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Abstract: Structural Health Monitoring (SHM) is critical in the observation and analysis of our
national infrastructure of bridges. Due to the ease of measuring bridge rotation, bridge SHM using
rotation measurements is becoming more popular, as even a single DC accelerometer placed at each
end of span can accurately capture bridge deformations. Event detection methods for SHM typically
entail additional instrumentation, such as strain gauges or continuously recording video cameras,
and thus the additional cost limits their utility in resource-constrained environments and for wider
deployment. Herein, we present a more cost-effective event detection method which exploits the
existing bridge rotation instrumentation (tri-axial MEMS accelerometers) to also act as a trigger for
subsequent stages of the SHM system and thus obviates the need for additional vehicle detection
equipment. We show how the generalised variance over a short sliding window can be used to
robustly discriminate individual vehicle loading events, both in time and magnitude, from raw
acceleration data. Numerical simulation results examine the operation of the event detector under
varying operating conditions, including vehicle types and sensor locations. The method’s application
is demonstrated for two case studies involving in-service bridges experiencing live free-flow traffic.
An initial implementation on a Raspberry Pi Zero 2 shows that the proposed functionality can be
realised in less than 400 ARM A32 instructions with a latency of 47 microseconds.

Keywords: event detection; bridge structural health monitoring; rotation measurement; gener-
alised variance

1. Introduction

Bridges form a key part of every nation’s critical national infrastructure, carrying
thousands of vehicles and providing essential links for citizens and businesses. However,
ageing, deterioration and extreme events threaten these key assets, resulting in economically
damaging bridge closures or even collapses [1]. Consequently, many different bridge
structural health monitoring (BSHM) approaches have been proposed, some using strain [2],
displacement [3], vibration [4] or acceleration [5] in order to detect damage or deterioration
in the bridge response. Recently, rotation-based BSHM has been shown to offer a more
practical approach for sensing short to medium bridge deflections under loading [6].

Complex state-of-the-art BSHM solutions have been developed for long-span bridges,
such as the Queensferry Crossing [7] and Hong Kong–Zhuhai–Macau [8] bridges, thus
allowing continuous monitoring. However, for the vast majority of the bridge stock, their
structural condition is only assessed by infrequent, human-visual inspection, and continual,
sensor-based monitoring is limited by practical issues such as limited power budget and
communications capacity. The ideal, therefore, is to provide autonomous BSHM systems
that can enable reliable, long-term rotation monitoring [9] in these resource-constrained
environments. For example, BSHM needs only to record and analyse the rotation response
when the bridge undergoes external loading as a result of vehicles crossing. For the low
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traffic volumes experienced at night or in rural settings, this results in a rotation response
characterised by short windows of signal, corresponding to vehicle crossings, dispersed in
often long periods of noise.

Furthermore, once these individual events are identified, the ability to distinguish
between truck loading events and car loading events is important. This is because bridges
are designed to support heavy truck loading; therefore, cars are typically not heavy enough
to generate significant deformations in the bridge. Hence, the deformation response signals
due to cars often contain little information useful for bridge SHM. This is particularly
true of approaches that are interested in the static component of the bridge response,
e.g., maximum displacement or maximum rotation.

Consequently, a method that can quickly and easily distinguish truck loading events
from car loading events or noise would be very useful as this can avoid using scarce power
and communications resources to record and transmit sensor signals data containing little
or no useful information. Thus, BSHM solutions would ideally employ vehicle detection
systems, preferably including vehicle classification, therefore allowing the system to obtain
just these regions of interest when there was load on the bridge and thereby concentrating
data capture efforts.

Inductive-loop-based vehicle detectors [10] and magnetometers [11] can potentially
provide some details of vehicle classification, but it can be costly to retrofit them to existing
bridges. On the other hand, computer-vision-based techniques [3] do not need to contact
the structure and can be deployed relatively quickly. Non-contact optical techniques can
be used to measure the 3D profile of a vehicle [12] or to detect axles [13]. Wi-Fi channel
state information [14] has also been used to provide similar non-contact traffic monitoring.
Strain measurements [15] and vibration sensing [16] have been shown to provide vehicle
detection and classification information.

A major shortcoming of these approaches is that their practical deployment requires
that additional instrumentation, e.g., induction loops, be installed on the structure under
test; with 118,000 road and rail bridges in Great Britain alone, this would be highly costly
to implement as a widely available solution. Moreover, with variance in communications
bandwidth and reliable energy supply in these locations, the design needs to effectively use
available resources and capture relevant data in a more efficient manner. Here, we employ
a ‘more for less’ approach and obtain the necessary vehicle detection and classification
information from the data provided by the existing rotation monitoring systems. This work
forms part of a larger collaboration effort to provide enhanced BSHM systems involving
both the electronics and civil engineering research groups at Queen’s University Belfast.

In this work, we examine an extension to a typical, current BSHM sensing node
design (Figure 1) to investigate if vehicle detection can be performed without the need
for additional instrumentation. To achieve this, we exploit the existing instrumentation,
in this case, tri-axial MEMS accelerometers, which are widely employed within BSHM.
Using the raw data from these accelerometers, we show that it is possible to detect regions
of interest corresponding to vehicle crossings by tracking the increases in the generalised
variance of the sample covariance matrix (computed between the channels of the muli-axial
accelerometer) over a sliding window. Covariance-based event detection methods have
been widely employed in other areas, including power systems measurement [17], video
surveillance [18] and geophysics [19]. The approach is based on the observations that
(a) during vehicle crossings, the measured multi-axial acceleration signals will exhibit
covariance due to the systemic effect of the vehicle loading, and (b) in the periods between
crossings, a rotation monitoring system only measures noise. Providing reliable tracking
capability to an existing monitoring resource thus provides a high potential for a highly
cost-effective approach. The validity and application is demonstrated here.
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Figure 1. Block diagrams showing the overview of a typical rotation monitoring system (blue) with
the added event detector functionality (green) and vehicle classifier (purple).

