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Abstract: Nowadays, the need for reliable and low-cost multi-camera systems is increasing for
many potential applications, such as localization and mapping, human activity recognition, hand
and gesture analysis, and object detection and localization. However, a precise camera calibration
approach is mandatory for enabling further applications that require high precision. This paper
analyzes the available two-camera calibration approaches to propose a guideline for calibrating
multiple Azure Kinect RGB-D sensors to achieve the best alignment of point clouds in both color
and infrared resolutions, and skeletal joints returned by the Microsoft Azure Body Tracking library.
Different calibration methodologies using 2D and 3D approaches, all exploiting the functionalities
within the Azure Kinect devices, are presented. Experiments demonstrate that the best results are
returned by applying 3D calibration procedures, which give an average distance between all couples
of corresponding points of point clouds in color or an infrared resolution of 21.426 mm and 9.872 mm
for a static experiment and of 20.868 mm and 7.429 mm while framing a dynamic scene. At the
same time, the best results in body joint alignment are achieved by three-dimensional procedures on
images captured by the infrared sensors, resulting in an average error of 35.410 mm.

Keywords: Azure Kinect; calibration; computer vision; point cloud; skeleton

1. Introduction

In recent years, the need for trustworthy RGB-D sensors has increased importance
in many fields, such as environment reconstruction for robotic applications [1–3], people
tracking from healthcare systems [4,5], object recognition for manufacturing tasks [6–8],
and gesture recognition for natural human–computer interfaces [9,10].

Among RGB-D devices, the Microsoft Azure Kinect [11] (Redmond, Washington,
US), released in 2019, is a Time-of-Flight (ToF) sensor [12] that offers considerably higher
accuracy than other commercially available devices [13] at low cost. It makes the Azure
Kinect one of the most reliable cameras used in many research fields [14–16]. As an example,
in [14], a hand gesture recognition system is proposed, where the depth image obtained with
an Azure Kinect is used to obtain information about the joints of the hand. This information
helps to develop a real-time system that defines and recognizes gestures indicating left,
right, up, and down on a tabletop holographic display. In [16], an Azure Kinect is used to
assess the possibility of anterior cruciate ligament rupture and osteoarthritis. In addition,
the possibility of exploiting the Azure Kinect Software Development Kit (SDK), even for the
extraction of skeletal joints with the Azure Kinect Body Tracking SDK, represents a further
step beyond the previous Kinect versions [17]. The accuracy of skeletal joint extraction has
been compared with a gold standard motion capture system and a high accuracy inertial
measurement unit. Results confirm the high reliability of the vision device, which estimates
the skeletal joints without significant discrepancies [18].
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Although Azure Kinects are widely spread in research, they are mainly used singularly.
For this reason, multi-camera systems based on Azure Kinects still need to be studied in
depth. The development of multi-camera systems can often be the key to guaranteeing
high reliability in several scenarios, from surveillance to manufacturing [19]. The pecu-
liarity of multi-camera systems is mainly in the combination of features from different
cameras, aiming to increase the reliability of the output data, which corresponds to a set
of 3D coordinates. Of course, a configuration of multi-camera systems implies proper
settings, mainly involving algorithms for calibration, which plays a critical role in many
implementations. For instance, having two or more cameras calibrated is mandatory in
several fields, mainly in manufacturing, where having a correct estimation of the position
of humans, tools and/or robots is fundamental in reducing risks for the operators [20].

Calibration techniques allow interfacing between the 3D world and 2D camera images [21].
Referring to a single RGB-D camera based on time-of-flight technology, 3D points can be
projected starting from 2D image coordinates, by knowing the intrinsic parameters of the
camera and the estimated depth maps. If multiple cameras are considered, the calibration
tries to minimize the inaccuracy of the 3D distance between homologous points, resulting
from alignment errors in 2D images [22].

In the literature, several calibration methodologies for cameras with overlapping
Field-of-Views (FOVs) cameras have been studied [23–26]. Most of them are based on
the use of targets whose features can be robustly found. Such targets can be of one- [27],
two- [28], or three-dimensions [29].

