
����������
�������

Citation: Kumar, K.; Bhaumik, S.;

Arulampalam, S. Tracking an

Underwater Object with Unknown

Sensor Noise Covariance Using

Orthogonal Polynomial Filters.

Sensors 2022, 22, 4970. https://

doi.org/10.3390/s22134970

Academic Editor: Andrzej Stateczny

Received: 10 May 2022

Accepted: 28 June 2022

Published: 30 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Tracking an Underwater Object with Unknown Sensor Noise
Covariance Using Orthogonal Polynomial Filters
Kundan Kumar 1 , Shovan Bhaumik 1 and Sanjeev Arulampalam 2,3,*

1 Department of Electrical Engineering, Indian Institute of Technology Patna, Patna 801103, India;
kundan.pee16@iitp.ac.in (K.K.); shovan.bhaumik@iitp.ac.in (S.B.)

2 Maritime Division, Defence Science and Technology (DST) Group, Edinburgh, SA 5111, Australia
3 Faculty of Engineering, Computer & Mathematical Sciences, The University of Adelaide,

Adelaide, SA 5005, Australia
* Correspondence: sanjeev.arulampalam@defence.gov.au

Abstract: In this manuscript, an underwater target tracking problem with passive sensors is con-
sidered. The measurements used to track the target trajectories are (i) only bearing angles, and
(ii) Doppler-shifted frequencies and bearing angles. Measurement noise is assumed to follow a zero
mean Gaussian probability density function with unknown noise covariance. A method is developed
which can estimate the position and velocity of the target along with the unknown measurement
noise covariance at each time step. The proposed estimator linearises the nonlinear measurement
using an orthogonal polynomial of first order, and the coefficients of the polynomial are evaluated
using numerical integration. The unknown sensor noise covariance is estimated online from residual
measurements. Compared to available adaptive sigma point filters, it is free from the Cholesky
decomposition error. The developed method is applied to two underwater tracking scenarios which
consider a nearly constant velocity target. The filter’s efficacy is evaluated using (i) root mean square
error (RMSE), (ii) percentage of track loss, (iii) normalised (state) estimation error squared (NEES),
(iv) bias norm, and (v) floating point operations (flops) count. From the simulation results, it is
observed that the proposed method tracks the target in both scenarios, even for the unknown and
time-varying measurement noise covariance case. Furthermore, the tracking accuracy increases with
the incorporation of Doppler frequency measurements. The performance of the proposed method is
comparable to the adaptive deterministic support point filters, with the advantage of a considerably
reduced flops requirement.

Keywords: target motion analysis; bearings-only measurement; Doppler-shifted frequency; unknown
measurement noise covariance; orthogonal polynomial; sigma point filters

1. Introduction

Target tracking of an underwater object in a passive mode is a challenging problem
owing to the nonlinear and low information content of the passive measurements, coupled
with the complexities of the ocean environment [1–6]. A typical passive measurement
used in such problems is bearings, and the resulting tracking process is termed bearings-
only tracking (BOT), where the objective is to estimate the position and velocity of a
moving target using bearings-only measurements. Another type of underwater tracking
utilises both bearings and Doppler measurements received from the target and is known as
Doppler-bearing tracking (DBT). Due to their importance in underwater target tracking,
both BOT and DBT have received considerable attention in the literature [7–11]. Since the
main aim in the solution to this problem is to estimate the position and velocity of a moving
target, this problem is often known as target motion analysis (TMA) [2,7].

In this paper, we assume that the object is approaching towards the ownship follow-
ing a nearly constant velocity path. The sonar mounted on the ownship measures only
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bearings or Doppler and bearings. The TMA for such a scenario is challenging due to the
following reasons:

(i) With bearings-only measurements, the system is unobservable until the ownship
executes a maneuver.

(ii) In certain TMA applications, fast convergence of the solution is important, which is
challenging with passive measurements.

(iii) The measurement equation is highly nonlinear, which limits the ability of the estimator
to provide reliable tracking performance.

(iv) Sometimes, the measurement noise covariance is time-varying and unknown.

As we mentioned above, in the passive tracking problem, the measurement equations
(both bearings-only and Doppler bearings) are nonlinear, and we need to implement a
nonlinear filter to estimate the target’s trajectory. The extended Kalman filter (EKF) [12,13]
and its variants were initially applied for such problems [14–17]. However, they have
limitations such as poor estimation accuracy and track divergence, particularly for high
initial errors [13,18]. To improve the accuracy of estimation in general, a few deterministic
sample point filters such as the unscented Kalman filter (UKF) [19,20], Gauss-Hermite filter
(GHF) [21,22], and cubature Kalman filter (CKF) [23,24], etc., were developed. In these
filters, the probability density functions are approximated with a few deterministic points
and weights, which are propagated and updated using the process and measurement
equation, respectively. The Cholesky decomposition operation on error covariance is
required to be performed in all such filters. Due to processing software limitations, a
round-off error arises, which frequently results in error covariances to be asymmetric and
non-positive definite, which ultimately leads to unstable filtering. To circumvent this
problem, square root filters [25–27] were proposed. Although the square root filters are
numerically more stable, they are computationally more expensive.

Very recently, an orthogonal polynomial approximation-based filter was proposed [28],
which can be seen as an alternative to the square root filtering. This filter uses an orthogonal
polynomial approximation to linearise a nonlinear system, and subsequently the Kalman
filtering approach is used. The coefficients of the linearised model are calculated by
evaluating an intractable integral using a weighted sum of a few deterministic sample
points. When these sample points are generated using the cubature rule, the filter is called
cubature orthogonal polynomial-based EKF (CO-EKF), and similarly, when the unscented
transform and Gauss-Hermite integration rules are used, the proposed filters are named
UO-EKF and GHO-EKF, respectively. These filters are more robust and retain the desirable
properties of error covariance matrices during software implementation [28], i.e., they are
free from the Cholesky decomposition error. It is reported that the orthogonal polynomial
filters provide almost similar accuracy to their square root counterparts with much less
computation cost.

In this paper, we reformulate the orthogonal polynomial approximation-based filter
proposed in [28] in an alternative way which is more straightforward and easier to fol-
low. Further, we extend the orthogonal polynomial approximation filter in such a way
that it can be applied to estimate the states when measurement noise covariance is not
known. The proposed filter is also capable of estimating time-varying measurement noise
covariance along with the states. We consider two tracking scenarios where the tracking is
performed with bearings-only and Doppler-bearing measurements. In the first scenario,
the ownship executes an evasive maneuver smoothly, and in the second case, it executes a
sharp maneuver. The proposed adaptive orthogonal polynomial filters are implemented
and their performance is compared with the corresponding square root filters in terms
of (i) root mean square error (RMSE), (ii) percentage track loss, (iii) normalised (state)
estimation error squared (NEES), (iv) bias norm, (v) floating point operations (flops) count,
and (vi) computation time.