The paper describes the creation of an event detection method that builds event
detection capability into existing bridge rotation monitoring instrumentation and applies it
to full-scale bridge data. Our main contributions are as follows:

• The creation of a low-cost detection method based on the generalised variance between
tri-axial accelerometer signals, which can be implemented cost-effectively by using
available resources and thereby avoiding the additional cost and energy usage of
dedicated traffic-detection hardware.

• Detailed numerical simulations have been undertaken to show that the method is
robust to the effects of sensor noise and rotation signal variability due to varying
sensor location, vehicle speeds and vehicle type, as well as the effect of sliding win-
dow lengths.

• Applications of the approach to two case studies demonstrating successful detection
of vehicle events using end of span accelerometer signals collected on in-service
highway bridges.

The rest of this paper is structured as follows: Our rotation event detector method is
set out in Section 2; Section 3 describes the numerical models used in this work; Section 4
presents our numerical simulations and results for the proposed event detector; Section 5
outlines two case studies using the event detector method on in-service bridges with live
traffic; and finally, Section 7 concludes this paper.

2. Event Detection Method

The purpose of this work is to develop an event detection method which leverages the
existing bridge rotation instrumentation (tri-axial MEMS accelerometers) and that can run
on low-resource sensor nodes. In Figure 1, the blue blocks represent our existing rotation
monitoring approach, described in [9], with the resultant damage detection metrics sent
back to the bridge management system to inform operational decision making.

The proposed event detector block (shown in green) takes the raw digitised acceler-
ation samples and provides trigger signals to indicate regions of interest to the feature
extraction stage and our external vehicle classifier system. Previously, this vehicle classifier
operated continually on video data to perform real-time object detection. Instead, this can
be implemented more efficiently by capturing short bursts of frames using the event detec-
tor trigger and batch-processing these. This reduces the system’s power consumption by
possibly avoiding the need for video capture altogether and spending less time running the
computationally intensive object detector code. Whilst the system has been incorporated
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into our detector system for demonstration, the technique has general applications to any
system that uses accelerometers.

The lower part of Figure 1 shows the four stages of our event detector (annotated (1)
to (4)). In the first block, a sliding window stores the most recent raw digital acceleration
samples in a circular buffer. Block 2 computes the covariance matrix, KSS , over the sliding
window. Block 3 calculates the generalised variance, det(KSS). Finally, the last block (4)
implements a threshold function to generate the trigger signal output. The event detector
block has been implemented using 380 ARM A32 instructions (Algorithm 1). Running on a
Raspberry Pi Zero 2, this single-threaded implementation has a latency of 47 µs.

Algorithm 1 Generalised Variance-based Event Detector

Input
Nw (sliding window length in samples),{

ax, ay, az
}

(new acc. samples),
thres (detector threshold level)

Output
trig (region of interest trigger)

Initialisation
Set up circular buffers Bx, By, Bz with lengths, Nw

Runtime
Push ax, ay, az into buffers Bx, By, Bz.
Recompute covariance matrix, Kss , over buffers.
Calculate generalised variance, det(Kss).
Update trig based on det(Kss) and thres.

The remainder of this section provides more details on the operating principles of our
proposed event detector system (lower part of Figure 1). For the single tri-axial accelerome-
ter that we use here, the noise-free acceleration, a, observed by the accelerometer consists
of: (i) the rotated Earth’s gravity vector, g, in the reference frame of the accelerometer and
(ii) the translational acceleration, ab, associated with both the bridge’s deflection under
load and modal vibrations.

We first define the global co-ordinate system, x, y, z, which corresponds to the longi-
tudinal, transverse, and vertical axes, respectively, of the bridge deck at rest. The X, Y, Z
axes of the tri-axial accelerometer’s reference frame are assumed to be co-linear with the
corresponding global x, y, z axes. We then denote the improper Euler angles ψ, θ, ϕ about
x, y, z, respectively, for the rotation of the accelerometer due to the bridge’s deflection
under load. From these angles, the rotation matrices for the accelerometer’s reference
frame, Rx(ψ), Ry(θ), Rz(ϕ), about x, y, z, respectively, are formed. Thus, the noise-free
acceleration components, a = [aX , aY, aZ]

>, corresponding to the rotation of the gravity
vector, g, and translational acceleration, ab, in the reference frame of the accelerometer are
obtained by:

a = Rz(ϕ)×Ry(θ)×Rx(ψ)× (g + ab) (1)

We consider an additive noise model, i.e., s = a + n, wherein the measured sig-
nal, s, is a linear combination of the true acceleration, a, and a random noise variable,
n = [nX , nY, nZ]

>, each with finite variances and means.
A rectangular sliding window (block 1 in Figure 1) is used to sample the m most recent

measured signal data points, i.e., S = [s1, . . . , sm].
The sample covariance matrix (block 2 in Figure 1), KSS , over the sliding window, S,

is formed by:
KSS i,j = cov[si, sj] = cov[ai + ni, aj + nj]. (2)
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Due to the bilinearity of covariance:

KSS i,j = cov[ai, aj] + cov[ai, nj] + cov[ni, aj] + cov[ni, nj]. (3)