The calibration with 1D targets uses a minimum of three collinear points with known
relative positioning. It must be noticed that camera calibration with such a pattern is
pursued only if at least one point of the 1D object is fixed. The most considerable drawback
of these calibration techniques resides in constructing the 1D pattern itself. In [30], a pattern
with five black plastic spheres was used, with a diameter of 2 cm. The spheres were fixed
on a metal stick. It is impossible to guarantee exact linearity among the points in this case.
It could be challenging to extract the points of the calibration pattern (the centroids of the
spheres), as can be done for more complex geometrical targets (2D or 3D objects).

There are several 2D patterns used for camera calibration, such as circle grids [31],
Deltille grids [32], and Fiducial Marker Systems such as CALtag [33]. One of the most
widely spread 2D targets is the chessboard [34], whose planar grid structure defines many
points of a single image and makes such a target widely used in camera calibration, mainly
because of its intuitive and straightforward configuration. The chessboard structure makes
such a 2D target very easy to realize, as the only constraints to be respected are related to
the size of the black and white squares and the rigidity of the chessboard itself, which must
not show ripples and reliefs. In addition, several robust algorithms have been implemented
to extract the key points from 2D chessboards, which make multi-camera calibration
procedures easily applicable.

In the camera calibration using 3D patterns, a single 3D target, e.g., a sphere, is usually
considered [35]. Although estimating the parameters for camera calibration using such a
target is widely used in research, the precision of the method based on spheres is greatly
influenced by the accuracy of ellipse fitting. Furthermore, it is not always easy to develop
an object that satisfies all the characteristics meant for 3D patterns. The setup configuration
for proper camera calibration can require time and effort, and the development of a suited
three-dimensional object must meet specific conditions that are not immediate to follow.
It should be noted that 3D objects can also be composed of multiple 1D patterns [36].
However, this kind of 3D calibration target leads to error mainly due to image noise and
lighting conditions, which cause a sensible decrease in the accuracy in the feature extraction,
particularly when compared to a planar pattern.

While the literature has mainly studied the camera calibration problem [37–39] for
general cameras, the camera calibration task has poorly been addressed in the context of a
network of Azure Kinect sensors. In [40], the authors estimate a coarse global registration
among Azure Kinects, based on the data provided by the Body Tracking SDK algorithm. It
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is well known that such data bring an intrinsic error due to the estimation process pursued
in the extraction of the skeletal joints [11]. This error inevitably affects the final registration,
even if the authors try to refine the calibration methodology using a feature-matching
algorithm. In general, it is clear that the knowledge of the physical characteristics of
this low-cost RGB-D sensor allows for providing proper recommendations on how to
specifically perform calibration in a context of multiple overlapping cameras, considering
information extracted from either the inside RGB camera or the Infrared ones. Furthermore,
addressing the calibration problem of RGB-D cameras without considering the raw depth
information is strongly restrictive, as the presence of an IR sensor, along with the intrinsic
functionalities of the Azure Kinect camera, can allow a highly accurate projection of the
data in the 3D space.

This work compares different calibration methodologies and suggests a guideline of
the best methods to properly calibrate multiple Azure Kinect cameras, according to the
data that must be processed and the measures needed. The proposed methodologies all
starts by analyzing a 2D target, i.e., a chessboard. This target is detected and processed
in both RGB and IR images to estimate its corners. In a 3D approach, these points are
projected in the 3D space, taking advantage of ToF principles. The chessboard becomes a
“2.5D pattern” [41], as its planar features (corners) are directly computed from the depth
map, using the intrinsic functionalities of the ToF RGB-D camera [42].

The main contributions of this work are:

• A two-camera system composed of Azure Kinects has been considered and the spe-
cific physical characteristics of these sensors have been studied to devise different
calibration methodologies.

• Four different methodologies based on the data coming from color cameras and in-
frared cameras with or without the associated depth information have been compared
in two real scenarios (dense point clouds of real objects for measures analysis, and
people skeletal joints extracted from SDK Body tracking algorithm).

• A careful analysis of results provides a guideline for the best calibration techniques
according to the element to be calibrated, i.e., point clouds with color or infrared
resolutions and skeletal joints.