From the simulation results, it is observed that the proposed method tracks the target
in both the scenarios even for unknown time-varying measurement noise covariance, and
tracking accuracy increases with the incorporation of Doppler frequency measurements.
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While the percentage of track loss of the developed method is comparable to adaptive
deterministic support point filters, the flops requirement of our approach is considerably
less. The robustness of the proposed method is tested by assuming a target maneuver
with a small and constant turn rate, while the estimators wrongly modelled it as constant
velocity. To compensate for this, the estimators use a higher process noise covariance, and
it has been shown that the proposed filters work with acceptable accuracy, particularly
for DBT.

The remaining part of the paper is organised as follows. An underwater tracking
problem is formulated in Section 2. In Section 3, we derive the proposed filter. The
simulation results are discussed in Section 4, followed by a brief discussion and conclusions.

2. Problem Formulation
2.1. System Model

The state vector of a target at time index k is given by X t
k =

[
X t

1,k X t
2,k Ẋ t

1,k Ẋ t
2,k

]′
,

where (X t
1,k,X t

2,k) are the true positions and (Ẋ t
1,k, Ẋ t

2,k) are the true velocities of the tar-
get along the x and y axis, respectively, and ′ represents the transpose of a matrix.
Similarly, the state vector of the observer (which is ownship) can be expressed as

X o
k =

[
X o

1,k X o
2,k Ẋ o

1,k Ẋ o
2,k

]′
.

The target dynamics in discrete time can be expressed as

X t
k = FX t

k−1 + ηk−1, (1)

where F is the state transition matrix. The process noise, ηk−1, follows a Gaussian distribu-
tion with zero mean and covariance,

Qk−1 = q̃

[
T3

3 I2×2
T2

2 I2×2

T2

2 I2×2 TI2×2

]
,

where q̃ is the process noise intensity, and T is the sampling time. We define the relative
state vector as

Xk = X t
k −X

o
k . (2)

Using Equation (1), we can write the state equation as

Xk = FX t
k−1 + ηk−1 −X 0

k

= F(Xk−1 +X o
k−1)−X

0
k + ηk−1

= FXk−1 −Uk−1,k + ηk−1,

(3)

where Uk−1,k = X 0
k − FX 0

k−1 is known as the vector of deterministic inputs [7]. Here, we
consider a single target which follows (i) a nearly constant velocity path described by a
constant velocity (CV) model, or (ii) a maneuvering trajectory described by a constant
turn (CT) model with constant and known turn rate. It is interesting to note that, for both
cases, the process equation is linear.

2.1.1. Constant Velocity Model

The state transition matrix for the CV model is given by

F =

[
I2×2 TI2×2
02×2 I2×2

]
, (4)

and the vector of deterministic inputs [2,7] becomes
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Uk−1,k =


X 0

1,k −X
0
1,k−1 − TẊ 0

1,k−1

X 0
2,k −X

0
2,k−1 − TẊ 0

2,k−1

Ẋ 0
1,k − Ẋ

0
1,k−1

Ẋ 0
2,k − Ẋ

0
2,k−1

. (5)

2.1.2. Constant Turn Model

In this case, it is assumed that the target maneuvers with a constant and known turn
rate, ω. The state transition matrix of this model is expressed as [23,29,30]

F =


1 0

sin(ωT)
ω

−1− cos(ωT)
ω

0 1
1− cos(ωT)

ω

sin(ωT)
ω

0 0 cos(ωT) − sin(ωT)
0 0 sin(ωT) cos(ωT)

, (6)

and the expression of Uk−1,k becomes

Uk−1,k =



X 0
1,k −X

0
1,k−1 −

sin(ωT)
ω

Ẋ 0
1,k−1 +

1− cos(ωT)
ω

Ẋ 0
2,k−1

X 0
2,k −X

0
2,k−1 −

1− cos(ωT)
ω

Ẋ 0
1,k−1 −

sin(ωT)
ω

Ẋ 0
2,k−1

Ẋ 0
1,k − cos(ωT)Ẋ 0

1,k−1 + sin(ωT)Ẋ 0
2,k−1

Ẋ 0
2,k − sin(ωT)Ẋ 0

1,k−1 − cos(ωT)Ẋ 0
2,k−1


. (7)

It is to be noted that in the limiting condition ω → 0, Equations (6) and (7) reduce to
Equations (4) and (5), respectively.

2.2. Measurement Model

Measurement sensors are mounted on the ownship and all the sensors are passive
so that some specific tactical advantages can be achieved. It is assumed that the sonar
mounted on the ownship is only capable of measuring the bearing angle. We assume the
following two cases.

2.2.1. Case I—Bearings-Only Measurement

The sensors measure the direction of the target location with respect to true north.
Such measurements can be expressed as

Yk = γ(Xk) + νθk , (8)

where γ(Xk) = tan−1(X1,k/X2,k), and νθk is noise in bearing measurement, which is
assumed to be zero mean, white Gaussian with standard deviation, σθ , i.e., νθk ∼ N (0, σ2

θ ).
For such measurements, the system is unobservable [2,7] and the estimation of the target
state is only possible when the ownship starts maneuvering. It is to be noted that even if,
sometimes, the sensor measures the bearing angle with respect to its own local coordinates,
it is easy to transform the measurement with respect to true north.

2.2.2. Case II—Doppler-Bearing Measurement

As the target is moving, a Doppler shift occurs on the tonal frequency emitted from the
target, which can also be measured. In such cases, both the noise-corrupted bearing angles
and Doppler-shifted frequencies are available. This is popularly known as Doppler-bearing
(DB) measurement and the overall measurement function γ(Xk) becomes
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γ(Xk) =

[
tan−1(X1,k/X2,k)

fT(1−
Ẋ1,kX1,k

crk
− Ẋ2,kX2,k

crk
)

]
, (9)

where fT is the constant tonal frequency emitted from the target, r2
k = X 2

1,k +X
2
2,k, c is the

speed of the sound in water, and the measurement noise vector in this case is

νk =
[
νθk ν fk

]′
. Note that ν fk

is the sensor noise in the Doppler measurement and as-
sumed to be zero mean, white, Gaussian with variance σ2

f , i.e., ν fk
∼ N (0, σ2

f ). Further, we
assume that the noises in bearing and Doppler measurements is uncorrelated, with overall
measurement noise covariance Rk = diag(σ2

θ , σ2
f ).

It is to be noted that for Doppler-bearing (DB) measurements, the system is observable
and maneuvering of the ownship is not required for estimators to converge [9]. Fur-
ther, it is expected that if noise variance for Doppler measurement is reasonably low, the
Doppler-bearing tracking (DBT) should provide more accurate results than bearings-only
tracking (BOT).