Independence is assumed between a and n, i.e., cov[ai, nj] = cov[aj, ni] = 0, but not
the individual noise components nX , nY and nZ due to potential common mode noise. Thus:

KSS i,j = cov[ai, aj] + cov[ni, nj]. (4)

By comparing with Equation (2), we determine that KSS is a linear combination of
the covariance matrices, KAA and KNN , for the acceleration of gravity and noise respec-
tively, i.e.,

KSS = KAA + KNN . (5)

The generalised variance [20], det(KSS), is then taken (block 3 in Figure 1) to provide
an one-dimensional measure of the sample covariance matrix, KSS . As the covariance
matrix is positive semi-definite [21], the Minkowski determinant theorem [22] implies:

det(KAA + KNN)
1
n ≥ det(KAA)

1
n + det(KNN)

1
n . (6)

Ambient traffic loading comprises a sequence of discrete events caused by heavy
moving loads (e.g., lorries and buses) crossing the bridge at random time intervals. As the
bridge is assumed to remain at rest when not experiencing loading, i.e., a = 0, when no
loading events are within the sampled period:

a = 0 =⇒ KAA = 0 ∴ KSS = KNN . (7)

Based on Equations (6) and (7) and assuming the noise process remains stationary over
the period of interest, then det(KAA + KNN) > det(KNN), i.e., an increase in det(KSS)
occurs during a vehicle crossing event. This increase in generalised variance is turned in a
trigger signal by the thresholding block in Figure 1.

3. Numerical Models

To demonstrate the operation of the proposed event detector, a finite-element (FE)
model is developed to simulate a bridge undergoing traffic loading, with particular atten-
tion given to the response near the end of span supports, and this is described in Section 3.1.
An accelerometer signals model, presented in Section 3.2, is then used to make the struc-
tural dynamics data obtained from the FE model more representative of measured bridge
rotation data.

3.1. Bridge Finite Element Model

Typically, significant levels of rotation are only observed about the transverse axis,
i.e., |θ| > 0 and |ψ| ≈ |ϕ| ≈ 0, and similarly, displacements are only significant in the
vertical axis. Figure 2 shows the two dimensional bridge FE model used to represent a 25 m
long by 14.6 m wide bridge. It is based on previous work described in [5], which gives a
fuller description of the model. The one modification from the previous FE model is in the
boundary conditions, where the supports are no longer idealised as being infinitely stiff
in the vertical degree-of-freedom. It is widely understood that a physical bridge system
has a spring coefficient associated with these supports. However, in numerical models,
these supports are often assumed to be infinitely stiff as the vertical movement in the
supports is very small, relative to the vertical deflections associated with the bridge deck
bending. However, bridge rotation instrumentation (DC accelerometers) is commonly
deployed near the supports as maximum rotation values are observed at the ends of
spans, i.e., over the supports. Consequently, these sensitive instruments detect these small
vertical movements at the supports. Hence, in this work, we are specifically interested
in modelling the dynamics experienced by an accelerometer placed near the supports.
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Therefore, to model this behaviour more accurately, we have used elastic spring supports
to represent this boundary condition better. The stiffness coefficient, kb, was assigned to
these elastic supports from a commercially available elastomeric bearing’s datasheet, which
met this structure’s design requirements. A damping ratio of 5% has been used.

θi

vi

y
x

Beam element Elastic support

kbkb

Node

Deflected shape

DOFs
P1P2P3P4P5

Vehicle

Figure 2. Sketch of 2D discretised bridge model used.

To demonstrate typical end of span rotations, two vehicles are simulated crossing the
bridge at 10 m s−1, namely: (1) a two-axle vehicle with a gross vehicle weight (GVW) of
15 t and (2) a five-axle vehicle with a GVW of 44 t. The two vehicles enter the bridge at 2 s
and 8 s, respectively. To allow for the fact that the vehicle axle loads are applied via tyres,
each axle load is applied as a patch load, 0.4 m long, in line with BS EN 1991-2:2003 [23].
The axle weights and spacings typical of a two-axle and five-axle vehicle are shown in
Figure 3a,b, respectively. The time step used for the simulations was 1 ms.

P1 = 43.6kN
P2 = 29.9kN
a1 = 6.7m

(a)

a1

P1P2P3

a4 a3 a2

P4P5

P1 = 68.6kN
P2 = 108.0kN
P3 = 71.6kN
P4 = 77.5kN
P5 = 73.6kN

a1 = 3.9m
a2 = 5.85m
a3 = 1.3m
a4 = 1.3m

(b)
0.4m 0.4m

a1

P1P2 P1P1

0.4m0.4m

0.4m 0.4m 0.4m

Figure 3. Sketch showing details of the vehicle loads used in the simulations for (a) two-axle vehicle
and (b) five-axle vehicle.

Figure 4 shows that the peak vertical displacements, v, at the end of the deck due
to compression of the bearing are 0.30 mm and 0.79 mm, respectively, for the two trucks.
For comparison, the corresponding peak midspan displacements due to these vehicles are
1.17 mm and 3.18 mm, respectively. The rotation, θ, at the end of the beam due to beam
deflection is also plotted in Figure 4.

The peak rotations for each truck are 0.12 mrad and 0.34 mrad, respectively, and occur
slightly after the peak bearing displacement. This offset is present because the maximum
bearing displacement occurs when the load is over the bearing, whereas the maximum
rotation occurs with the load is near the mid-span. After each truck leaves the bridge,
a short period of damped free vibration is observed.