The paper is structured as follows. In Section 2, the proposed calibration method-
ologies are outlined. Section 3 defines the experimental setup in which the described
calibration techniques are used. Section 4 analyzes the reliability of the proposed calibra-
tion methodologies applied to point clouds and skeletal joints. Finally, Sections 5 and 6
draw a final discussion and the conclusion.

2. Methodology

The two-camera calibration methodologies discussed in this work consider Microsoft
Azure Kinect. Such kind of device consists of an RGB camera and an infrared (IR) camera,
with the latter providing depth information implementing ToF principles. Therefore, the
Kinects output RGB images, IR images, and depth maps. The Azure Kinect is equipped
with two software development kits for the management of all data that can be recorded by
the internal cameras: the general Azure Kinect SDK and the Azure Kinect Body Tracking
SDK [43]. In particular, the data provided by the Azure Kinect sensor can be represented in
two different geometries: the geometry of the color camera or the geometry of the infrared
camera. The term geometry, related to the RGB or IR sensors of the Azure Kinect camera,
refers to a set of sensor properties, including the coordinate system, its resolution, and all
intrinsic transformations. A set of routines in the general SDK allows the transformation of
images or depth maps from one geometry to another. The Body Tracking SDK implements
Deep Learning and Convolutional Neural Networks algorithms [44] to extract all the
possible information for people segmentation, people tracking, and skeletal joint extraction.
In Figure 1, the two cameras that produce RGB and IR images are shown. In the example
images, the skeletal joints extracted by the body tracking SDK are superimposed.
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Figure 1. Representation of the internal Kinect sensors that produce: (a) color images with a resolution
of 3840 × 2160 and (b) IR images with resolution 640 × 576. The origin of the coordinate systems is
placed at the focal point of each sensor [11]. The skeletal joints extracted by the Body Tracking SDK
are superimposed on the images.

Following the procedure in Figure 2, the depth maps acquired by the IR camera can
be converted into point clouds by using the SDK functions [45]. Starting from the IR image,
depth data can be converted directly, in the geometry of the infrared camera obtaining
the Pin f rared point cloud. Otherwise, the point cloud can be represented in the geometry
of the color camera. In this case, the SDK provides a transformation Tintr, that uses also
the intrinsic camera parameters, to convert the depth map into a point cloud with color
geometry. The result of this step is a Pcolor point cloud.

Figure 2. Schematic representation of the point cloud realization with color and infrared geometries,
using the Azure Kinect SDK.
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The proposed techniques consider a two-camera setup made of a Reference and
a Template camera. Nevertheless, the system can be suited for multiple Azure Kinect
calibration. Without any loss of generality, for multiple K cameras, the calibration has to be
repeated (K− 1) times to align the outputs of (K− 1) Template cameras onto the Reference
one. All calibration methodologies use a 2D target that will be captured simultaneously by
the RGB and IR sensors of each of the two cameras. This target is a 2D chessboard made up
of m rows and n columns of black and white squares with side length of S. The structured
geometry of the chessboard guarantees robustness and accuracy for the corner detection
and processing algorithms [46]. F frames of the chessboard are acquired by moving the
target to different positions and orientations in the FOVs of both cameras.

The transformation matrix that relates the two coordinate systems of the Reference
and Template Cameras is defined in the following Equation (1).

T =

(
R t
0 1

)
(1)

where R ∈ R3×3 represents the rotation matrix and t ∈ R3×1 the translation vector. The
whole T matrix is estimated by evaluating the correspondences among the corners of the
chessboard observed by the two cameras.

In Figure 3, the proposed calibration methodologies are graphically summarized. In
this figure, Tintr and Tintr,Re f correspond to the intrinsic transformations that convert the
data from the geometry of the infrared camera to the one of the color camera. On the
other hand, four calibration matrices can be obtained comparing different camera sensors,
namely RGB or IR sensors, and calibration procedures, namely 2D and 3D calibrations.
Specifically, when chessboard corners are processed directly to estimate the transformation
matrix, the calibration works with mere 2D image coordinates. Therefore, it ends with
the following:

• T2Dcolor if the chessboard corners are extracted from RGB images, i.e., with the geom-
etry of the color cameras;

• T2Din f rared if the chessboard corners are detected in the IR images, i.e., with the
geometry of the infrared cameras.

