated only
once, and subsequent iterations of the algorithm were realised in a pipelined way to allow
more data to be processed simultaneously. As in many other works, a divider was used in
the form of a LUT table.

One of the works with the highest processing performance is [35], which is able to
process 1920 × 1080 (Full HD) @ 60 fps video stream with 32 iterations of the single-scale
HS algorithm. In this work, a pipelined architecture was also used instead of an iterative
one with the use of RAM, thus significantly increasing throughput. In order to operate in
real time and reduce resource utilisation, the divide operation was done only once for a pair
of frames. As a part of the experiments, different masks for computing the derivatives
and averaging were compared—it was found that the values of the derivatives have a key
influence on the results of the entire algorithm. The authors also presented an optimised
version of their solution, able to process 128 iterations at 84 fps—such a speed-up was
possible after omitting the pre- and post-processing. Compared to the reference software
model on a CPU, 128 iterations of the HS algorithm were executed 106× faster on the
hardware platform. This result confirms the validity of using an FPGA platform for the
optical flow determination in real time.

The only work in which the processing of 3840 × 2160 (4K) @ 48 fps video stream
was realised is [36]. The authors used a red-black SOR solver to decrease the number of
iterations for the 4-point neighbourhood. A design space exploration was performed as
a part of the work, taking into account different video resolutions, the number of iterations
and the values of the parameter α. The authors stated that α value of 5 is usually a good
choice, while 10–15 iterations of the HS algorithm are sufficient, taking into account the
increasing resource utilisation with each iteration. Different versions of the implementation
were prepared—high precision or high throughput. The algorithm runs on the Xilinx
VC707 platform using 11.27 W.

In terms of the multi-scale HS algorithm, the number of publications is significantly
smaller. One of them is [37], in which the authors achieved the processing of 1920 × 1080
(Full HD) @ 60 fps video stream, using 4 custom WXGA processors (1280 × 800 pixels).
The architecture of a 2-scale algorithm using SOR solver was verified on the Xilinx Kintex-7
FPGA platform. Among the improvements proposed by the authors are the modified
multi-scale method, initial value creation, and adaptive acceleration parameter selection. In
the work, different numbers of iterations were used for the scales—32 for the smaller one
and 8 for the bigger one. The authors also stated that their solution can possibly process
a 4K video stream, but 16 processors would be needed.

Another implementation of the multi-scale HS algorithm, able to process 1024 × 1024
@ 29 fps video stream, was presented in [38]. The authors used 3 scales and, similarly to the
previous work, different numbers of iterations for different pyramid levels—precisely 20,
10 and 5 for the biggest one. As a part of the work, a design space exploration was done,
taking into account different precisions (16 and 32 bits), interpolation methods (bilinear
and bicubic) and processing schemes (iterative, partial pipeline, fully pipeline, and fully
pipeline parallel). The last processing scheme allows for calculating multiple neighbouring
pixels at the same time by duplicating necessary modules. However, it is not clear whether
any optimisations were made to avoid data redundancy.

In summary, just like in the case of the LK algorithm, there are multiple solutions of
the HS algorithm that work in real time on FPGA platforms, the most important param-
eters of which are gathered in Table 2. Works such as [33,34,36] were realised for ultra
high-resolution video streams, enabling the detection of smaller objects, but they lack
in the detection of bigger pixel displacements because of the used single-scale approach.
Moreover, in these implementations, the number of iterations of the HS algorithm is low
due to the high use of resources in every iteration. Among multi-scale versions of the HS
algorithm, only two works exist to our knowledge—one realised on an efficient custom pro-
cessor working in Full HD resolution and the other in uncommon, similar to HD resolution,
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but with redundant operations on neighbouring pixels. Thus, we propose an architecture
able to process the HS algorithm in 4K resolution in real-time using multiple scales, with
high efficiency and very small energy consumption. We also do not use a red-black SOR
solver like in [36], as in our implementation, we update the flow values based on the
8-point neighbourhood. Compared with existing 4K solutions, we use a similar number of
iterations, but in multiple scales, along with additional modules responsible for scaling,
warping and data synchronisation between the scales, making it the first implementation
with such parameters.

Table 2. Hardware implementations of the HS algorithm on FPGA platform. Our solution can process
a video in 4K resolution, but in multiple scales, which is rarely found in the literature and was done
at most for Full HD resolution.

Implementation Scales Resolution Iterations FPS Platform

Martin [30] 1 256 × 256 1 60 Altera APEX 20K

Bahar [31] 1 320 × 240 8 1029 Altera Cyclone II

Gultekin [32] 1 256 × 256 1 257 Altera Cyclone II EP2C70

Kunz [33] 1 640 × 512 30 30 Altera Stratix IV

Kunz [33] 1 4096 × 2304 20 30 Altera Stratix IV

Johnson [34] 1 3750 × 3750 10 30 Xilinx Virtex-7 VC707

Komor. [35] 1 1920 × 1080 32 60 Xilinx Virtex-7 VC707

Komor. [35] 1 1920 × 1080 128 84 Xilinx Virtex-7 VC707

Johnson [36] 1 1920 × 1080 15 200 Xilinx Virtex-7 VC707

Johnson [36] 1 3840 × 2160 15 48 Xilinx Virtex-7 VC707

Imamura [37] 2 1920 × 1080 32, 8 60 Custom 90nm CMOS

Bournias [38] 3 1024 × 1024 20, 10, 5 29 Altera Stratix V

This work 2 3840 × 2160 10, 5 60 Xilinx UltraScale+ ZCU 104

4. The Proposed OF System

To implement and test particular components of the LK and HS algorithms, we
used the Xilinx Zynq UltraScale+ MPSoC device, available on a ZCU 104 platform. To
generate a video pass-through, we followed the steps of the Xilinx example design (https://
docs.xilinx.com/r/3.1-English/pg235-v-hdmi-tx-ss/Example-Design (accessed on 30 May
2022)). The input video signal was transmitted from the computer via the HDMI 2.0 (High
Definition Multimedia Interface) interface. Computations in the video pass-through were
performed mainly using FPGA, but the ARM processor was also used, e.g., to control
the transfer of a previous frame with the external RAM memory using the AXI4-Stream
interface. The output image was sent via HDMI interface to a 4K monitor to visualise
the results. Figure 3 shows a simplified scheme of the system architecture used to run
the algorithms on the target platform. The 4ppc data format (4 pixels per clock) was
used, reducing the minimal frequency required for real-time processing in 4K resolution
to 150 MHz—more details about the data format are presented in the subsection below.
However, due to buffering during the data exchange with the external RAM, we had to
increase this value to 300 MHz. All of the modules described in this section were developed
using SystemVerilog HDL in Vivado Design Suite IDE 2020.2.