Sensors 2022, 22, 4994 7 of 19

Displacement, v
Rotation, θ

0 2 4 6 8 10 12 14
Time / s

0.0

0.2

0.4

0.6

0.8

Be
ar

in
g

D
is

pl
ac

em
en

t/
m

m

0.00

0.05

0.10

0.15

0.20

0.25

0.30

R
ot

at
io

n
/

m
ra

d

Figure 4. Plot of end of span rotation and end of span vertical (bearing) displacement. Periods when
a vehicle is crossing the bridge are shaded grey.

3.2. Accelerometer Model

For ease of explanation, the vertical and horizontal axes of the accelerometer are
assumed to be aligned with the corresponding global axes prior to the load arriving on
the bridge. The measured accelerations comprise two components, which are illustrated
in Figure 5, namely: (1) the vertical displacement of the deck, v, as it undergoes loading
and (2) the apparent rotation by the angle, θ, of the gravity vector, g, and bridge deck
acceleration, v′′, in the accelerometer’s reference frame.

θ

g+v"

aX

aY

(a)

θ

g+v"

aX

aY

(b)
Figure 5. Sketches of (a) free-body diagram showing the apparent rotation of the Earth’s gravity (g)
and vertical bridge acceleration (v′′) components; (b) equivalent vector diagram showing the x- and
y-axis acceleration components.

The following relationship is then obtained for the noise-free acceleration observed by
the accelerometer:

a =

[
aX
aY

]
=

[
(g + v′′) sin θ

(g + v′′) cos θ

]
. (8)

Figure 6a,b demonstrate these ideal x and y acceleration signals, respectively, using
the end of span rotation and vertical displacement data shown in Figure 4.

To allow for a realistic level of signal noise, acceleration data were measured using a
JAE-70SA tri-axial accelerometer at rest on a solid concrete slab floor to minimise external
vibrations. From these data, the means, µ = [µX, µY]

> and covariance matrix, Σ, were
calculated. The noise is simulated as a multivariate Gaussian distribution, n ∼ N (µ, Σ).
A cross-axis sensitivity, SXY = SYX = 2%, has been assumed. Therefore, the simulated
accelerometer signals, r, are given by:

r = Sa + n. (9)
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These simulated x-axis and y-axis accelerometer signals can be seen in Figure 6c,d
respectively, wherein the effect of the additive noise and cross-axis sensitivity can be
observed, particularly in the x-axis signal (Figure 6c).
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Figure 6. Plots of ideal accelerometer signals for (a) x-axis and (b) y-axis; simulated accelerometer
signals with additive noise for (c) x-axis and (d) y-axis. Periods when a vehicle is crossing the bridge
are shaded grey.

4. Numerical Simulations and Results

This section shows the effect of varying sliding window lengths on vehicle detection,
as well as demonstrating the effect of sensor location on our generalised variance event
detection, in Sections 4.1 and 4.2, respectively. Section 4.3 demonstrates the approach’s
robustness to the potential existence of damage in the bridge.

4.1. Sliding Window Length

The generalised variance is computed over a sliding rectangular window of length,
Tw, to detect the increase in generalised variance during vehicle crossing events. This
method exploits the impact loading as each axle enters the bridge (see the relatively large
spikes observed when vehicles’ axles enter the bridge in Figure 6d). As the vehicle leaves
the bridge, a similar effect occurs, but this time arising from the sudden unloading of the
beam and bearing as each axle leaves the bridge. In Figure 7, the impulses for two axles
(modelled as patch loads), P1 and P2, moving at constant velocity, v, are shown. Therefore,
a sliding window of temporal length, Tw, contains the signal related to a spatial length,
Lw = v · Tw, travelled by the moving loads. This allows the choice of sliding window
length, Tw, to be made based on the vehicle speed limit of the road crossing the bridge
and the typical vehicle geometries encountered. As axle spacings are typically no less than
1.3 m, setting Lw = 0.5 m would allow the full patch load to be captured but not multiple
axles, as illustrated by T1 in Figure 7.
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Beam

T2

T1

P1P2
v

Bearing

Figure 7. Sketch of impact loading caused by entry of vehicle axles.

However, in reality this approach of setting Tw to capture individual axles may be
problematic for bridges with a larger deck thicknesses, as the load will distribute through
the structure. This may be due to a number of factors including: beam depth, slab thickness,
presence of fill or asphalt thickness. This is illustrated in Figure 8, where it can be seen
that the applied load at the asphalt surface is distributed both vertically and horizontally
through the layers of the deck. Unless the axles are sufficiently far enough apart, given the
effect of load distribution, a shorter window will likely capture groups of axles and not
individual axles. Therefore, a longer window (shown as T2 in Figure 7) intended to
capture a full vehicle may be employed. As the shortest European lorry wheelbases are
approximately 4 m, and the longest are around 13.5 m, a reasonable sliding window length
to capture full vehicles is found by setting Lw in the range of 8 m to 10 m long. If a longer
window was employed the detector may struggle to distinguish two vehicles with a short
headway versus one longer vehicle.

Fill

Asphalt

Beam + Slab

P1P2
v

Load distribution

Figure 8. Sketch of vehicle load distribution through a bridge deck.

At 10 m s−1, this gives a window length Tw = 0.05 s for the shorter window (Lw = 0.5 m)
to capture axles and a window length Tw = 0.8 s for the long window (Lw = 8 m) to capture
vehicles. To illustrate these, the data from Figure 6c,d are processed using these window
lengths and are shown in Figure 9. For the shorter window length, Tw = 0.05 s, it can be
noted that sharp peaks in generalised variance are seen as each axle enters and leaves the
bridge. Furthermore, the relative height of these peaks corresponds to relative axle weights.
For the longer window length, Tw = 0.8 s, a wider peak of lower magnitude is observed for
each vehicle entry and exit. As the main focus of this paper is detecting vehicles, longer
sliding windows to capture whole vehicles, i.e., Lw = 8 m, are used throughout the rest of
this work.
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Figure 9. Plot of generalised variance for varying window lengths, Tw. Periods when a vehicle is
crossing the bridge are shaded grey.