Figure 3. Conceptual meaning of the application of the transformation matrices obtained from the
proposed calibration techniques. The transformation process using matrices with color geometry
is marked in yellow, whereas the transformation process using matrices with infrared geometry is
marked in purple.

However, since the Azure Kinect computes depth maps of the environment, the same
chessboard corners can be projected in 3D coordinates in the reference system of each
camera. In this case, two further procedures working with 3D points can be defined
to produce:

• T3Dcolor if the chessboard corners are taken from RGB images and then projected in
the 3D space, using the geometry of the color camera;

• T3Din f rared if the chessboard corners are extracted from the IR images and then pro-
jected in 3D, using the geometry of the infrared camera.
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In the following subsections, the methodologies used to generate the 2D and 3D
calibration matrices will be explained in detail.

2.1. 2D Calibration Procedures

A schematic pipeline of the 2D calibration methodology is shown in Figure 4.
Let (Icolor

Re f , Icolor) and (Iin f rared
Re f , Iin f rared) generically represent the images couples from

the color and infrared sensors grabbed by the Reference and Template Azure Kinect cameras,
respectively. The images are input to a corner detection algorithm [47] that estimates the
2D coordinates of the chessboard corners, namely ((ic, jc)color

Re f ,(ic, jc)color) and ((ic, jc)
in f rared
Re f ,

(ic, jc)in f rared), with c = {1, 2, . . . , (m− 1)(n− 1)}. The corner coordinates from each of
the F frames acquired during calibration, together with the square size S and the trial sets
of intrinsic parameters for both cameras (p0,Re f and p0), feed the calibration algorithm,
which finally estimates the intrinsic and extrinsic parameters of the camera [48]. The
estimated intrinsic parameters include the focal length, the optical center, the skew, the
Radial Distortion and the Tangential Distortion. This outcome refines the initial set of
intrinsic parameters of both cameras. On the other hand, the extrinsic parameters define
a rigid transformation to roto-translate the reference system of the Template camera into
the reference system of the corresponding sensor of the Reference camera, as described
in Equation (1). As depicted in Figure 4, the outputs of this 2D calibration procedure are
pRe f , p, and the matrices T2Dcolor or T2Din f rared, depending on which sensor acquires the
chessboard.

Figure 4. 2D calibration flow chart for the creation of the transformation matrices T2Dcolor and
T2Din f reared. The frames with color resolution are marked in yellow, while the frames with infrared
resolution are marked in purple.

2.2. 3D Calibration Procedures

A schematic pipeline of the 3D calibration procedures is shown in Figure 5. Even
in this case, the first step involves detecting the corner coordinates of the chessboard in
the image reference system. The same methodology explained for 2D calibration returns
again, for each frame acquired during calibration by the Reference and Template cameras,
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(ic, jc)color
Re f and (ic, jc)color, or (ic, jc)

in f rared
Re f and (ic, jc)in f rared, depending on the considered

sensor of the Azure Kinect. The 3D projection procedure converts the generic pixel coor-
dinates (i, j) in world coordinates (x, y, z), defined in the corresponding reference system
of the sensor. This transformation is performed at SDK level knowing the intrinsic pa-
rameters of both cameras p0,Re f and p0 (factory settings), and the corresponding depth
maps. In particular, the latter is the result of the ToF measurement, performed by the IR
sensor in its own geometry. The 3D projection generates points in 3D coordinates, namely
(xc, yc, zc)color

Re f and (xc, yc, zc)color, or (xc, yc, zc)
in f rared
Re f and (xc, yc, zc)in f rared. These points

are the 3D positions of the chessboard corner, referred to in the geometries of the color and
infrared cameras, respectively.

Figure 5. 3D calibration flow chart for the creation of the transformation matrices T3Dcolor and
T3Din f rared. The frames with color resolution are marked in yellow, while the frames with infrared
resolution are marked in purple.