https://docs.xilinx.com/r/3.1-English/pg235-v-hdmi-tx-ss/Example-Design
https://docs.xilinx.com/r/3.1-English/pg235-v-hdmi-tx-ss/Example-Design


Sensors 2022, 22, 5017 13 of 32

Figure 3. Simplified scheme of the system architecture.

4.1. Video Processing in 4K

As already pointed out in Section 1, the real-time processing of a 4K video stream is
a challenging task, especially in the case of complex or multiple calculations on each pixel,
just like in gradient-based optical flow algorithms. Due to the huge amount of data that
needs to be processed every second, it is generally impossible to run them on a typical
CPU in real time. Therefore, GPUs, FPGAs or even dedicated hardware solutions are used,
which can process data in a parallel manner. FPGAs are much more energy efficient, more
flexible in programming and do not require a host computer, like GPUs. They are also
far more easy to use than a custom hardware (e.g., VLSI). However, the processing of
a 4K video stream @ 60 fps requires a pixel clock frequency of nearly 600 MHz, which is
close to the limit of current FPGA platforms. Using such a high frequency may also cause
undesirable routing and timing problems.

Therefore, the processing of multiple pixels per clock cycle can be considered—if
two pixels appear on the input at the same time, two pixels must be output simultaneously.
In this case we can lower the clock frequency to around 300 MHz. If we put four pixels
on the input, we need to process and output four values at the same time, reducing the
clock frequency to 150 MHz and so on. The data format, regarding the number of pixels
processed at the same time, is denoted as Xppc (X pixels per clock) and is also referred to
as vector format.

In case of a pixel-wise processing, X times more resources are needed to compute
X pixel values, e.g., during conversion from RGB to greyscale. However, in the case of
a context operation, it is more difficult, as neighbouring pixels may appear in the same clock
cycle, in the previous one or in the next one. Therefore, a joint context has to be created to
later select X contexts for X pixels, just like in the work of [39]. A typical context generation
of size N × N px requires N2 registers and N − 1 delay lines, just like that presented in
Figure 4a. For the Xppc format, all registers and delay lines have X times more values, while
the joint context is of size (N + X − 1)× N px as in Figure 4b. As a consequence of the
data format used, some additional logic is necessary to perform context operations, reusing
pixels and intermediate values which belong to multiple contexts to avoid redundant
computations. The effective implementation of context operations has a big effect on the
performance and resource utilisation, as they are essential components of both the LK and
HS algorithms.

4.2. Optical Flow Algorithms

Apart from input/output video signals and communication with external RAM,
some components were used in both algorithms. The first step of the processing was the
conversion of the input frame from RGB colour space to greyscale. Next, a Gaussian blur
with a commonly used mask [1, 4, 6, 4, 1]/16× [1, 4, 6, 4, 1]/16 was applied to smooth the
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image. Then, two frames were needed simultaneously to compute the spatial and temporal
derivatives. The current frame, coming from the video input, was fed to the derivatives
module and written to external RAM, while the previous frame was read from RAM and
sent to the derivatives module. Another solution was also tested, which involved writing
the raw image (before Gaussian smoothing) to memory. However, this approach required
performing the blur on two frames at the same time, increasing resource usage, so it was
discarded. Derivatives calculation and further steps were performed differently for the LK
and HS algorithms, and they are described in respective subsections.

(a)

(b)

Figure 4. Comparison of context generation for different data formats. The 2ppc format can be
generalised to any Xppc. (a) Context generation for the 1ppc format; (b) context generation for the
2ppc format. Two central pixels are coloured in red and blue.

In both algorithms, the resulting flow was expressed using 13 bits—1 for the sign,
4 for the integer part, and 8 for the fractional part. This data format was justified by the
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assumption of a small pixel displacement, so the maximum flow was limited to the range
(−16,+16) pixels. If the flow during the calculations (in the LK or HS) exceeded ±16, it
was set to a maximum value (with a proper sign). After testing different numbers of bits for
the fractional part, we concluded that 8 bits ensures a good compromise between accuracy
and the resulting hardware utilisation.

After obtaining the flow, the median filtering was applied in the window of 5 × 5 px
to remove individual outliers and improve the results. For this task, the Batcher odd–even
mergesort [40] was used separately for both flow components (each for 25 elements). Its
operation is based on comparing neighbouring values and merging smaller sorted subsets.
In the case of a hardware implementation on the FPGA platform, a parallelisation of
comparisons between multiple values is possible, which is undoubtedly a big advantage of
this approach. After 17 clock cycles, the middle element of a 25-element array was selected
and output from the median module.

Another component, which is common for both implemented algorithms, is a visuali-
sation, i.e., graphical representation of the displacement obtained for each pixel. The most
intuitive approach is to draw vectors on the original image whose directions and lengths
determine the directions and magnitudes of the pixel movement. In the case of a hardware
implementation, visualising a dense flow in this way can be problematic and difficult to
comprehend. Therefore, another method, based on HSV colour space representation, was
used, in which the colour corresponds to the direction of the pixel’s movement, while the
saturation is related to its speed in pixels per frame. To interpret the results presented in
this way, a so-called “colour wheel” as in Figure 5a is used.