3. Tracking Methodology

In this section, we formulate a tracking filter for underwater TMA when sensor noise
covariance is unknown. The proposed filter linearises the nonlinear measurement function
using a first-order orthogonal polynomial approximation with a Gaussian measure as a
weight function and estimates the measurement noise covariance Rk at each step.

3.1. Orthogonal Polynomial Filter

The proposed orthogonal polynomial filter is a kind of linearised Kalman filter, where,
unlike the extended Kalman filter, the linearisation is not done using the Taylor series;
rather, it is done with a first-order Hermite polynomial. The method was developed for a
general nonlinear state estimation problem in our earlier publication [28]. Here, we provide
a more straightforward derivation of the filter for an underwater tracking problem.

The problem considered here consists of a linear process model, so the time update
step can be done by the Kalman filter (KF). The available measurements are assumed to
be (i) bearings, (ii) bearings with Doppler-shifted frequencies. Thus, our measurement
Yk ∈ Rny , where ny is 1 or 2 for bearings and Doppler-bearing measurements, respectively.
As the measurement equation is nonlinear, it is linearised with the first-order Hermite
polynomial, and subsequently the KF scheme is applied for the measurement update.

Let us assume an arbitrary function of Gaussian random variable (r.v.) X , f (X ), which
maps X to a real space of arbitrary dimension np, i.e., f (X ) : Rnx → Rnp is approximated
with a first-order Hermite polynomial [28,31–33]; so,

f (X ) ≈ A0H0(X ) + A1H1(X ), (10)

where the coefficients A0 and A1 are matrices with dimension np × 1 and np × nx, respec-
tively. H0(X ) and H1(X ) are the zero and first-order Hermite polynomial, respectively.
Please note that in Equation (10), we neglect higher-order terms so that the function is
approximated by a linear equation. All the terms with higher-order Hermite polynomi-
als that are neglected in Equation (10) combined together form the residual error. We
choose the Hermite polynomial since its weighting function expansion is the same as the
Gaussian [31,32]. As the Hermite polynomial is orthogonal [33],

< Hi(X ), Hj(X ) >=

{
Inx for i = j,
0 otherwise,

(11)

where <,> represents the dot product, X ∼ N (X̂ , P), and Inx is the identity matrix of
dimension nx. The coefficient Ai can be calculated as
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Ai =< f (X ), Hi(X ) >

=
∫ ∞

−∞
f (X )Hi(X )′N (X , X̂ , P)dX .

(12)

It is easy to verify that H0(X ) = 1 and H1(X ) = S−1(X − X̂ ), where P = SS′.
Substituting the values of H0(X ) and H1(X ) in Equation (10), the approximation of
f (X ) becomes

f (X ) ≈ A0 + A1S−1(X − X̂ ). (13)

Following Equation (13), we can linearise the measurement function γ(Xk) as

γ(Xk) ≈ Ak + BkS−1
k|k−1(Xk − X̂k|k−1), (14)

where the state Xk ∈ R4 follows a Gaussian distribution with mean X̂k|k−1 and covariance
Pk|k−1, and the coefficients Ak and Bk are ny × 1 and ny × 4 matrices, respectively. Sk|k−1 is
the square root of the covariance matrix Pk|k−1 (i.e., Pk|k−1 = Sk|k−1S′k|k−1), which can be
calculated by the Cholesky decomposition. Using Equation (12), the coefficient matrices Ak
and Bk can be expressed as

Ak =
∫ ∞

−∞
γ(Xk)N (Xk; X̂k|k−1, Pk|k−1)dXk, (15)

Bk =
∫ ∞

−∞
γ(Xk)(S−1

k|k−1(Xk − X̂k|k−1))
′N (Xk; X̂k|k−1, Pk|k−1)dXk. (16)

The above integrals cannot be solved analytically for any arbitrary nonlinear func-
tion [34]. Various methods such as the Gauss-Hermite (GH) quadrature rule [21], unscented
transform [19,20], cubature quadrature (CQ) rule [23,24], and high-degree cubature quadra-
ture (HDCQ) rule [35,36] are available to solve such integrals. Here, in brief, we discuss the
GH quadrature rule.

Gauss-Hermite quadrature rule: A single-dimensional Gauss-Hermite (GH) quadrature
rule [21,34] is given by

∫ ∞

−∞

1√
2π

f (x) exp(−x2)dx ≈
m

∑
i=1

f (ξi)ωi, (17)

where ξi are the quadrature points with associated weights ωi for i = 1, . . . , m. The above
integral can be extended for a multidimensional variable using the product rule [21]. To
calculate these quadrature points, we take a symmetric tridiagonal matrix J, with zero
diagonal elements and Ji,i+1 =

√
i/2, 1 ≤ i ≤ (m − 1) [21,37]. The quadrature points

are located at ξi =
√

2ψi, where ψi is the i-th eigenvalue of the matrix J. The weight
ωi = |vi,1|2, where vi,1 is the first element of the i-th normalised eigenvector of J. Thus, a
multidimensional integral

I =
∫ ∞

−∞
f (X )N (X , 0, Inx )dX (18)

can be approximately evaluated as [38]

I =
m

∑
i1=1
· · ·

m

∑
inx=1

f (ξi1 , ξi2 , · · · , ξinx
)ωi1 ωi2 · · ·ωinx

. (19)

The total number of required points in the above method for any nx dimensional
system is mnx . Here, we see that the number of points in the GH quadrature rule increases
exponentially with the system’s dimension. For more about the point and weight generation
methods of the UKF, CQKF, HDCQKF, readers are referred to [19,21,24,36].
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Calculation of Ak and Bk: To calculate Ak and Bk (Equations (15) and (16)) using the
above-discussed GH quadrature rule, we need to transform Equations (15) and (16) into
standard Gaussian integrals. Transforming the Gaussian r.v. Xk into a standard Gaussian
r.v. xk following Xk = X̂k|k−1 + Sk|k−1xk, the integrals (Equations (15) and (16)) become

Ak =
∫ ∞

−∞
γ(X̂k|k−1 + Sk|k−1xk)N (xk; 0, I4)dxk, (20)

Bk =
∫ ∞

−∞
γ(X̂k|k−1 + Sk|k−1xk)x′kN (xk; 0, I4)dxk. (21)

Using the points (ξi) and weights (ωi), the coefficients Ak (Equation (20)) can be
expressed as

Ak =
m

∑
i=1

γ(X̂k|k−1 + Sk|k−1ξi)ωi =
m

∑
i=1

γ(χi,k|k−1)ωi, (22)

where χi,k|k−1 = X̂k|k−1 + Sk|k−1ξi. Similarly, the Bk is calculated as

Bk =
m

∑
i=1

γ(χi,k|k−1)ξ
′
iωi. (23)

For bearings-only measurements given in Equation (8), Ak = ∑m
i=1 tan−1(χ{1,i,k|k−1}/

χ{2,i,k|k−1}) and Bk = ∑m
i=1 tan−1(χ{1,i,k|k−1}/χ{2,i,k|k−1})ξ

′
iωi, where χ1,i represents the

first element of the i-th transformed quadrature point. For the DB measurements given in
Equation (9), the expressions of Ak and Bk become

Ak =
m

∑
i=1

[
tan−1(χ{1,i,k|k−1}/χ{2,i,k|k−1}) fs

i
k

]′
ωi,

Bk =
m

∑
i=1

[
tan−1(χ{1,i,k|k−1}/χ{2,i,k|k−1}) fs

(i)
k

]′
ξ ′iωi,

where fs
i
k = fT(1−

χ̇1,i,k|k−1χ1,i,k|k−1

c ri
k

− χ̇2,i,k|k−1χ2,i,k|k−1

c ri
k

), ri
k =

√
χ2

1,i,k|k−1 + χ2
2,i,k|k−1.