The 3D coordinates feed into the Maximum Likelihood Estimation Sample Consensus
(MLESAC) estimator [49], which is a generalization of the Random Sample Consensus
(RANSAC) algorithm [50]. RANSAC is an iterative method used for coordinate sets. In
the first iteration, the algorithm selects random samples from the initial correspondences
and finds the transformation matrix relative to the selected samples. This step is repeated
iteratively, and the transformation returning the maximum number of matches, named
inliers, is considered the optimal transformation matrix. All the other non-matched corre-
spondences are considered outliers. One of the problems of the RANSAC algorithm is the
setting of the threshold for correct matches. The MLESAC algorithm combines RANSAC
with the Maximum Likelihood Estimation (MLE) method to find inliers. The goal of MLE
is to find the optimal way to fit a distribution to the data [51]. By applying the MLE to
the initial correspondences of each iteration, the noise dips are eliminated, thus excluding
from the iterations those outliers that would be included if the samples were selected
randomly. Hence, the estimate of the matching points provided by the MLESAC algorithm
can be more precise and closer to the true solution, even requiring a reduced number
of iterations to reach the optimal solution. In the specific case of interest, the MLESAC
algorithm estimates the 3D transformation between the set of 3D points of the chessboard,
collected from all the acquired frames. As a result, the calibration procedure determines
the final calibration matrices T3Dcolor and T3Din f rared, as in Equation (1), depending on the
sensor that acquires the chessboard images.
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3. Experimental Setup

The real-case scenario in which experiments have been performed is shown in Figure 6.
K = 2 Azure Kinect sensors have been placed to have an extended overlapping area and
the vision of the full body of people in the scene. The calibration methodologies have been
evaluated in two different cases: (i) to assess the ability to reconstruct a target object by the
combination of point clouds, and (ii) to estimate the robustness of the people’s skeleton
alignment. Figure 7 shows the considered workspace grabbed by both Kinect sensors. The
images show that the RGB camera has a field of view wider than that of the IR camera.
In addition, the RGB camera has been set with a resolution of 3840 × 2160, while the IR
camera has been set with a resolution of 640 × 576, to produce depth maps with narrow
FOV [11].

Figure 6. Depiction of the experimental setup considering two Azure Kinects.

Figure 7. Views of the two Azure Kinects used during the experimentation, where (a) represents the
Reference Camera, and (b) represents the Template Camera. More specifically, the images on the left
in both (a,b) show the frames grabbed from the RGB sensors, while the images on the right show the
frames grabbed from the IR sensors.

In particular, two experiments have been performed:

• To state the capability of aligning point clouds, two analyses have been proposed: in a
static scenario, a still object is placed in the two camera FOVs; in a dynamic scenario,
a moving target is framed simultaneously by the two cameras. After the calibration



Sensors 2022, 22, 4986 9 of 16

phase, the point clouds in both infrared and color geometries, grabbed by the Template
camera, are transferred into the coordinate system of the Reference.

• A subject stands still with open arms in front of the two cameras and the corresponding
skeletal joints are extracted from the Azure Kinect Body Tracking library. The skeleton
from the Template camera is transferred into the coordinate system of the Reference. In
this case, ten consecutive frames have been collected to calculate the average position
of each joint to reduce intrinsic errors [11] and average involuntary movements of the
subject.

To have a clear visualization and avoid light reflections or color alterations of the
chessboard due to the natural light or backlight effects, the workspace has been artificially
illuminated using a light projector placed behind the Azure Kinects.

In the proposed configuration, the selected chessboard has m = 6 rows and n = 9
columns of black and white squares of side length S = 45 mm. F = 200 frames of the
chessboard have been acquired. Figure 8 shows some examples of the RGB and IR images
acquired during the experiments.

Figure 8. (a) RGB and (b) IR image samples of the chessboard. Several positions and orientations
have been considered to optimize the results of the calibration.

4. Calibration Analysis

The calibration methodologies have been evaluated considering the Root Mean Square
Error (RMSE), defined as follows:

RMSE =

√√√√√√
J

∑
j=1

(dj − d̂j)
2

J
(2)

where:

• dj, d̂j in the point cloud experiment are the 3D coordinates of points in correspondence
taken from the Reference point cloud and the Template one after the application of
estimated transformation. J is the total number of points in correspondence.