(a) (b)

Figure 5. The optical flow visualisation method used. (a) Colour wheel; (b) exemplary result.

The first step of the visualisation was to calculate the angle of the vector formed by
the optical flow components u and v with the horizontal axis for each pixel. This operation
requires arctangent calculation, which is costly in terms of hardware resources; therefore,
a LUT table was prepared with pre-calculated values for all possible input vectors. Taking
into account the accuracy of the computations and the utilisation of hardware resources, it
was decided to set the number of values stored in the array to 2048, which translates into
an 11-bit input vector (the ratio between vertical and horizontal flow). The output of the
LUT table was set to a 10-bit angle in range [0◦, 90◦). Taking into account signs of both flow
components, the resulting angle (H component) was in the range [0◦, 360◦). The use of
LUT table for the limited range allowed to reduce the use of hardware resources and avoid
redundant data storage.

In addition to the vector angle, it was also necessary to determine its length using the
Euclidean norm. In this work, the vector lengths were limited to fit in the [0, 1] range of the
S component of the HSV colour space. However, if the maximum possible displacement is
known, a normalisation can be used. The third component (V) was set to the maximum
value for all pixels. Finally, to display the results on the monitor, a conversion to RGB
colour space was needed. A visualised optical flow (precisely the ground truth from the
MIT CSAIL Camera motion sequence [1]) is shown in Figure 5b. For easier perception on
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the monitor, the S and V components can be swapped, which results in black colour for
static background instead of white, without any effect on the visualised direction or speed
of the pixels.

4.2.1. Implementation of the Lucas-Kanade Algorithm

The first step that distinguishes between the LK and HS algorithms is the way of
computing the spatial derivatives Ix, Iy on a previous frame (from RAM) and the temporal
derivative It between the previous frame and the current one, coming from the camera. Var-
ious masks for the spatial derivative in both directions were analysed, including [−1, 0, 1]/2
and [−1, 8, 0,−8, 1]/12. After testing them on a few sequences, it turned out that the first
one ensures slightly better accuracy. In the case of a hardware implementation, it avoids
the division operation, limiting the resource utilisation and eliminating rounding errors,
and also reduces the latency of the module, which is even more important in the case
of a multi-scale version. In the case of the temporal derivative, the simplest subtraction
between the frames was realised. For all three derivatives, additional thresholding was
used—if the result was small (e.g., below 5), it was zeroed. This was motivated by the noise
that occurs in the source video signal. Finally, the derivatives calculated for each pixel
were output simultaneously. A simplified scheme for these calculations (for clarity for one
processed pixel, which translates to the 1ppc mode) is presented in Figure 6. In general
case, X contexts are generated for X pixels during derivative calculations, as in Figure 4b.

Figure 6. Scheme of calculating derivatives in the LK algorithm. Using context of size 3 × 3 px,
3 derivatives are calculated for one pixel. Image n−1 denotes the previous frame, while Image n
denotes the current one.

In the next step of the LK algorithm, the derivatives are multiplied, generating 5 val-
ues for each pixel as in Equation (14), which are later used for context generation and
summation in the window of size N × N px. Choosing the right N is a difficult task—on
one hand, a smaller window size allows to determine optical flow with more details (such
as small, thin objects) and to reduce resource utilisation, but with more errors. On the other
hand, a larger window size results in smoother flow (especially for bigger objects or high
video resolution), but at the cost of increased resource utilisation, latency, and sometimes
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undesirable smoothness. Therefore, as a compromise, N was set to 9 because of the used
multi-scale approach, which allows bigger displacements detection.

Ixx = Ix · Ix

Ixy = Ix · Iy

Iyy = Iy · Iy

Itx = It · Ix

Ity = It · Iy

(14)

Due to the data format used (4ppc), many identical summations were performed
multiple times (for different “central” pixels), which increased the resource usage. Precisely,
after derivatives multiplication, a joint context of size 9 × 12 px was generated; however,
a 9 × 6 px window was common for all 4 pixels. Therefore, they could be summed only
once and later added to the rest of the context (remaining 9 × 3 px windows for different
pixels). Due to the avoidance of redundancy, the number of summations was limited by
50%, significantly reducing hardware utilisation. Moreover, some of the summators were
implemented with LUTs and flip-flops, while others with DSPs to balance the usage of
different resource types, avoiding congestions and routing problems.

A simplified schematic of this method (for one product, e.g., Ixx) is presented in
Figure 7. Weights wi from Equation (12) were all assigned 1 to smooth the flow and reduce
the influence of erroneous “central” pixels. Another solution was also implemented and
tested—generating context for incoming derivatives and then performing their multiplica-
tion. This method significantly reduced BRAM usage, as the number of bits per pixel was
much smaller (27 vs. 85), but at a cost of considerably higher DSP/LUT/FF utilisation. This
approach, even with an effective split of the used resource types, resulted in congestions
and routing problems during the implementation of the multi-scale version, and thus it
was not used in the presented solution.

To obtain the optical flow for a given pixel, it is necessary to calculate Equation (13).
Equation (12) can be rewritten in the form of Equation (15), using A11 = ∑ Ixx, A12 = A21 =

∑ Ixy, A22 = ∑ Iyy, b1 = ∑ Itx and b2 = ∑ Ity. To solve this equation, the summation matrix
has to be inverted, which requires matrix determinant calculation, as in Equation (16).
Finally, the flow can be expressed as in Equation (17).