4.2. Effect of Accelerometer Location

To demonstrate the effect of varying sensor location, the simulated accelerometer is
placed at (a) directly over the support, x = 0 m, (b) close to the end of span, x = 2.5 m,
(c) quarter-span, x = 6.25 m, and (d) mid-span, x = 12.5 m. The results of these simulations
are shown in Figure 10, from which it can been noted that, at all sensor locations, the
generalised variance has approximately the same profile, but this is larger closer to the end
of the spans, where the peak rotation values are observed.
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Figure 10. Plot of generalised variance for varying sensor locations, x. Periods when a vehicle is
crossing the bridge are shaded grey.

4.3. Robustness to Potential Bridge Damage

To demonstrate that the proposed approach is not sensitive to the potential presence
of localised damage in the bridge, a simulation was carried out for both the healthy bridge
and two separate damaged bridge cases. Specifically, localised damages are simulated at
the midspan and quarter span for two different damage severities. Damage is modelled
using the approach proposed by Sinha et al. [24], who represent damage severity as a
ratio of crack height to beam depth, denoted by δ. Damage severities, δ = 0.1 (27.1%
localised stiffness loss) and δ = 0.2 (48.8% localised stiffness loss), are modelled in line with
what is often quoted in the literature. These damages are introduced at both the mid-span
(Figure 11a) and quarter-span (Figure 11b). The results of these simulations (Figure 11)
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show that even these relatively large damages have negligible impact on the detection
capability of the approach as the sharp rises in generalised variance when a vehicle enters
the bridge are the same regardless of the damage state.
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Figure 11. Plot of generalised variance for varying damage severity, δ, with the damage located at
(a) mid-span and (b) quarter-span. Periods when a vehicle is crossing the bridge are shaded grey.

5. Field Trials

To demonstrate the application of our proposed event detection method, two case
studies have been carried out on in-service bridges. Each case study is presented individu-
ally in Sections 5.1 and 5.2, wherein a brief description of the structure, instrumentation
and testing is provided, along with the results of applying our event detection method to
the field trial data.

5.1. Case Study 1: Short Span Beam and Slab Bridge

This field trial was carried out on the bridge shown in Figure 12. The bridge is a
single 34 m span, pre-cast, reinforced concrete beam and slab bridge, which carries the
Northbound carriageway, whilst the Southbound traffic is carried separately on an adjacent
masonry arch bridge. For the test, a single JAE JA70-SA triaxial MEMS accelerometer was
used to measure the rotation at the Southern end of span (where the Northbound traffic
enters the bridge), as seen in Figure 12a. The sampling frequency (1652 Hz) was chosen
based on the minimum available on the NI 9234 DAQ used for the test. The accelerometer
was placed on the pedestrian pavement adjacent to carriageway, as indicated in Figure 12b,
so as to be located approximately over the web of the bridge’s edge beam. The camera
was positioned at the Northern end of the bridge to record the vehicles crossing the bridge.
However, unfortunately, a heavy rain shower during the testing resulted in water droplets
partially obscuring the lens.
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Figure 12. Photographs of (a) West elevation of bridge and (b) Northbound approach to bridge
showing sensor and camera locations.

In Figure 13, the raw acceleration signals recorded during an 800 s test window are
plotted on a broken axis to maintain the observed biases. As the test was carried out
during a relative busy period, although still with free-flow traffic, the raw acceleration
time series contains a large number of transient signals, corresponding to vehicles crossing
the bridge. However, the majority of these transient signals are approximately the same
magnitude and thus are not very helpful to directly separate vehicle loading by some
simple thresholding on the raw acceleration signals.
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Figure 13. Plot of recorded acceleration signals.

The generalised variance of the raw acceleration signals is plotted in Figure 14a using
a window length, Tw = 0.4 s (based on Lw = 8 m and with a free flow traffic speed of
v = 20 m s−1). From the generalised variance plot, it is much easier to distinguish vehicle
crossings, and in particular, the crossings related to the heavier vehicles, i.e., trucks. As
heavier vehicles give rise to larger-magnitude structural responses, these have a better
signal-to-noise ratio. Therefore, heavier vehicle events provide more information (com-
pared with lighter vehicles events) to the subsequent SHM damage detection algorithms
and help to more reliably detect bridge damage. Despite a number of large transients of
similar magnitudes in the raw acceleration signals, only four of these give rise to the large
generalised variance peaks which are annotated as 1 to 4. These peaks 1–4 were caused by
heavy lorry crossings, as expected given their large magnitude, and frame grabs of each
of these are shown in Figure 14b–e,where these are a five-axle container truck, a four-axle
grab lorry, a five-axle milk tanker and a six-axle bulk feed lorry, respectively. The magni-
tudes of these peaks are approximately 3.7× 10−11 g6, 4.2× 10−11 g6, 3.6× 10−11 g6 and
7.5× 10−11 g6, respectively.
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Figure 14. (a) Plot of generalised variance signal. (b–e) Pictures of vehicles corresponding to peaks
1–4, respectively.

To further investigate the generalised variance, and in particular some of the smaller
magnitude peaks present in the time series, a zoomed-in view of the region in the blue
dashed box at 635 s to 665 s in Figure 13 has been presented in Figure 15. From initial
observation of the raw acceleration signals in Figure 15, approximately seven crossings are
represented in this 30 s window.
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Figure 15. Plot of recorded acceleration signals.