• dj, d̂j in the skeleton experiment are homologous 3D joint coordinates in the same
reference system. Here, J = 32 is the total number of the joints.

Low RMSE values indicate that points (or skeletal joints) are correctly transformed
in the same reference system. The value of the RMSE has been calculated for each pair
of point clouds and skeletons. Subsequently, the average of all RMSEs (RMSE) and their
standard deviation (σRMSE) were calculated to assess the proposed calibration techniques.
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4.1. Point Cloud Experiment

Table 1 shows the quantitative results of the proposed calibration methodologies in the
point cloud experiment considering a static target, i.e., a robot. Overall, 38 pairs of point
clouds have been considered. RMSE values are computed comparing pairs of point clouds
in the geometry of the color camera (Pcolor column) or in the geometry of the infrared
camera (Pin f rared column). Then, the mean of such values is computed, along with the
standard deviation.

The mean of the RMSE values obtained in the alignment of the point clouds Pcolor

demonstrate that the best calibration matrix is T3Dcolor, which produces an RMSE value
equal to 21.426 mm. The worst result is obtained with the T2Din f rared matrix which
provides an RMSE value of 37.283 mm. Even σRMSE values confirm this analysis, since the
variability of the RMSEs does not exceed 1 mm in any case. In addition, the calibration
matrices that produce the lowest RMSEs, also produce the lowest σRMSE.

Table 1. Mean and standard deviation of RMSEs calculated between aligned and reference point
clouds with static target, where calibration techniques have been applied [mm]. The best results of
RMSE are underlined.

Pcolor Pin f rared

RMSE σRMSE RMSE σRMSE

T2Dcolor 24.427 0.918 45.485 0.804
T2Din f rared 37.283 0.955 20.162 0.592

T3Dcolor 21.426 0.608 36.833 0.735
T3Din f rared 33.194 0.758 9.872 0.268

Figure 9 provides a qualitative evaluation of the reconstructed point clouds in color
geometry Pcolor obtained after the above calibrations. The images show the reconstruction
of a static target, at 3.13 m from the Reference camera, resulting from the alignment of two
point clouds considering the transformation matrices T3Dcolor and T2Din f rared. In the first
case, the shape of the target is clearly visible, and its appearance is coherent and consistent
with its expected shape. In the latter case, which underperforms the other calibrations, the
target appears duplicated, and its 3D dense reconstruction fails.

Figure 9. Visual representation of the (a) best (T3Dcolor) and (b) worst (T2Din f rared) alignment of
point cloud in color geometry Pcolor . The input point clouds are captured at the same timestamp
from both the Azure Kinect cameras.

In Table 1, the lowest value of RMSE calculated for the alignment of Pin f rared point
clouds in infrared geometry is 9.872 mm, obtained by T3Din f rared, while the worst is
45.485 mm, obtained by T2Dcolor . Figure 10 shows the results of the alignment of the same
static target of Figure 9, but modeled in the Pin f rared point clouds in infrared geometry.
Alignments are made by applying the best and worst calibration methodologies in Table
1. Specifically, the T3Din f rared calibration matrix produces a coherent reconstruction of
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the target, while the application of T2Dcolor returns an altered version of the target shape,
which seems shrunk in the front while its silhouette is not complete.

A careful analysis of the quantitative results of Table 1 highlights that the experiments
carried out considering the calibration matrices resulting from the 2D calibration method
give the worst results than the 3D calibration ones. The reason lies in the fact that T2Dcolor

and T2Din f rared are generated from matches between 2D data, while 3D calibration T3Dcolor

and T3Din f rared consider matches between sets of 3D coordinates that contain more infor-
mation with the introduction of depth data. This result is not straightforward, since the
computation of the depth maps, which is the basis of 3D calibration procedures, can suffer
from implicit errors. However, such negative contributions do not influence 3D approaches,
which always outperform 2D ones.