This calculation is very expensive in terms of resource utilisation on the FPGA platform,
as it requires a division operation. We used a fixed-point architecture; therefore, dividends
and divisors are big (46 bits each). However, to save resources, we only performed the
division operation once for each pixel, calculating the inverse of det A and then using the
result in multiplications. In this way, our dividend data width is 2, the divisor width is
46 and the result is expressed using 64 bits. This solution slightly degrades accuracy more
than in the case of division of the 46-bit dividend and 46-bit divisor, but the resource usage
is reduced significantly. (

A11 A12
A21 A22

)(
u
v

)
= −

(
b1
b2

)
(15)

det A = A11 · A22 − A12 · A21 (16)(
u
v

)
= −

(
A22 −A12
−A21 A11

)
·
(

b1
b2

)
· 1

det A
(17)

As noted in Section 2.2, sometimes additional thresholding based on the eigenvalues of
the summation matrix is used to remove possibly incorrect results. However, this operation
requires several multiplications and calculation of a square root for each pixel, which
considerably increases resource utilisation. It is also difficult to specify the appropriate
value of the threshold, especially when using the multi-scale method. Therefore, we
decided not to use any additional thresholding of the results. Figure 8 shows a simplified
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block diagram of the implemented Lucas–Kanade optical flow determination algorithm in
the single-scale version.

Figure 7. Scheme of the summation method for the 4ppc data format. The sum of non-white pixels is
calculated only once for the joint context, saving hardware resources.
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Figure 8. Block scheme of the single-scale LK algorithm.

4.2.2. Implementation of the Horn–Schunck Algorithm

A different set of operations is needed to obtain the optical flow according to the HS
algorithm. The first step requires the calculation of derivatives—spatial Ix, Iy and temporal
It. For this task, a context of size 2 × 2 × 2 px has to be generated with the time as the
third dimension (previous and current frame). Therefore, for both images a context of
size 2 × 2 px is generated. Marking the previous frame (from RAM) as I1 and the current
one as I2, the derivatives are calculated according to Equations (18)–(20). Similar as in the
LK method, an additional thresholding was used to zero the values which were smaller
than a set parameter. A scheme of derivatives calculation in the HS algorithm is shown in
Figure 9.

Ix =
1
4
[I1(i, j + 1) + I1(i + 1, j + 1) + I2(i, j + 1) + I2(i + 1, j + 1)

− I1(i, j)− I1(i + 1, j)− I2(i, j)− I2(i + 1, j)]
(18)

Iy =
1
4
[I1(i + 1, j) + I1(i + 1, j + 1) + I2(i + 1, j) + I2(i + 1, j + 1)

− I1(i, j)− I1(i, j + 1)− I2(i, j)− I2(i, j + 1)]
(19)

It =
1
4
[I2(i, j) + I2(i, j + 1) + I2(i + 1, j) + I2(i + 1, j + 1)

− I1(i, j)− I1(i, j + 1)− I1(i + 1, j)− I1(i + 1, j + 1)]
(20)

Figure 9. Derivatives calculation scheme in the HS algorithm. White pixels are from I1 (previous
frame), while grey pixels are from I2 (current frame). Using cube of size 2 × 2 × 2 px, 3 derivatives
are calculated for one pixel.

Calculation of the optical flow is done differently in the HS method—first, the flow
is initialised and then it is updated in an iterative manner based on neighbouring pixels.
Therefore, the number of iterations is one of the crucial parameters that affects the accuracy
of the results. However, the FPGA platform works very well in the case of pipelined data
processing instead of an iterative one. To perform multiple HS iterations in a pipelined
way, several identical modules for the flow calculation have to be generated and connected
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with each other, which is shown in Figure 10a. The other solution, not chosen in this work,
which requires re-using the same module and the external RAM to store intermediate flow
values, is shown in Figure 10b.

(a)

(b)

Figure 10. Methods for processing multiple iterations of the HS algorithm. (a) Pipeline approach;
(b) iterative approach.

In the flow initialisation step, Equations (6) and (7) were used. The denominator
in these equations is common and used in further iterative flow refinement, so to avoid
redundant operations, this value is calculated only once in the initialisation step and
marked as ψ as in Equation (21). 20 bits are allocated for it—1 for the integer part and 19
for the fractional part, as the possible values belong to (0, 1] range for integer α values. In
subsequent calculations, ψ value can be used in less resource-intensive multiplications than
division operations in every iteration.

Choosing the right value of α parameter, responsible for the flow regularisation, is not
an easy task—large α generates smooth results but blurs objects, while small α increases
the susceptibility to the occurrence of incorrect values. After testing several possibilities, it
was set to 3, but depending on the expected outcome (i.e., smoother flow) or the sequence
used, the value of this parameter can be easily modified to obtain better results. The value
of ψ was then used to compute the initial optical flow u0 and v0 from Equations (6) and (7)
with average velocities set to 0, which resulted in Equations (22) and (23). The obtained
values of ψ, u0, v0 and delayed derivatives Ix, Iy and It were output simultaneously from
the initialisation module.

ψ =
1

α2 + I2
x + I2

y
(21)

u0 = −ψIx It (22)

v0 = −ψIy It (23)

In the next step, these values were used in the flow refinement procedure, using
multiple identical pipelined modules. In every iteration, a context of size 3 × 3 px was
generated for both flow components. Two convolutional masks for averaging were used
and compared—[0, 1, 0; 1, 0, 1; 0, 1, 0]/4 and [1, 2, 1; 2, 0, 2; 1, 2, 1]/12. The latter provided
slightly faster convergence, even though it used a bit more resources. To limit their usage,
division by 12 was replaced by multiplication by its inverse stored in 10 bits. The aver-
age flow in a small neighbourhood (for both components) was then used for calculating
the updated flow according to the HS equations, which, after using ψ, take the form of
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Equations (24) and (25). The expression in parentheses was common for both components,
so it was calculated only once in each iteration.

un+1 = un − ψIx(Ixun + Iyvn + It) (24)

vn+1 = vn − ψIy(Ixun + Iyvn + It) (25)

Apart from the updated flow values, delayed input derivatives Ix, Iy, It and calculated
ψ were passed to the output of the module, which enabled further flow updates in subse-
quent iterations. In this way, the iterative flow refinement in the HS method was realised,
and the number of iterations was controlled by a parameter which was initially set at 10.
As already shown in the literature (e.g., [35]), the more iterations, the higher the accuracy
of the results and the resource consumption. Therefore, choosing the proper number of
iterations is always a compromise between accuracy and resource utilisation. The values
obtained in the output of the last refinement module constituted the final result of the
HS algorithm.