Remark 1. Even with the assumption of Gaussian pdf of states, the approximation arises due to
(i) neglecting the terms containing second- and higher-order Hermite polynomials; (ii) approximate
evaluation of the coefficients A0 and A1 by the summation method. However, if the nonlinear
function is in polynomial form, the exact evaluation of coefficients can be done with the Gaussian
integral [17].

Remark 2. On neglecting higher-order Hermite polynomial terms in the approximation (Equation (10)),
an accumulative error may occur. It can be compensated by the following approaches [12] (pp. 395–402):
(i) increasing the process noise artificially; (ii) multiplying the error covariance by a factor slightly
greater than unity. In both cases, the Kalman gain increases and more weight is given to the present
innovation, thus compensating for the error which occurs during linearisation.

Remark 3. From the above discussion, we have seen that Ak and Bk can be evaluated using the
weighted sum of deterministic sample points. If we use the GH quadrature rule [21,34] to obtain the
points, the estimation method is called Gauss-Hermite orthogonal polynomial-based EKF (GHO-
EKF). The extension EKF is used because the proposed method linearises the nonlinear function (but
not with Taylor series expansion). Similarly, when the unscented transform [19] and CQ rule [23,24]
are used to generate the points, the filters are called unscented orthogonal polynomial-based EKF
(UO-EKF) and cubature orthogonal polynomial-based EKF (CO-EKF), respectively.
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Measurement Update

As we have linearised the measurement equation, the measurement update step can be
performed with the Kalman filter (KF) algorithm. The estimated value of the measurement
and its covariance can be calculated as

Ŷk|k−1 = E[(γ(Xk) + νk)|Y1:k−1]

=
∫
Rnx

(
Ak + BkS−1

k|k−1(Xk − X̂k|k−1)
)
N (Xk; X̂k|k−1, Pk|k−1)dXk

= Ak,

(24)

and

PYYk|k−1 = E[(Yk − Ŷk|k−1)(Yk − Ŷk|k−1)
′]

= E[
(

BkS−1
k|k−1(Xk − X̂k|k−1) + νk

)(
BkS−1

k|k−1(Xk − X̂k|k−1) + νk
)′
]

= BkS−1
k|k−1Pk|k−1(S

′
k|k−1)

−1B′k + Rk

= BkB′k + Rk.

(25)

The cross-covariance between the state and measurement can be calculated as

PXYk|k−1 =E[(Xk − X̂k|k−1)(Yk − Ŷk|k−1)
′]

= E[(Xk − X̂k|k−1)
(

BkS−1
k|k−1(Xk − X̂k|k−1) + νk

)′
]

= Pk|k−1(S
′
k|k−1)

−1B′k
= Sk|k−1B′k.

(26)

Remark 4. Although, throughout our work, we consider the measurement noises to be Gaussian, it
may not always be so [30,39,40]. In the case of non-Gaussian noise, it can be approximated by a
Gaussian distribution and we can apply the proposed method. However, in this case, since there is a
mismatch of noise statistics with the assumed one, robust filters might be helpful. Further, the noise
can also be represented as a sum of Gaussians, and Gaussian sum filters [41] with the proposed
method may help to achieve the desired results.

3.2. Estimation of Measurement Noise Covariance

The measurement noise considered here is time-varying, zero mean white Gaussian
with unknown covariance. In the literature, filtering for such problems is known as adaptive
filtering [42–48]. Several adaptive filters have been proposed based on the KF [42,44],
EKF [48], UKF [46,49], CKF [50], and GHF [46]. A few works on the TMA using BOT for
unknown time-varying measurement noise are found in [51,52]. In this paper, we have
developed a noise adaptation technique using the orthogonal polynomial filter for both
BOT and DBT. Here, we derive an expression for online Rk estimation compatible with the
orthogonal polynomial filter and presented in Lemma 1.

Lemma 1. The covariance of measurement noise, Rk can be expressed as

Rk = PYYk|k + bkPk|kb′k, (27)

where PYYk|k is the covariance of residual measurement, Pk|k is the posterior error covariance, and

bk = BkS−1
k|k−1



Sensors 2022, 22, 4970 9 of 23

Proof. The measurement equation using Equation (14) can be written as

Yk = Ak + BkS−1
k|k−1(Xk − X̂k|k−1) + νk. (28)

The expression for the posterior estimate of measurement is

Ŷk|k = Ak + BkS−1
k|k−1(X̂k|k − X̂k|k−1). (29)

Subtracting Equation (29) from Equation (28), we obtain the residual of measurement

Yk − Ŷk|k = bk(Xk − X̂k|k) + νk = bkεk|k + νk,

where εk|k = Xk − X̂k|k. The covariance of residual measurement becomes

PYYk|k = E[(Yk − Ŷk|k)(Yk − Ŷk|k)
′]

= E[(bkεk|k + νk)(bkεk|k + νk)
′]

= bkPk|kb′k + E[bkεk|kν′k] + E[νkε′k|kb′k] + Rk.

(30)

As Xk , X̂k|k−1, and εk|k−1 are uncorrelated with measurement noise νk,
E[Xkν′k] = E[X̂k|k−1ν′k] = E[εk|k−1ν′k] = 0. Using these relations, we can write the following

E[bkεk|kν′k] = E[bk(Xk − X̂k|k)ν
′
k]

= bkE[Xkν′k − X̂k|kν′k]

= −bkE[
(
X̂k|k−1 + Kk(Yk − Ŷk|k−1)

)
ν′k]

= −bkE[
(
X̂k|k−1 + Kkbkεk|k−1 + Kkνk

)
ν′k]

= −bkKkRk,

(31)

where the Kalman gain Kk = PXYk|k (PYYk|k )−1. Further, we can evaluate

E[νkε′k|kb′k] = E[bkεk|kν′k]
′ = −RkK′kb′k. (32)

Now,

bkPk|kb′k − bkKkRk = bk(I − Kkbk)Pk|k−1b′k − bkKkRk

= bkPk|k−1b′k − bkKk(bkPk|k−1b′k + Rk)

= bkPk|k−1b′k − bkPk|k−1b′k(bkPk|k−1b′k + Rk)
−1(bkPk|k−1b′k + Rk)

= 0.

or,
bkKkRk = bkPk|kb′k. (33)

Substituting Equations (31)–(33) in Equation (30), we have Equation (27).