On the other side, it is possible to notice that the Pcolor presents the lowest RMSE
values when using the T3Dcolor calibration matrix, computed starting from the chessboard
corners in RGB images. At the same time, the alignment of Pin f rared point clouds in infrared
geometry has the lowest RMSE with the calibration made by matching corners from IR
images. These results can be explained considering the process that the Kinect sensor uses
to produce the two point clouds in color or infrared geometries, as in Figure 2. The point
clouds are always generated by the IR camera, but the transformation of the point cloud
in the geometry of color camera requires an interpolation process that uses the intrinsic
camera parameters. At the end of this process, the size of the point cloud greatly increases.
In conclusion, the calibrations performed in the same space after the same transformations
are those that perform better.

Figure 10. Visual representation of the (a) best (T3Din f rared) and (b) worst (T2Dcolor) alignment of
Pin f rared point clouds. he input point clouds are captured at the same timestamp from both the Azure
Kinect cameras.

To better evaluate the proposed methodologies, the same calibration matrices have
been applied to pairs of point clouds extracted from videos that frame a dynamic scene
with a moving target. For this evaluation, 128 pairs of point clouds have been considered.

Table 2 shows the avarage and the standard deviation of the RMSEs obtained in
comparing each couple of point clouds, in both color and infrared geometries. The results
are highly comparable with the one observed in Table 1. The standard deviations show
slightly higher values, as attributed to the presence of the moving target. Nevertheless, in
all cases, σRMSE values do not exceed 2.4 mm.
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Table 2. Average and standard deviation of the RMSEs calculated between aligned and reference
point clouds with dynamic target, where the calibration techniques have been applied [mm]. The
best results of RMSE are underlined.

Pcolor Pin f rared

RMSE σRMSE RMSE σRMSE

T2Dcolor 25.340 0.666 36.683 2.383
T2Din f rared 39.446 2.299 13.046 0.765

T3Dcolor 20.868 1.233 33.122 2.198
T3Din f rared 34.039 2.024 7.429 0.606

4.2. Skeleton Experiment

The RMSE values resulting from the comparison between the skeletal joints of the
Template camera, aligned in the reference system of the Reference one for all the proposed
procedures are reported in Table 3, together with the corresponding σRMSE values. For
such an evaluation, 15 pairs of skeletal joints have been aligned. Each pair contains the
average values of the skeletal joints grabbed from both Template camera and Reference
camera, performed within 10 frames. Hence, 150 frames have been considered in total.
Observing the table, it is clear that the best result is obtained using the calibration matrix
T3Din f rared with the lowest RMSE of 35.410 mm. The calibration performed using T2Dcolor ,
instead, gives the highest RMSE value, equal to 124.602 mm. As expected, the results are in
accordance with those obtained for the point cloud in infrared geometry, shown in Table 1,
since the skeletal joints are also generated in the IR environment, using the same IR camera
of Pin f rared: the calibrations obtained in the same geometry produce a better overlap of the
two skeletons.

The graphs reported in Figure 11 allow a qualitative evaluation of the effects of the
best and worst calibration procedures on skeleton alignment. In Figure 11a, the results after
the application of the T3Din f rared matrix are shown, while in Figure 11b the skeletons are
registered using the T2Dcolor matrix. The graphs confirm the results of the RMSE values. In
Figure 11a the two skeletons are very close, while in Figure 11b some joints of the skeletons,
especially those corresponding to the extreme joints of legs and arms, are very distant.

Figure 11. Graphic representation of the (a) best (T3Din f rared) and (b) (T2Dcolor) worst skeleton
alignments. In both graphs, the aligned template skeleton is in green, while the reference skeleton is
in blue.
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Table 3. Average and standard deviation of the RMSEs calculated between aligned and reference
skeletal joints, where calibration techniques have been applied [mm]. The best result of RMSE
is underlined.

Joints of the Skeleton

RMSE σRMSE

T2Dcolor 124.602 1.349
T2Din f rared 44.256 4.640

T3Dcolor 111.247 1.889
T3Din f rared 35.410 5.490

This result is very important if skeleton extraction is the target of a multi-camera setup.
This goal is of increasing interest, since capturing humans from different points of view
can lead to robust people tracking, even in case of camera occlusions and/or estimation
errors. Furthermore, σRMSE values confirm that the skeletal joints alignment is repeatable
over the frames, as in all techniques they do not exceed 5.5 mm. Having a correct and
continuous knowledge of where somebody is within a volume of interest is of critical
importance to guarantee safety, for instance in human–robot collaboration, and even for
action recognition tasks. In these scenarios, misalignment of the skeletons once referred to
as a common coordinate system can lead to even huge and more dangerous errors. For this
reason, performing a reliable camera calibration becomes mandatory.