In the work of [35], additional thresholding of the results was applied, based on the
approximate variance of the flow in 3 × 3 px window to ensure a smooth flow throughout
the image. However, in this work (just like in the case of the LK algorithm) we did not use
any thresholding, as it requires many additional resources. A simplified block diagram
of our implementation of the Horn–Schunck optical flow determination algorithm in the
single-scale version is shown in Figure 11.

Figure 11. Block scheme of the single-scale HS algorithm.

4.3. Implementation of the Multi-Scale Method

To enable the calculation of the optical flow in many scales, several additional modules
were necessary. The first of them was responsible for downscaling the image. The most
common and the simplest scaling factor of 0.5 was used, i.e., each of the image dimensions
was reduced twice. Precisely, downscaling was performed for two images—the current one
and the previous one (from RAM). The simplest approach is to select every second pixel in
every second line. However, when downscaling the image multiple times, many details
are lost. Therefore, we used a bilinear interpolation—using one window of 4 pixels (2 × 2)
without overlaps with neighbouring ones, we obtained one pixel value as their average.

As the number of pixels in subsequent scales decreases, we decided to use the changing
data format to send and process fewer pixels at the same time. We initially used 4ppc (in
scale 0, i.e., input one), but in scale 1, we changed it to 2ppc every second line, in scale 2,
1ppc every fourth line, in scale 3, 0.5ppc (one pixel per two clock cycles) every eighth line,
and so on. To mark the validity of the pixels without affecting the AXI4-Stream signals, we
added a tvalid_mod signal, which was used in the calculations instead of the original tvalid,
which was used only for the correct visualisation of the data on the monitor. A simple
schematic of the implemented downscaling method is shown in Figure 12.
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Figure 12. Implemented downscaling method. Black pixels in the output image are invalid, i.e., their
tvalid_mod signal is set to 0, so they are not processed in the smaller scale. Blue, green and gold
contexts are next ones being processed in the same way.

To obtain the optical flow in a smaller scale (i.e., higher level of the image pyramid),
one of the optical flow algorithms (LK or HS) was used. With changing data format, these
modules were modified to enable OF calculation in the Xppc mode. They were both tested
in a single-scale version in 4ppc, 2ppc, 1ppc and 0.5ppc formats with decreasing number of
hardware resources used—detailed information is provided in Table 3 for the LK algorithm
and Table 4 for the HS method. As can be seen in the tables, the utilisation of all resource
types decreases with the diminishing number of pixels processed per clock cycle. However,
the difference between 1ppc and 0.5ppc formats appears only in the case of Block RAM,
as fewer pixels have to be stored in contexts’ delay lines—other resources are used in the
same amount, but with different frequency (1 time per 1 or 2 clock cycles). In this way, L
scales can be processed in parallel, but without using L times more resources.

After calculating the flow in a smaller scale, it has to be used to compensate for the
motion and transform one of the images to enable processing in a larger scale. We decided
to warp (transform) the current frame towards the previous one, stored in RAM. A typical
solution is to upscale both flow components and perform warping on a bigger image, for
which usually a bilinear interpolation is used. In terms of FPGA, two solutions exist for
this operation—reading calculated pixels from RAM or generating a context. As we limited
the flow to ±16, we decided to reduce the data transfers to external RAM and use the latter
solution with a window of size 33 × 33 px. However, after upscaling the flow, we would
need a context of 65 × 65 px in a bigger scale, which requires a lot of resources.

Table 3. Resource utilisation for the LK module in different data formats in 4K resolution. The
resource usage decreases significantly as fewer pixels are processed in parallel. The 0.5ppc mode
requires less memory elements, but a similar number of computing elements as the 1ppc mode. In
general, many scales can be processed at the same time, but with reduced hardware utilisation.

Resource Type 4ppc 2ppc 1ppc 0.5ppc

LUT 47,683 26,254 15,574 15,565

Flip-Flop 82,482 49,987 33,999 33,981

Block RAM 92 50 25 17

DSP 540 290 165 165



Sensors 2022, 22, 5017 23 of 32

Table 4. Resource utilisation for the HS module with 10 iterations in different data formats in 4K
resolution. The resource usage decreases significantly as fewer pixels are processed in parallel. The
0.5ppc mode requires fewer memory elements, but a similar number of computing elements as the 1ppc
mode. In general, many scales can be processed at the same time, but with reduced hardware utilisation.

Resource Type 4ppc 2ppc 1ppc 0.5ppc

LUT 43,265 21,907 11,462 11,408

Flip-Flop 61,530 31,405 16,958 17,069

Block RAM 134 69 39.5 26.5

DSP 488 244 122 122

Therefore, we decided to perform the warping in a smaller scale and then upscale
the warped image, as the difference in results accuracy between these approaches was
negligible. The method chosen had significant advantages in terms of resource saving, such
as smaller context (fewer lines to save in registers) and lower number of pixels processed
simultaneously (e.g., generating contexts for 2 “central” pixels instead of 4, for 1 “central”
pixel instead of 2, etc.). The main disadvantage was using the smaller image instead of the
bigger one, thus losing some details, such as sharp object edges, but it was an acceptable
cost of limiting hardware utilisation. To synchronise the image with the flow, the former
was delayed using a FIFO queue. Our approach also enabled to delay the image in the 2ppc
format instead of 4ppc, thus reducing twice the memory needed. The image warping was
performed by bilinear interpolation—the flow helped to determine target pixel position
(usually with the fractional part), and four neighbouring pixels were used for interpolation
of the pixel brightness. This operation is presented schematically in Figure 13.

Figure 13. Warping of the image based on the calculated optical flow. The dark red circle in the
input image is the processed pixel, the blue line shows its movement (optical flow), the green circle
determines the pixel’s target position (with the fractional parts), while black dots represent “pixel
centres” (for the purpose of visualising fractionals). A context of 2 × 2 px is generated for bilinear
interpolation, and the resulting pixel brightness is assigned to the processed pixel in the output image.