From the measurement data sequence, PYYk|k is calculated using the following equation:

PYYk|k =
1

k− i0 + 1

k

∑
i=i0

(Yi − Ŷi|i)(Yi − Ŷi|i)
′, (34)
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where i0 is the user’s choice to fix a window length of (k− i0 + 1). Substituting Equation (34)
into Equation (27),

Rk =
1

k− i0 + 1

k

∑
i=i0

(Yi − Ŷi|i)(Yi − Ŷi|i)
′ + bkPk|kb′k. (35)

The detailed algorithm to implement the proposed adaptive orthogonal polynomial-
based filter is presented in Algorithm 1.

Algorithm 1 : Pseudo code for adaptive polynomial filter for target tracking

Step 1: Initialisation
1 Initialise the filter with X̂0|0, P0|0, and R0.
2 Compute the sample points ξi, and their respective weights ωi.

Step 2: Time update
3 Compute the predicted mean and covariance as

X̂k|k−1 = FX̂k−1|k−1 −Uk−1,k,

Pk|k−1 = FPk−1|k−1F′ + Qk−1.

Step 3: Measurement update
4 Compute Ŷk|k−1, PYYk|k−1, and PXYk|k−1 using Equations (24)–(26).

5 Calculate the Kalman gain, Kk = PXYk|k−1(PYYk|k−1)
−1.

6 Estimate the posterior state,

X̂k|k = X̂k|k−1 + Kk(Yk − Ŷk|k−1).

7 Compute the posterior error covariance,

Pk|k = Pk|k−1 − KkPYYk|k−1K′k.

Step 4: Estimate unknown Rk
8 Calculate the posterior estimate of the measurement, Ŷk|k using Equation (29).
9 Calculate the residual of measurement as Yk − Ŷk|k.

10 Calculate the covariance of measurement residual (PYYk|k ) using Equation (34).
11 Estimate Rk using Equation (35).

3.3. Computational Advantage
3.3.1. Alternative to the Square Root Filters

In sigma point filters, to calculate the sigma point at each time step, the Cholesky fac-
torisation of the covariance matrix (P), i.e., P = SS′, is required. The accumulated round-off
error associated with the limited word length arithmetics of the processing software [25–27]
sometimes leads to an asymmetric, non-positive definite covariance matrix, which forces the
filter to stop. To circumvent such a problem, the square root sigma point filters such as square
root UKF (SRUKF), square root quadrature Kalman filter (SRQKF), square root CKF (SRCKF),
etc., were developed [23,25–27]. In square root filtering, at each time step, the square root of
P, i.e., S, is propagated directly using QR decomposition. The QR decomposition guarantees
positive definite covariance matrices at the expense of increased computational burden.

The orthogonal polynomial filters are free from such problems and less sensitive to
the round-off error and preserve the symmetry and positive definiteness property [28].
Furthermore, the computational cost of this filter is less than the square root filters, which
we show using the flops count in the next subsection.
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3.3.2. Flops Count

We analyze the computational complexity of the filters by counting the number of floating
point operations (flops) [26,28,53]. A flop is defined as one basic algebraic operation, such as ad-
dition, subtraction, multiplication, and division, between any two floating point numbers [26,53].
The filter algorithm consists of the following matrix operations: (i) addition, (ii) multiplication,
(iii) inverse, and (iv) Cholesky decomposition. The addition of two matrices with dimension
m× n requires mn flops. The multiplication of an m× n matrix with n× p matrix requires
mp(2n− 1) number of flops [53]. The inverse and Cholesky operation of any matrix A ∈ Rn×n

require n3 and n3/3 + 2n2 flops, respectively [53]. The QR decomposition of any matrix with
dimension m× n using the Householder method requires 2mn2 − 2/3n3 flops.

We calculate the flops count for all the filters (both ordinary and adaptive) for BOT
and DBT measurements, and these are summarised in Table 1. From the table, we see
that the filters with DBT measurements require more flops than those with the BOT. The
adaptation of the unknown measurement noise covariance brings an extra computational
burden on the filtering algorithm. Among all filters, the EKF has the lowest flops count. The
orthogonal polynomial filters such as CO-EKF, UO-EKF, and GHO-EKF have lower flops
counts than their square root counterparts (SRCKF, SRUKF, and square root GHF (SRGHF)).

Table 1. Flops count of the implemented filters for BOT and DBT.

Filter BOT DBT

Ordinary Adaptive Ordinary Adaptive

EKF 409 516 589 914
SRCKF 1197 1548 1475 2053
CO-EKF 775 966 1011 1440
SRUKF 1323 1711 1659 2282
UO-EKF 817 1008 1065 1444
SRGHF 8090 11,142 10,299 14,162
GHO-EKF 3913 4104 4953 5382

4. Simulation Results
4.1. Tracking Scenarios

In this paper, we consider two tracking scenarios, as shown in Figure 1. From the
figure, we see that in both scenarios, the target follows a nearly constant velocity path.
In the first engagement scenario (Figure 1a), the ownship maneuvers smoothly during
the period 61–420 s with a turn rate of 0.4◦/s. In the second scenario (Figure 1b), the
observer sharply maneuvers at t = 181 s and changes its course to 320◦ from 180◦. In the
second scenario, the rate of change for the bearing angle during the maneuver is high,
which means that it is more difficult for any suboptimal filter to track. It is well known
that the maneuvering of ownship makes the system observable. We took two scenarios
from the earlier literature [2,7] as benchmark problems so that we could demonstrate the
efficacy of our proposed algorithm against the background of existing available results.
For both scenarios, the estimators use (i) bearings-only and (ii) bearings and Doppler-
shifted frequency measurements, and tracking is performed for 15 min. The speed of
sound in water (c) is taken to be 1.5 km/s, and the tonal frequency ( fT) of the target is
385 Hz. Although, in an underwater scenario, the tonal frequency may not be available
continuously and it may change after some time interval, here, we assume that the tonal
frequency is fixed and available throughout the simulation. The parameters used in the
simulation are provided in Table 2.
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Figure 1. The tracking scenarios: (a) moderately nonlinear; (b) highly nonlinear.

Table 2. Parameters used in tracking scenarios.

Parameters Scenario I Scenario II

Initial range 16.1 km 16.1 km
Target speed 35 knots 35 knots
Target course −160◦ −160◦

Observer speed 18 knots 18 knots
Observer initial course 160◦ 180◦

Observer maneuver 61th to 420th s 181th s
σr 2 km 2 km
σs 2 knots 2 knots
σθ 1.5◦ 1.5◦

σf 1 Hz 1 Hz
σc π/

√
5 π/

√
5

q̃ (km2/s3) 9× 10−12 9× 10−12

T 1 s 1 s

4.2. Performance Metrics

We evaluate the performance of the tracking filters using the following performance metrics.