However, in the generalised variance plot (Figure 16a), only five of these lead to
discernible peaks—indicating that two of the seven pulses were due to very light vehi-
cles. Of the five discernible peaks, only three are significant (annotated are 6, 8 and 9).
Frame grabs of the lorries causing these responses are shown in Figure 16c,e,f showing an
almost empty five-axle car transporter, a four-axle tipper lorry and a two-axle truck, respec-
tively. The magnitudes of these peaks are approximately 7.1× 10−12 g6, 5.7× 10−12 g6 and
4.5× 10−12 g6, respectively. These smaller magnitudes (relative to the height of the peaks
in Figure 14b) are in line with the smaller/lighter trucks which caused these responses.

The smaller peaks in Figure 16b correspond to even lighter-weight vehicles. The peak
labelled 5 was caused by a car and trailer (Figure 16c). Furthermore, the peak annotated
as 7 was actually caused by several cars and a van crossing at the same time (shown in
Figure 16e). Comparing Figure 16 to Figure 15 shows the key advantage of using the
generalised variance versus using the peaks-over-threshold approach applied to the raw
acceleration signal. Specifically, if one only had Figure 15 to work with, firstly, it would
not be obvious what threshold to set. However, more importantly, it would be extremely
difficult to accurately distinguish between truck loading events and car loading events. This
distinction is especially important for bridge SHM, as cars are typically not heavy enough
to generate significant deformations in the bridge. Hence, the deformation response signals
due to cars often contain little information useful for bridge SHM, in particular, approaches
that are interested in the static component of the bridge response, e.g., maximum displace-
ment or maximum rotation. Therefore, avoiding using scarce power and communications
resources to record and transmit this kind low value data from car loading is advantageous.
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Figure 16. (a) Plot of generalised variance signal. (b–f) Pictures of vehicles corresponding to peaks
annotated 5–9, respectively.

5.2. Case Study 2: Medium-Span Tied Arch Bridge

In this case study, a different bridge and sensor were used to check that the proposed
approach is not overly sensitive to the bridge being monitored or the instrumentation used.
This field trial was carried out on the bridge shown in Figure 17a. This is a single-span tied
arch bridge, with a span length of 98.8 m.

The instrumentation used in this test was based on a Kionix KXRB5-2050 tri-axial
MEMS accelerometer, recorded at a sampling frequency of 256 Hz. This accelerometer has
a significantly lower unit cost at approximately USD 4 each versus over USD 1000 each for
the JAE accelerometers used in the previous case study. This is reflected in the performance
of the accelerometer itself with a data sheet specified noise density of 45 µg/

√
Hz compared

to 1 µg/
√

Hz for the JA70-SA.
For this test, the accelerometer was approximately 8.5 m in from the northwestern

end of the span, placed on the pavement beside the parapet, as indicated in Figure 17b. A
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camera was placed at the eastern end of the bridge to record the traffic on both carriageways
crossing the bridge during the test.

(a)

Camera

Traffic 
flow

Elevation

Plan

Traffic 
flow

CameraSensor

Sensor

(b)
Figure 17. (a) Photograph of bridge from the western aspect and (b) test setup site elevation and plan.

In Figure 18, the raw acceleration signals recorded during a 100 s test window are plotted
on a broken axis to maintain the observed biases. A sliding window of Tw = 0.45 s was used
based on a spatial length to observe Lw = 8 m and the traffic velocity, v = 17.8 m s−1.
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Figure 18. Plot of recorded acceleration signals.

The generalised variance signal is shown in Figure 19a. From this plot, three distinct
peaks are apparent, labelled 1–3 for convenience with the frame grabs from the corre-
sponding video footage shown in Figure 19b–d. These peaks 1–3 were caused by heavy
vehicle crossings, specifically: a three-axle double-decker bus, a six-axle bulk feed lorry
and a five-axle container lorry. The approximate magnitudes of these major peaks are
5.9× 10−16 g6, 5.7× 10−16 g6 and 6.9× 10−16 g6, respectively. Each crossing appears as a
pair of peaks, corresponding to vehicle entering and exiting the bridge, respectively.

The results shown in Figure 19 show that the proposed approach was not sensitive to
the bridge monitored or the sensor used, as it performed equally well on a second bridge
using a significantly lower-grade sensor.
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Figure 19. (a) Plot of generalised variance signal. (b–d) Pictures of vehicles corresponding to peaks
annotated 1–3, respectively.

6. Discussion

The results of the numerical simulations (Section 4) show that the proposed approach is
relatively insensitive to sensor placement and is robust to the potential presence of damage
in the bridge. Field trials (Sections 5.1 and 5.2) have demonstrated the successful application
of the proposed detector on two different classes of bridge structure with different qualities
of accelerometer. Not only was the proposed detector able to indicate the temporal regions
of interest related to vehicle crossings, but the magnitude of the generalised variance
allowed events due to heavy vehicles, such as trucks, to be distinguished.

Being able to accurately determine events caused by heavy vehicles is valuable to
bridge SHM approaches focused on bridge static response, as for the most part, only heavy
vehicle loading produces interpretable bridge-response signals. Therefore, the proposed
detector can be used to identify at the source the more valuable periods of data by reliably
distinguishing truck events from car events or noise. This allows the SHM system to only
record and process the data during these more valuable events and can enable more efficient
BSHM deployment in environments with scarce power and communications resources.