5. Discussion

The camera calibration problem has been extensively addressed in the literature as the
importance of having coherent data extracted from different sensors in a single reference
system is widely recognized. However, with the availability of multi-modal sensors that
provide different types of data, it is necessary to study calibration methods that take into
account the specificity of the sensors and the type of data extracted. In this context, the
presented work has filled the gap about the need for calibration methods specific to the
Microsoft Azure Kinect cameras. Here, calibration methods have been developed starting
from raw images from both the color and the infrared sensors. This choice guarantees a
higher reliability in applying calibration to skeletons and point clouds, particularly with
respect to [40]. Overall, the experiments have proven the efficiency of 3D-based techniques,
which take advantage of the specifics of the Azure Kinect cameras. It must be noticed
that the techniques here presented can be useful in calibrating a system composed of
multiple Azure Kinects, as the alignment can be performed to indefinite pairs of point
clouds and/or skeletons.

The main points of the proposed calibration methodologies are the following:

• In general, 3D procedures outperform 2D ones as depth information is added to
the calibration. This is due to the effectiveness of depth estimation and intrinsic
transformations used to project 2D image points in the 3D space.

• The alignment of point clouds in the geometry of the color camera has the lowest error
value when using a calibration procedure working in 3D starting from RGB images,
since both the point cloud in color geometry and the chessboard corner coordinates
enabling the calibration follow the same interpolation procedures carried out by the
general SDK functions.

• The alignment of point cloud in the geometry of the infrared camera has the lowest
error when the calibration works starting from IR images. Even in this case, the
calibration performed in the same geometry of the point cloud produces the best result.

• The alignment of skeletons shows the best result while calibration is performed in 3D
starting from IR images. It further confirms the previous statement.

• In all experiments, the standard deviations of the RMSE values state that the variability
in error computations is always lower than the improvement in aligning both point
clouds and skeletal joints.
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The results are significant in systems with two or more cameras, mainly when low-cost
sensors, such as Azure Kinects, can be efficiently used for several applications to have full
3D representations of targets and environments. For example, 3D characterization is helpful
in many computer vision applications, such as 3D reconstruction, 3D localization, and 3D
pose estimation. Building a proper 3D scene can allow a highly accurate assessment of a
3D map for pursuing, for instance, the reconstruction of an industrial object. Furthermore,
estimating human 3D movements is required in various scenarios, which may need to detect
specific activities performed by the framed subjects. To segment and recognize human
movements, a properly calibrated camera system can provide a complete reconstruction of
human posture, overcoming any occlusion that may limit the view of one of the cameras.
Such calibration processes can be useful in surveillance, where it is crucial to know what
a person is doing and where he/she is going. Furthermore, a calibrated system that
provides a complete set of 3D skeletal joints, or a dense point cloud, can easily represent a
subject executing a specific task. Such data may widely facilitate segmentation and, thus,
recognition of the actions needed for any assignment.

6. Conclusions

In this paper, a two-camera system composed of Azure Kinect sensors has been
considered. Starting from the possible data that can be extracted by these sensors (color
and infrared images, point clouds in the geometry of the color camera, and point clouds in
the geometry of the infrared camera), four different calibration procedures working in the
2D or 3D spaces have been compared. The analysis of results in two real-case scenarios has
provided a guideline to properly calibrate dense point clouds or skeletal joints according to
the geometry in which they are represented.

A future step in the calibration may involve multi-camera calibration. Even though
the proposed systems can be applied to a multiple Azure Kinect system, the methodologies
always consider an in-pair calibration of the cameras, i.e., Reference-Template camera
calibration. It would be interesting to study the calibration of multiple Azure Kinects at the
same time, using global optimization algorithms. The further redundancy of a multi-camera
will be the key to better estimations of dense point clouds and occlusion-robust skeletons.
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