4.2.1. Root Mean Square Error

The position root mean square error (RMSE) at any time index k can be expressed as

RMSEpos,k =

√√√√ 1
M

M

∑
i=1

(X i,t
1,k − X̂

i,t
1,k)

2 + (X i,t
2,k − X̂

i,t
2,k)

2,

where M is the number of ensembles, and (X i,t
1,k,X i,t

2,k) is the position at the k-th time step of

i-th ensemble with corresponding estimated value (X̂ i,t
1,k, X̂ i,t

2,k).

4.2.2. Normalised (State) Estimation Error Squared

The normalised (state) estimation error squared (NEES) at the k-th time index can be
defined as [12] (p. 234)

NEESk = (Xk − X̂k|k)
′P−1

k|k (Xk − X̂k|k). (36)

If we assume that the estimators are consistent, and the system is linear with Gaussian
noise, then the NEES follows a chi-square distribution with nx degree of freedom, and
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E[NEESk] = nx, the dimension of the state. The average value of the NEES (ANEES) for M
Monte Carlo (MC) runs can be calculated as [12] (p. 234) [54]

ANEESk =
1

nx M

M

∑
i=1

NEESi
k. (37)

The estimators are called consistent if the ANEESk ∈ [lb, ub], where lb and ub are the
lower and upper bounds of the acceptance interval, respectively. Furthermore, the estimator
is considered optimistic [12] (p. 245) if ANEESk > ub, because, in this case, the value of Pk|k
is too small, whereas the estimator is pessimistic [12] (p. 245) when the value of ANEESk is
lower than lb. The calculation of lb and ub can be found in [28,55] and references therein.

4.2.3. Bias Norm

The position bias norm at the k-th time step for M number of MC runs is expressed
as [56]

Bias normk =

∥∥∥∥∥ 1
M

M

∑
i=1
X̂ i

p,k −
1
M

M

∑
i=1
X i

p,k

∥∥∥∥∥
2

, (38)

where ‖·‖2 denotes the vector norm, Xp,k = (X1,k, X2,k) is the true position, and
X̂p,k = (X̂1,k, X̂2,k) is its posterior estimate.

4.2.4. Track Loss

The terminal error of estimation is defined as

eb =
√
(X t

1,kmax − X̂
t
1,kmax)

2 + (X t
2,kmax − X̂

t
2,kmax)

2,

where X t
1,kmax and X̂ t

1,kmax are the true and estimated x-position at the final time step, with
similar definitions for these variables with subscript 2, which correspond to the y-position.
A track is deemed lost if the terminal error (eb) is above a threshold, eT .

4.3. Initialisation of the Filters

For a fair comparison, all the filters are initialised with the same mean and covari-
ance [2] (pp. 115–117), [7]. We initialise the range with a random number r̂ ∼ N (r, σ2

r ),
where r is the true initial range and σr is the standard deviation of the range. Similarly,
we initialise the first bearing angle to be θ0 ∼ N (θ, σ2

θ ) and target speed ŝ ∼ N (s, σ2
s ),

where θ and s are the true bearing angle and target speed, respectively. σθ and σs are
the standard deviation of the bearing angle and target speed, respectively. Moreover,
in initialising the target course, the filters assume that the target moves towards the ob-
server, so the initial target course estimate is calculated by ĉ = θ0 + π. As our state vector
consists of relative positions and velocities, the initial estimate of it can be expressed

as X̂0|0 =
[
r̂ sin(θ0) r̂ cos(θ0) ŝ sin(ĉ)− Ẋ 0

1,0 ŝ cos(ĉ)− Ẋ 0
2,0

]′
, where (Ẋ 0

1,0, Ẋ 0
2,0) is the

initial velocity of the observer. The initial error covariance can be written as [2] (pp. 116–117)

P0|0 =


PXX PXY 0 0
PYX PYY 0 0

0 0 PẊ Ẋ PẊ Ẏ
0 0 PẎ Ẋ PẎ Ẏ

, (39)

where
PXX = r̂2σ2

θ cos2(θ0) + σ2
r sin2(θ0),

PYY = r̂2σ2
θ sin2(θ0) + σ2

r cos2(θ0),

PXY = PYX = (σ2
r − r̂2σ2

θ ) sin(θ0) cos(θ0),
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PẊ Ẋ = ŝ2σ2
c cos2(ĉ) + σ2

s sin2(ĉ),

PẎ Ẏ = ŝ2σ2
c sin2(ĉ) + σ2

s cos2(ĉ),

PẊ Ẏ = PẎ Ẋ = (σ2
s − ŝ2σ2

c ) sin(ĉ) cos(ĉ).

4.4. Performance Comparison

All the filters, namely the orthogonal polynomial filters and deterministic sample point
filters, are implemented with BOT and DBT measurements for Scenario I and Scenario II in
the following cases: (i) known and time-invariant measurement noise (we call it Rknown),
(ii) known and time-varying measurement noise (we call it Rk,known), (iii) unknown and
time-invariant measurement noise (we denote it Runknown), (iv) unknown and time-varying
measurement noise (we denote it Rk,unknown). It is needless to say that we replace the filters
with their adaptive counterparts whenever we encounter unknown measurement noise
covariance. For the Rk,unknown case, we vary Rk from (1.5◦)2 to (4◦)2 linearly based on the
range of target from ownship. Results are summarised in figures and tables showing the
RMSE, ANEES, bias norm, track loss, and computational time for various cases. Throughout
the simulation, for the SRUKF, we set κ = 1 as the choice κ = 3− nx was found to be
problematic due to the negative weights. However, such problems did not appear in
UO-EKF and so, for this filter, we set κ = −1. For SRGHF and GHO-EKF, we used three
univariate points (i.e., m = 3), which resulted in a total of 34 = 81 support points.

4.4.1. Scenario I : Case I—Bearings-Only Tracking

Figure 2a,b show the RMSEs of position and velocity for Rknown obtained from 500 MC
runs (excluding track loss cases with eT = 500 m). From these figures, we see that except
for the EKF, all the filters provide similar RMSE. To see the filters’ consistency, the average
NEES (ANEES) obtained from 500 MC runs are plotted in Figure 3a with 95% probability
regions, for which the lower bound and upper bound become lb = 0.939 and ub = 1.0629,
respectively [28,55]. From this figure, we see that all the filters’ ANEES values fall inside the
concentration region only by the end of the simulation time. Position bias norms obtained
from 500 MC runs are plotted in Figure 3b. From this figure, we see that the bias norms of
all filters are sufficiently low, and among them, the SRGHF and GHO-EKF attain the lowest
bias norm.
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Figure 2. RMSEs of the BOT for Scenario I: (a) position; (b) velocity.