A detection system that could identify axles is preferable for bridge SHM, as opposed
to one that identifies vehicles, as knowing the number of axles would go a long way
towards classifying the vehicle. However, as discussed in Section 4.1, making the windows
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short enough to try and detect individual axles may be thwarted by the distribution of
axle loads through the asphalt and the deck, particularly for closely spaced axles. Hence,
this study focused on detecting vehicles. However, in future work, data will be collected
from a range of different bridges to determine if axle detection can be reliably achieved on
typical bridges.

The current work was envisaged for short to medium-span bridges where, most of the
time, only one truck at a time will be present on the bridge. The issue of detecting multiple
trucks on a bridge at the same time is something that could be explored in further work.
Moreover, there seems to be two likely angles of attack to this challenge. The first is to
move the burden of detecting multiple vehicle events to a computer vision system, and this
will be most helpful for trucks travelling side by side, i.e., one truck in the fast lane and
one truck in the slow lane. However, if one was more interested in detecting consecutive
trucks in the slow lane, then a combination of both optimising the sliding window lengths
and possibly adding another detector at the downstream end of the bridge could achieve
this. Specifically, with the additional sensor, both the entry and exit times for the vehicles
could be reconciled to determine the crossings, particularly for longer individual spans,
e.g., span lengths greater than 50 m.

7. Conclusions

This paper presented a vehicle detection method based on the generalised variance
computed over a sliding window on raw bridge acceleration data. This obviates the need for
additional bridge instrumentation and is achieved with minimal computation requirements.
It was shown that the sliding window length can be chosen based on the typical traffic
speeds on the bridge being instrumented and that the detector is relatively insensitive
to sensor placement on the bridge. Field trials on two bridges showed the effectiveness
of the proposed detector at identifying vehicle crossing events, and that these could be
discriminated not only temporally into regions of interest but also by the magnitude of the
generalised variance. Distinguishing events based on the magnitude of the generalised
variance allows the accurate detection of loading events caused by heavy vehicles such
as trucks.

Author Contributions: Conceptualization, A.J.F., R.W. and D.H.; methodology, A.J.F., R.W. and D.H.;
software, A.J.F.; validation, A.J.F. and D.H.; formal analysis, A.J.F.; investigation, A.J.F. and D.H.;
resources, R.W. and D.H.; data curation, A.J.F. and D.H.; writing—original draft preparation, A.J.F.;
writing—review and editing, R.W. and D.H.; visualization, A.J.F.; supervision, R.W. and D.H.; project
administration, R.W. and D.H.; funding acquisition, R.W. and D.H. All authors have read and agreed
to the published version of the manuscript.

Funding: This work was supported by a PhD studentship from the UK Engineering and Physical
Sciences Research Council (Grant No. EP/N509541/1).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors are grateful to the Northern Ireland Department for Infrastructure,
and in particular Daniel Healy, for their support in arranging the field trials. We would also like to
thank Connor O’Higgins for his help with the field work.

Conflicts of Interest: The authors declare no conflict of interest.



Sensors 2022, 22, 4994 19 of 19

References
1. Brownjohn, J.M.W.; Aktan, E. Improving Resilience of Infrastructure: The Case of Bridges. In Proceedings of the Structures

Congress 2013: Bridging Your Passion with Your Profession—Proceedings of the 2013 Structures Congress, Pittsburgh, PA, USA,
2–4 May 2013; pp. 1812–1821.

2. Cheilakou, E.; Tsopelas, N.; Anastasopoulos, A.; Kourousis, D.; Rychkov, D.; Gerhard, R.; Frankenstein, B.; Amditis, A.; Damigos,
Y.; Bouklas, C. Strain Monitoring System for Steel and Concrete Structures. Procedia Struct. Integr. 2018, 10, 25–32. [CrossRef]

3. Lydon, D.; Lydon, M.; Taylor, S.; Del Rincon, J.M.; Hester, D.; Brownjohn, J. Development and Field Testing of a Vision-Based
Displacement System Using a Low Cost Wireless Action Camera. Mech. Syst. Signal Process. 2019, 121, 343–358. [CrossRef]

4. Khan, M.A.; McCrum, D.; Obrien, E.J.; Bowe, C.; Hester, D.; McGetrick, P.J.; O’Higgins, C.; Casero, M.; Pakrashi, V. Re-Deployable
Sensors for Modal Estimates of Bridges and Detection of Damage-Induced Changes in Boundary Conditions. Struct. Infrastruct.
Eng. 2022 , 18, 1177–1191. [CrossRef]

5. González, A.; Hester, D. An Investigation into the Acceleration Response of a Damaged Beam-Type Structure to a Moving Force.
J. Sound Vib. 2013, 332, 3201–3217. [CrossRef]

6. Huseynov, F.; Kim, C.; OBrien, E.J.; Brownjohn, J.M.W.; Hester, D.; Chang, K.C. Bridge Damage Detection Using Rotation
Measurements—Experimental Validation. Mech. Syst. Signal Process. 2020, 135, 106380. [CrossRef]

7. Riches, O.; Hill, C.; Baralos, P. Queensferry Crossing, UK: Durability, Maintenance, Inspection and Monitoring. Proc. Inst. Civ.
Eng.—Bridge Eng. 2019, 172, 175–188. [CrossRef]

8. Yan, Y.; Mao, X.; Wang, X.; Yu, X.; Fang, L. Design and Implementation of a Structural Health Monitoring System for a Large
Sea-Crossing Project with Bridges and Tunnel. Shock Vib. 2019, 2019, e2832089. [CrossRef]