As mentioned above, after warping, the image has to be upscaled with the inverse
factor as for downscaling, which in our implementation is 2. Again, bilinear interpolation
was performed, but this time a context of size 5 × 5 px was generated with a new line of
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pixels showing every two lines of context. In this way, out of five context lines, two or three
were valid, while the rest was invalid. This allowed us to generate the context according to
the input tvalid_mod signal and at the same time generate one new line to insert between
two input valid lines. This approach was not the most effective one, as for the interpolation,
the context of 3 × 3 px could be sufficient (with two valid input lines), but it was a direct
consequence of the implemented multi-scale method and changing data formats. During
upscaling, the data format changes in the opposite way as in downscaling, i.e., from 2ppc
format to 4ppc, from 1ppc to 2ppc, from 0.5ppc to 1ppc and so on. The validity of pixels
also changes in this module, as between two valid lines, a new one is generated; therefore
the tvalid_mod signal is modified accordingly. The scheme of the upscaling procedure is
presented graphically in Figure 14—for simplicity, a context of size 3 × 3 px with two valid
lines is shown instead of the full 5 × 5 px context, implemented in the hardware.

Figure 14. Implemented upscaling method. Black pixels in the input image are invalid, i.e., their
tvalid_mod signal is set to 0 and they were not processed in the smaller scale. A context of 2 × 2
valid pixels is generated for the bilinear interpolation to calculate new valid pixels, which are put in
relevant places of the output image. Blue, green, gold and purple contexts are next ones processed in
the same way.

The last modules in the multi-scale method were additional FIFO queues. The first
of them was used to synchronise the current frame after warping and upscaling with
a delayed previous frame, which was stored in FIFO. This allowed us to compute the
optical flow in a bigger scale with either the HS or LK algorithm. As mentioned before,
the image after warping and upscaling is slightly blurred, and therefore a higher threshold
had to be used in the derivatives calculation stage to eliminate some differences resulting
from blurring.

Finally, the flows obtained at different levels of the pyramid had to be synchronised
and summed to perform a visualisation of the results of the entire multi-scale algorithm.
For this task, we also used FIFO queues, in which flows from the smallest scale up to the
second largest were stored. The flows were then upscaled to match the size of the bottom
level of the pyramid—for both flow components, we used the same module as for the
image upscaling. The flow magnitudes also had to be enlarged by a certain power of 2,
based on the scale. However, to suit our visualisation module, we decided to divide the
flow magnitudes from the bigger scales instead of multiplying them from the smaller scales.
In this way, the summed flow was still in the range ±16 and allowed visualisation with the
proper relative velocity between different scales.
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Figure 15 presents a simplified block scheme of the optical flow computation (for
either the LK or HS algorithm) in a two-scale version. The same scheme can be used for
three, four, or more scales, using the same types of modules with different parameters.

Figure 15. Block scheme of a multi-scale optical flow computation. In case of our implementation,
white modules work in the 4ppc format and grey in the 2ppc format. The same meaning is for
black and grey arrows, signifying data transfer in the 4ppc or 2ppc format. The optical flow module
can be the LK method as in Section 4.2.1, the HS method as in Section 4.2.2 or in a general case,
another algorithm.

5. Evaluation

The optical flow obtained for a pair of images can be compared with a reference value,
and the accuracy of the algorithm can be evaluated. At the same time, the use of some
typical coefficients allows comparing the proposed solution with those available in the
literature. Among the most popular values calculated for the optical flow is EAAE (average
angular error), defined by Equation (26), which is the average angular error between the
normalised ground truth vector (ur, vr, 1) and the determined (u, v, 1) for all N pixels.
The second popular indicator is EAEE (average endpoint error), which is expressed by Equa-
tion (27). It corresponds to the average endpoint error between the obtained flow and the
ground truth in pixels, calculated using the Euclidean norm. Density is also often used to
denote the ratio of the number of pixels with a determined optical flow to the total number
of pixels in the image. In the case of our implementation, the density is 100% (apart from
the pixels without “correct” context), since the flow values for all pixels are determined
and no thresholding of the results is applied.

EAAE =
1
N ∑

N
arccos

1 + uru + vrv√
(1 + u2

r + v2
r )(1 + u2 + v2)

(26)

EAEE =
1
N ∑

N

√
(u− ur)2 + (v− vr)2 (27)

Video sequences from different datasets are used for the evaluation of the optical flow
algorithms. One of the most popular in recent years, especially for solutions based on
neural networks, is the Sintel dataset [41]. It features factors that are more demanding for
optical flow determination algorithms, such as dynamic motion, reflections, occlusions,
blurs and atmospheric effects. Another popular, but quite challenging one is KITTI [42]. It
contains sequences recorded in traffic from the perspective of a moving vehicle.

A simpler, but very popular dataset is Middlebury [43], which is used for a detailed
evaluation below. Another one worth mentioning is MIT CSAIL [1], whose authors focused
on the accurate edge determination of the objects. Sequences from this dataset were used
when implementing and testing various parameters of the LK and HS algorithms. Unfor-
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tunately, it is not used very often, which significantly limits the possibility of comparing
results on it with other works. Nevertheless, one of the sequences, Camera motion, was used,
for which the results are presented in Figure 16. It visually compares the flows obtained
using the Lucas–Kanade and the Horn–Schunck methods with the ground truth.

(a) (b) (c) (d)

Figure 16. Exemplary results for the sequence Camera motion from the MIT CSAIL database. The
images show: (a) a frame from the sequence, (b) the ground truth, (c) the result of the LK algorithm,
(d) the result of the HS algorithm.