To show the efficacy of the proposed measurement noise adaptation technique, in
Figure 4, we plot Runknown and Rk,unknown and their estimates obtained from the adaptive
GHO-EKF (AD-GHO-EKF). From this figure, we see that the estimated noise covariances
converge to their true values. Very similar estimates are obtained from other adaptive
polynomial filters and are not plotted in the figure. To observe the effect of unknown R
in state estimation (both BOT and DBT cases), position and velocity RMSEs (excluding
track loss cases, with error threshold eT = 500 m) obtained from a single representative



Sensors 2022, 22, 4970 15 of 23

filter, say AD-GHO-EKF, are plotted in Figure 5a,b, respectively. Here, we also provide
the RMSE results for the DBT case in order to show the improvement in RMSE that we
could achieve in comparison to BOT if Doppler shifts are incorporated as measurements.
The findings of the result for the DBT case are explicitly discussed in Scenario I: Case II.
The results are compared with GHO-EKF for both the time-varying and time-invariant
unknown measurement noise covariance. From these figures, we see that the GHO-EKF
provides lower RMSEs compared to AD-GHO-EKF in this situation. Furthermore, the
RMSE for the Runknown case is slightly less than Rk,unknown, as expected.
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Figure 3. (a) ANEES; (b) position bias norm of the BOT for Scenario I.

ANEES metrics are calculated for various adaptive filters for eT ∈ {200 m, 500 m}.
For eT = 500 m, none of the filters’ ANEES is inside the concentration region. In Figure 6a,
the ANEES of various adaptive filters are plotted from 500 MC runs eT = 200 m, and for this
case, we notice that the ANEES of the GHO-EKF (DBT, Rknown) is consistently inside the
probability region, whereas the same obtained from other filters fall inside the region only
after 650 s. The poor ANEES results are mainly due to low observability and unknown time-
varying measurement noise covariance. Furthermore, we provide the position bias norm
of GHO-EKF and AD-GHO-EKF for unknown measurement noise covariance obtained
from 500 MC runs in Figure 6b. From this figure, we observe that GHO-EKF (DBT) has the
lowest bias norm, whereas the AD-GHO-EKF for Rk,unknown attains the highest.

Next, we study the effect of sampling time on the accuracy of estimation. In Figure 7,
we plot the position and velocity RMSE (excluding the track divergence with eT = 500 m) of
AD-GHO-EKF obtained from 500 MC runs for different sampling times, T, ranging from 1 s
to 60 s. From these figures, we observe that for lower sampling time T, the AD-GHO-EKF
exhibits better performance, as expected. However, it is to be noted that the sampling time
of the sensor cannot be very small as certain time is required to accumulate the energy
received in order to measure the bearing angle.
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Figure 4. True and estimated R (both time-varying and time-invariant) for Scenario I.
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Figure 5. RMSEs of the BOT and DBT for Scenario I for unknown R.
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Figure 6. (a) ANEES and (b) position bias norm for BOT and DBT for Scenario I.
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Figure 7. RMSEs of the (a) position; (b) velocity of the BOT for varying T of Runknown for Scenario I.

4.4.2. Scenario I : Case II—Doppler-Bearing Tracking

Figure 8a,b show the position and velocity RMSEs for DBT obtained from square root
filters and orthogonal polynomial filters out of 500 MC runs. They are calculated with
known R = (1.5◦)2, excluding track divergence cases. All the RMSEs are comparable
and lower than the RMSE obtained from BOT. The ANEES with the 500 m track loss
threshold are within the provided probability region. The position bias norms of the filters
approach zero and are much below that of BOT. From these figures (Figures 8 and 9), we
can conclude that the filters with DBT measurements track more effectively than those with
BOT measurements.
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Figure 8. RMSEs of the (a) position; (b) velocity of the DBT for Scenario I.
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Figure 9. (a) ANEES; (b) position bias norm of the DBT for Scenario I.

The efficacy of the proposed adaptive estimator is also checked for Runknown using
DBT measurements. We provide the position and velocity RMSEs of GHO-EKF and AD-
GHO-EKF (Runknown) obtained from 500 MC runs (excluding the track divergence cases,
eT = 500 m)) in Figure 5. From this figure, we see that GHO-EKF attains lower RMSEs
than AD-GHO-EKF. We also see that the incorporation of the Doppler-shifted frequency
improves the filters’ estimation accuracy.

Now, we compare the performance of filters (EKF, orthogonal polynomial filters,
deterministic square root sample point filters, and their adaptive counterparts) for BOT
and DBT in terms of percentage track loss obtained from 10,000 MC runs, presented in
Table 3. The track divergence bound is set to eT = 500 m. From this table, we see that the
filters with DBT measurements have lower track loss than those with BOT. As expected,
filters with known R show better performance than those with unknown R, i.e., adaptive
filters. The orthogonal polynomial filters provide almost similar track loss as their square
root counterparts. We also observe that the filters with time-varying Rk (known and
unknown) show higher track loss than time-invariant R, and these results are not provided.
Furthermore, we observe that the track loss count of all the filters increases with the increase
in sampling time. This happens due to the fact that with the increase in sampling time, the
observability of the system decreases, which further deteriorates the filters’ performance.



Sensors 2022, 22, 4970 18 of 23

Table 3. Percentage track loss of different filters of the BOT and DBT for both scenarios.

Scenario I Scenario II

Filter BOT DBT BOT DBT

EKF 2.30 0 6.73 0
AD-EKF 9.86 2.27 17.35 2.09

SRCKF 2.25 0 5.72 0
CO-EKF 2.03 0 6.17 0
AD-SRCKF 8.28 1.3 16.51 0.91
AD-CO-EKF 8.78 1.35 16.23 1.01

SRUKF 2.16 0 6.12 0
UO-EKF 2.22 0 6.26 0
AD-SRUKF 8.48 1.41 17.73 1.05
AD-UO-EKF 8.69 1.38 15.61 0.95

SRGHF 1.86 0 6.35 0
GHO-EKF 2.24 0 6.27 0
AD-SRGHF 8.20 0.72 16.96 0.74
AD-GHO-EKF 8.35 0.80 16.41 0.80

4.4.3. Scenario II : Case I—Bearings-Only Tracking

For BOT, the position and velocity RMSE of different filters for Rknown from 500 MC
runs are plotted in Figure 10a,b, respectively. From these figures, we see that except for the
EKF, all other filters attain similar RMSEs. Figure 11a shows that except EKF, the ANEES of
all filters (with eT = 500 m) fall within the provided probability region. The position bias
norm plot (Figure 11b) shows that all the filters attain a sufficiently low bias norm.
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Figure 10. (a) Position; (b) velocity RMSE of the BOT for Scenario II.
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4.4.4. Scenario II : Case II—Doppler-Bearing Tracking

For DBT, the position and velocity RMSE of different filters for Rknown obtained from
500 MC runs are plotted in Figure 12a,b, respectively. From this figure, we see that the
RMSEs of all filters are comparable and lower than the RMSEs obtained from BOT.