9. Ferguson, A.J.; Hester, D.; Woods, R. A Direct Method to Detect and Localise Damage Using Longitudinal Data of Ends-of-Span
Rotations under Live Traffic Loading. J. Civ. Struct. Health Monit. 2022, 12, 141–162. [CrossRef]

10. Jeng, S.T.C.; Ritchie, S.G. Real-Time Vehicle Classification Using Inductive Loop Signature Data. Transp. Res. Rec. 2008, 2086, 8–22.
[CrossRef]

11. Balid, W.; Refai, H.H. Real-Time Magnetic Length-Based Vehicle Classification: Case Study for Inductive Loops and Wireless
Magnetometer Sensors in Oklahoma State. Transp. Res. Rec. 2018, 2672, 102–111. [CrossRef]

12. Gingras, D.J. Optics and Photonics Used in Road Transportation. In Lasers and Materials in Industry and Opto-Contact Workshop;
Corriveau, R.J.L., Soileau, M.J., Auger, M., Eds.; SPIE: Bellingham, WA, USA , 1998; pp. 264–269. [CrossRef]

13. Seo, Y.G.; Lew, C.G.; Lee, B.H. Development of Vehicle Classification Algorithm using Non-Contact Treadle Sensor for Toll Collect
System. J. Korea Inst. Electron. Commun. Sci. 2016, 11, 1237–1244. [CrossRef]

14. Won, M.; Zhang, S.; Son, S. WiTraffic: Low-cost and Non-Intrusive Traffic Monitoring System Using WiFi. In Proceedings of
the 2017 26th International Conference on Computer Communications and Networks, ICCCN 2017, Vancouver, BC, Canada,
31 July–3 August 2017. [CrossRef]

15. Ma, R.; Zhang, Z.; Dong, Y.; Pan, Y. Deep Learning Based Vehicle Detection and Classification Methodology Using Strain Sensors
under Bridge Deck. Sensors 2020, 20, 5051. [CrossRef] [PubMed]

16. Kleyko, D.; Hostettler, R.; Lyamin, N.; Birk, W.; Wiklund, U.; Osipov, E. Vehicle Classification Using Road Side Sensors
and Feature-Free Data Smashing Approach. In Proceedings of the 2016 IEEE 19th International Conference on Intelligent
Transportation Systems (ITSC), Rio de Janeiro, Brazil, 1–4 November 2016; pp. 1988–1993. [CrossRef]

17. Gerek, O.N.; Ece, D.G.; Barkana, A. Covariance analysis of voltage waveform signature for power-quality event classification.
IEEE Trans. Power Deliv. 2006, 21, 2022–2031. [CrossRef]

18. Wang, T.; Qiao, M.; Zhu, A.; Niu, Y.; Li, C.; Snoussi, H. Abnormal Event Detection via Covariance Matrix for Optical Flow Based
Feature. Multimed. Tools Appl. 2018, 77, 17375–17395. [CrossRef]

19. Key, S.C.; Smithson, S.B. New Approach to Seismic-reflection Event Detection and Velocity Determination. Geophysics 1990,
55, 1057–1069. [CrossRef]

20. Wilks, S.S. Certain Generalizations in the Analysis of Variance*. Biometrika 1932, 24, 471–494. [CrossRef]
21. Horn, R.A.; Johnson, C.R. Matrix Analysis, 2nd ed.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2012.
22. Marcus, M.; Minc, H. A Survey of Matrix Theory and Matrix Inequalities; Courier Corporation: North Chelmsford, MA, USA, 1992.
23. British Standards Institution. BS EN 1991-2:2003 Eurocode 1: Actions on Structures—Part 2: Traffic Loads on Bridges; BSI Standards

Limited: London, UK, 2010.
24. Sinha, J.K.; Friswell, M.I.; Edwards, S. Simplified Models for the Location of Cracks in Beam Structures Using Measured Vibration

Data. J. Sound Vib. 2002, 251, 13–38. [CrossRef]

http://doi.org/10.1016/j.prostr.2018.09.005
http://dx.doi.org/10.1016/j.ymssp.2018.11.015
http://dx.doi.org/10.1080/15732479.2021.1887292
http://dx.doi.org/10.1016/j.jsv.2013.01.024
http://dx.doi.org/10.1016/j.ymssp.2019.106380
http://dx.doi.org/10.1680/jbren.18.00020
http://dx.doi.org/10.1155/2019/2832089
http://dx.doi.org/10.1007/s13349-021-00533-5
http://dx.doi.org/10.3141/2086-02
http://dx.doi.org/10.1177/0361198118791612
http://dx.doi.org/10.1117/12.323539
http://dx.doi.org/10.13067/JKIECS.2016.11.12.1237
http://dx.doi.org/10.1109/ICCCN.2017.8038380
http://dx.doi.org/10.3390/s20185051
http://www.ncbi.nlm.nih.gov/pubmed/32899536
http://dx.doi.org/10.1109/ITSC.2016.7795877
http://dx.doi.org/10.1109/TPWRD.2006.877102
http://dx.doi.org/10.1007/s11042-017-5309-2
http://dx.doi.org/10.1190/1.1442918
http://dx.doi.org/10.1093/biomet/24.3-4.471
http://dx.doi.org/10.1006/jsvi.2001.3978

	Introduction
	Event Detection Method
	Numerical Models
	Bridge Finite Element Model
	Accelerometer Model

	Numerical Simulations and Results
	Sliding Window Length
	Effect of Accelerometer Location
	Robustness to Potential Bridge Damage

	Field Trials
	Case Study 1: Short Span Beam and Slab Bridge
	Case Study 2: Medium-Span Tied Arch Bridge

	Discussion
	Conclusions
	References