5.1. Middlebury Dataset

Despite the publication of newer datasets in recent years, the Middlebury [43] is still
widely used for evaluation, which is also the case in this work. Its main advantages are
the relative simplicity and high popularity, so many published solutions can be compared
with each other. The calculated errors with respect to the ground truth are included in
Tables 5 and 6. It should be emphasised that only solutions implemented on FPGA plat-
forms are analysed—complex or deep neural network-based methods are not included
in these tables. This approach is determined by the aim to compare our solution with its
direct competitors rather than with a whole range of more advanced solutions, since imple-
mentation on an FPGA and obtaining real-time operation for many of them in very high
resolutions is not possible with current technology. Example results for both algorithms
implemented, along with selected frames from the Middlebury dataset and their ground
truth, are provided in Figure 17.

Based on the results obtained, some conclusions can be drawn. First of all, the use of the
multi-scale method significantly improves the accuracy of the obtained flows. Compared
to other implementations, our solution yields very good results on some sequences and
weaker results on others. This is due to the parameters and simplifications adopted for the
hardware implementation in 4K resolution—depending on the sequence and the occurring
displacements. Of course, all the methods compared return much worse results than the
complex or deep neural network-based methods, but as mentioned, only real-time solutions
running on an FPGA platform were compared. In the case of the HS algorithm, the key
influence on the accuracy of the results has the value of α parameter and the number of
iterations, which can be easily adjusted for a specific sequence. However, for the evaluation
of our solution, we used the same parameters for the whole set, according to the hardware
implementation—α = 3, 10 iterations in the smaller scale and 5 in the larger scale.
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Figure 17. Exemplary results on Middlebury dataset sequences. The following rows contain the
sequences Hydrangea and Grove3. The columns show a frame from the sequence, the ground truth,
the result of the LK algorithm and the result of the HS algorithm.

Table 5. Comparison of EAAE errors in degrees for Middlebury dataset sequences. D—Dimetrodon,
V—Venus, H—Hydrangea, G2—Grove2, G3—Grove3.

Implementation Method Version D V H G2 G3

Seyid [19] Block 3 scales 8.23 6.41 14.80 5.80 10.90

Hsiao [26] LK 1 scale 35.69 - - - -

Hsiao [26] LK 3 scales 21.35 - - - -

Smets [29] LK 2 scales 20.51 24.16 19.32 11.51 16.05

Smets [29] LK 4 scales 10.15 16.21 8.28 5.50 10.08

This work LK 1 scale 20.44 41.92 34.51 38.22 37.36

This work LK 2 scales 12.54 28.14 18.08 17.81 24.88

Johnson [34] HS 10 iter. 26.33 - 40.30 - -

Johnson [34] HS 50 iter. 21.32 - 36.93 - -

Johnson [36] HS Precision 10.67 26.12 25.23 26.88 26.64

Johnson [36] HS Throughput 10.99 26.88 25.56 27.08 26.89

This work HS 1 scale 32.27 41.99 35.61 33.11 35.68

This work HS 2 scales 22.94 29.63 18.60 17.90 26.76

Table 6. Comparison of EAEE errors in pixels for Middlebury dataset sequences. D—Dimetrodon,
V—Venus, H—Hydrangea, G2—Grove2, G3—Grove3.

Implementation Method Version D V H G2 G3

Seyid [19] Block 3 scales 0.44 0.47 1.98 0.42 0.99

Hsiao [26] LK 1 scale 2.16 - - - -

Hsiao [26] LK 3 scales 1.84 - - - -

This work LK 1 scale 1.02 3.33 2.47 2.22 3.11

This work LK 2 scales 0.63 2.53 1.45 1.19 2.35

Johnson [34] HS 10 iter. 1.18 - 2.71 - -

Johnson [34] HS 50 iter. 1.02 - 2.21 - -

Johnson [36] HS Precision 0.63 2.34 2.23 1.56 2.53

Johnson [36] HS Throughput 0.65 2.43 2.34 1.66 2.62

This work HS 1 scale 1.32 2.97 2.41 1.90 3.02

This work HS 2 scales 1.01 2.31 1.40 1.21 2.38
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5.2. Resource Utilisation

As presented in Section 4, the proposed algorithms were run on a ZCU 104 card
with the Xilinx Zynq UltraScale+ XCZU7EV-2FFVC1156 MPSoC chip. After analysing the
computational resources available on this chip and their utilisation by individual system
components, we limited our algorithms to using two scales. The main reason for this
choice was the need to synchronise data from multiple scales, which is performed using
FIFO queues. Data processing in the third scale forces the need to store a larger number
of image lines (for calculations in successive scales), which in the case of 4K resolution,
means 3840 values for each line. This risks very high memory resource utilisation and
routing problems and sometimes even exceeding available resources and making the
implementation impossible. However, if a larger FPGA is used, the architecture presented
can easily be extended to more scales.

A certain amount of resources was also used for the video pass-through, enabling the
correct reception and transmission of the video signal. Table 7 shows the resource utilisation
for the LK algorithm—starting with the video pass-through itself, through the single-scale
version, and ending with the two-scale version (with all required FIFO queues for data
synchronisation). For the multi-scale version, it was necessary to reduce the number of
BRAM modules used, as they slightly exceeded the number of elements available in the
chip. Only one modification was made—the context dimensions for the warping stage
were reduced from 33 × 33 px to 25 × 25 px, allowing the entire algorithm to fit on the
target platform. However, a hardware platform with more memory is required to enable
warping in a larger context or to use more scales.

An analogous summary for the HS algorithm is provided in Table 8, with 10 iterations
of the algorithm performed in the single-scale version, and 10 iterations in the smaller scale
and 5 in the larger scale in the two-scale version. The dimensions of the context at the
warping stage were changed in the same way as in the LK algorithm. A larger number of
iterations of the HS algorithm can be achieved by using a chip with more internal memory
resources. Another way to achieve this could be to partially use external memory to store
intermediate results.