The estimation accuracy of the proposed AD-GHO-EKF for Runknown for BOT and DBT
is examined in Figure 13 in terms RMSEs (obtained from 500 MC runs). For comparison,
we also include the RMSEs of GHO-EKF for Rknown. From this figure, it can be seen that
the GHO-EKF provides better estimation accuracy than the AD-GHO-EKF for both cases
of measurements. We also see that the RMSE with DBT measurements is lower than the
RMSE obtained from the BOT.
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Figure 12. RMSEs of the (a) position; (b) velocity of the DBT for Scenario II.

Time (sec)

300 400 500 600 700 800 900

P
o
s
it
io

n
 R

M
S

E
 (

k
m

)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

GHO-EKF(BOT)

AD-GHO-EKF(BOT)

GHO-EKF(DBT)

AD-GHO-EKF(DBT)

600 700 800 900
0.1

0.2

0.3

(a)

Time (sec)

300 400 500 600 700 800 900

V
e

lo
c
it
y
 R

M
S

E
 (

m
/s

e
c
)

0

200

400

600

800

1000

1200

1400

1600

1800

GHO-EKF(BOT)

AD-GHO-EKF(BOT)

GHO-EKF(DBT)

AD-GHO-EKF(DBT)

600 700 800 900
100

200

300

(b)
Figure 13. RMSEs of the (a) position; (b) velocity of the BOT and DBT for Scenario II for unknown
fixed R.

Now, we calculate the percentage track loss of the EKF, square root filters, orthogonal
polynomial filters, and their adaptive counterparts out of 10,000 MC runs for BOT and DBT,
the results of which are presented in Table 3. The track loss bound is set to be eT = 500 m.
From this table, it can be seen that the filters with DBT measurements perform better than
those with BOT. We also see that for known measurement noise covariance, the filters have
lower track loss. It can be also observed that the orthogonal polynomial filters have almost
similar track loss to the square root filters.

Finally, we compare the filtering performance in terms of their execution time. The
relative execution times of all filters with respect to the EKF for both BOT and DBT are
reported in Table 4. From this table, we see that the execution times of the GHO-EKF
and SRGHF are almost three to four times those of the EKF. The CO-EKF and UO-EKF
take nearly 50% more execution time than the EKF, whereas the computation time of the
SRCKF and SRUKF is nearly twice that of the EKF. We also observe that for both BOT and
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DBT measurements, the orthogonal polynomial filters have lower computation times than
their respective square root deterministic sample filters. As expected, the adaptation of
measurement noise covariance further increases the execution time of the filters.

Table 4. Relative execution times of the different filters for BOT and DBT.

Filter BOT DBT

Ordinary Adaptive Ordinary Adaptive

EKF 1.00 2.14 1.28 2.40
SRCKF 1.84 3.72 2.14 4.02
CO-EKF 1.51 2.70 1.95 2.92
SRUKF 1.88 3.80 2.28 4.09
UO-EKF 1.53 2.78 2.03 2.99
SRGHF 6.53 10.35 10.52 14.13
GHO-EKF 4.16 5.97 5.64 7.75

To assess how our proposed algorithms work in the presence of a target maneuver,
we consider a target that is maneuvering with the constant turn rate (CT) model, as
described in Section 2.1.2, with known ω = −0.015◦/s, which is shown in Figure 1a.
Initially, we assume that the estimators know the target maneuvering model and check
the performance of all the filters. We see that all the filters perform with similar accuracy,
as described in Figures 2–13. Further, to study the robustness of these filters, we assume
that the target is following a maneuver as described above, but the estimators are unaware
of this dynamics and they use the constant velocity model to estimate the position and
velocity of the target. To cope with such model mismatch, the process noise intensity of
the filtering algorithm is increased to 100 q̃. The target and all the estimators are initialised
as described in Section 4.3. Initially, we experiment with a 500 m track loss threshold,
i.e., eT = 500 m, and it has been observed that the final track error in all the filters in
this model mismatched case was above this threshold in most of the runs. Further, we
calculate the percentage of track loss for all the filters considering eT = 1500 m and list
them in Table 5. From this table, we note that DBT shows much less track loss than BOT
and the adaptive filters in DBT show less than 1% track loss, while their non-adaptive
counterparts exhibit zero track loss. However, for BOT, the percentage of track loss
obtained from adaptive filters is almost double that of their non-adaptive counterparts.
In Figure 14, we plot the RMSE of position and velocity obtained from the adaptive and
ordinary GHO-EKF for both the bearings-only and Doppler-bearing tracking. Comparing
Figure 5 with Figure 14, it has been observed that the position RMSE for the model
mismatch case is converging to a slightly higher value than that of the the constant
velocity scenario. Further, the RMSE obtained from DBT is lower compared to BOT, and
the same obtained with GHO-EKF is lower than its adaptive counterpart.
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Figure 14. RMSEs of the (a) position; (b) velocity of the BOT and DBT for maneuvering target.
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Table 5. Percentage of track loss for BOT and DBT when model mismatch occurs.

Filter BOT DBT

Ordinary Adaptive Ordinary Adaptive

EKF 13.34 29.72 0 0.35
SRCKF 12.30 26.95 0 0.25
CO-EKF 12.40 26.94 0 0.26
SRUKF 12.62 26.80 0 0.28
UO-EKF 12.04 27.08 0 0.25
SRGHF 11.55 26.57 0 0.20
GHO-EKF 11.53 26.62 0 0.20

5. Discussion and Conclusions

In this paper, we have proposed an adaptive orthogonal polynomial-based filter that
can estimate the target trajectories along with the measurement noise error covariance. It is
based on the linearisation of the measurement function using the first-order orthogonal
polynomial approximation, and the coefficients of these polynomials are evaluated using
the numerical integration technique. The proposed method is used to estimate a constant
velocity target trajectory for two different tracking scenarios, each with bearings-only and
Doppler-bearing measurements. The estimation accuracy of the filters is studied in terms
of RMSE. We also use the percentage track loss, computation time, average NEES, and bias
norm to compare the performance of the filters. The robustness of the proposed algorithm is
studied when there is a mismatch between the target and the filter-assumed dynamics. From
the simulation results, it can be deduced that the proposed filters consistently outperform
the Taylor series-based EKF and provide comparable performance with their square root
counterparts of the deterministic sample point filters with a reduced computational cost.
Moreover, the proposed filters with CV model target dynamics can estimate the track of a
lightly maneuvering target with acceptable accuracy. Target motion analysis with unknown
sensor misalignment remains under the scope of future works.
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