In the case of the LK algorithm, the window summation operation required most
resources, but its size largely determines the accuracy of the results. In the case of the
HS algorithm, most costly was the iterative updating of the flow, but this element has the
greatest impact on the accuracy of the resulting flow. Therefore, for both algorithms, the
solution presented is a compromise between the accuracy of the results and the amount of
resources used. If one of these factors is more important, then it is possible (to some extent)
to make simple modifications to the architecture at the expense of the other factor. However,
in both algorithms, the most costly operations are those associated with synchronising data
from multiple scales using FIFO queues—but in a multi-scale version of the algorithm, they
cannot be avoided. This issue is especially challenging in the case of a 4K resolution, which
requires a lot of data to be temporarily stored, so it can be perceived as the bottleneck of
the proposed solution.

Table 7. Resource utilisation for the LK algorithm on a ZCU 104 platform. Due to effective implemen-
tation of the multi-scale method, there is a small increase in resource utilisation (apart from BRAMs)
when adding the second scale to the algorithm.

Resource Type Available Pass-Through 1-Scale Version 2-Scale Version

LUT 230,400 38,097 (17%) 89,167 (39%) 122,734 (53%)

Flip-Flop 460,800 44,673 (10%) 123,995 (27%) 183,688 (40%)

Block RAM 312 7 (2%) 119 (38%) 311 (100%)

DSP 1728 3 (0%) 559 (32%) 861 (50%)
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Table 8. Resource utilisation for the HS algorithm on a ZCU 104 platform. Due to effective implemen-
tation of the multi-scale method, there is a small increase in resource utilisation (apart from BRAMs)
when adding the second scale to the algorithm.

Resource Type Available Pass-Through 1-Scale Version 2-Scale Version

LUT 230,400 38,097 (17%) 84,477 (37%) 104,728 (45%)

Flip-Flop 460,800 44,673 (10%) 113,922 (25%) 145,872 (32%)

Block RAM 312 7 (2%) 161 (52%) 312 (100%)

DSP 1728 3 (0%) 507 (29%) 523 (30%)

FPGA platforms operate at low power consumption while maintaining high per-
formance in data processing. The architecture described consumes only 5.29 W for the
single-scale version of the LK algorithm and 5.70 W for the multi-scale version according to
the estimation in the Vivado Design Suite IDE. For the HS algorithm, it consumes 5.35 W for
the single-scale version and 5.70 W for the multi-scale version, also according to Vivado’s
estimation. This is about 2× less than the single-scale implementation in 4K resolution
with 15 iterations (11.27 W) in the work [36]. Thus, our solution can process multiple scales
with a much lower energy requirement.

In terms of performance, the multi-scale version of the LK algorithm achieves 463
GOPS (giga operations per second), which translates to 81 GOPS/W. The multi-scale
version of the HS algorithm achieves 446 GOPS, which equals 78 GOPS/W. Both values
are much higher than those in ref. [36], where the authors achieved 43 GOPS/W for the
processing of a 4K resolution video in one scale. These results confirm the efficiency of the
proposed implementation and the advantages of using SoC FPGA devices in embedded
computing. The photo of the proposed hardware system for calculating optical flow is
presented in Figure 18.

Figure 18. The photo of the proposed optical flow system. The input video signal is transmitted from
the computer (the source) and processed in real-time on a ZCU 104 platform equipped with the Xilinx
Zynq UltraScale+ MPSoC device. The calculated optical flow is transmitted and visualised on a 4K
resolution monitor. The video being processed shows traffic at the intersection seen from above (top
left corner of the image). Different colours relate to various directions of the moving objects.
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6. Conclusions

In this work, the Lucas–Kanade and the Horn–Schunck optical flow determination
algorithms were implemented on a SoC FPGA platform. To enable the detection of larger
pixel displacements, a multi-scale approach was used in both methods. The applied vector
data format allowed us to lower the clock rate and process the video stream in 4K resolution
(3840 × 2160 pixels) in real time (60 fps). To the best of our knowledge, solutions to
determine the optical flow in such high resolution in multiple scales have not been described
so far in the literature (05.2022). An additional advantage of the proposed approach is its
energy efficiency—the selected hardware platform consumes 5–6 W, depending on the
algorithm version. An efficient processing of the multi-scale method was achieved, using
different data formats depending on the scale, which allowed a significant reduction in the
hardware resources used, while keeping the implementation simple.

Due to the hardware platform used—ZCU 104 with the Xilinx Zynq UltraScale+
MPSoC device, the algorithms implemented are not very complex. On the other hand, this
modern device allows the processing of high-resolution data, which was not possible in
the case of older implementations (described in Sections 3.1 and 3.2), due to the insufficient
amount of computing resources or memory. However, compared with other modern
solutions, such as works [33,35,36,38], where the authors used devices with similar amounts
of resources, we applied a more efficient way of processing data by using the vector format.
Furthermore, it was changing depending on the scale, thus allowing to significantly save
computing resources in the multi-scale version of the proposed architecture.

As a part of further work, it is possible to use another FPGA device with more
hardware resources, mainly memory. This would allow us to extend the algorithm with
additional scales and detect even larger pixel displacements, which is important in process-
ing such a high-resolution video stream. For the HS algorithm, it would also be possible
to add more iterations to obtain more accurate results. A potential idea for comparison
with the current implementation could also be the operation of different scales at different
frequencies—on one hand, this should reduce the overall energy consumption, on the other
hand, it would introduce additional complications and difficulties in synchronising data
from different scales.

The optical flow determination algorithms realised in this work could be a component
of a larger system, when a hardware platform with more memory or a single-scale version of
the algorithm is used, or the resolution of the processed video stream is lower. Information
about the direction and speed of the pixel movement can be aggregated and, for example,
allow the detection of an entire moving object. Such information is very valuable in
all types of autonomous vehicles, including aerial vehicles, i.e., drones. It then enables
them to detect dangerous (collision) spots while moving and avoid obstacles, ensuring
safe operation in the environment. Such solutions often use high-resolution cameras, but
require obtaining real-time information about the movement of the objects in order to react
to them quickly enough. Therefore, algorithms realised on the FPGA platform allow to
meet these requirements, enabling correct and safe detection of the objects or the obstacles.
Potential applications could also include video surveillance and monitoring systems to
detect objects moving in the monitored space.
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