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Abstract: Aiming at non-stationary signals with complex components, the performance of a varia-
tional mode decomposition (VMD) algorithm is seriously affected by the key parameters such as
the number of modes K, the quadratic penalty parameter α and the update step τ. In order to solve
this problem, an adaptive empirical variational mode decomposition (EVMD) method based on a
binary tree model is proposed in this paper, which can not only effectively solve the problem of
VMD parameter selection, but also effectively reduce the computational complexity of searching
the optimal VMD parameters using intelligent optimization algorithm. Firstly, the signal noise ratio
(SNR) and refined composite multi-scale dispersion entropy (RCMDE) of the decomposed signal are
calculated. The RCMDE is used as the setting basis of the α, and the SNR is used as the parameter
value of the τ. Then, the signal is decomposed into two components based on the binary tree mode.
Before decomposing, the α and τ need to be reset according to the SNR and MDE of the new signal.
Finally, the cycle iteration termination condition composed of the least squares mutual information
and reconstruction error of the components determines whether to continue the decomposition.
The components with large least squares mutual information (LSMI) are combined, and the LSMI
threshold is set as 0.8. The simulation and experimental results indicate that the proposed empirical
VMD algorithm can decompose the non-stationary signals adaptively, with lower complexity, which
is O(n2), good decomposition effect and strong robustness.

Keywords: non-stationary signal; empirical variational mode decomposition; binary tree; least square
mutual information; information entropy

1. Introduction

Many physical semaphores in real life are composed of multi-components, which have
nonlinear and nonstationary characteristics. It is an essential way to explore the system
characteristic by analyzing the inherent information contained in the components. Due to
the interference of the external environment, these characteristic components are difficult
to effectively identify. Consequently, the effective extraction of these signal modes becomes
very important for the research of corresponding systems. The methods of signal or data
processing have attracted more and more attention in various fields.

In recent years, many non-stationary signal processing methods have been proposed
by scholars. Short time Fourier transform (STFT) is a traditional time-frequency transform
(TF) method [1]. It provides a graphic display in the TF domain and has been successfully
applied to the evaluation of mechanical fault characteristics [2]. STFT is restricted by the
time-frequency resolution of window function, and the time-frequency resolution is fixed.
Wavelet transform (WT) [3] has high-precision time-frequency resolution, and the selection
of the WT basis function has a huge impact on performance and has strong experience [4].
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Wigner Ville Distribution (WVD) [5] is a method to calculate the time–frequency distribu-
tion. It can reflect the instantaneous time–frequency relationship of a signal [6]. However, it
is seriously affected by cross terms. S-transform (ST) [7] combines the advantages of STFT
and WT, but its spectrum is rough and restricted by the Heisenberg’s uncertainty princi-
ple [8]. In theory, high-order statistics (HOS) [9] can completely suppress Gaussian noise,
but it has poor effect on non-Gaussian noise and interferes with the high-order spectrum of
the signal. Empirical mode decomposition (EMD) [10] is a method to decompose signals
into a set of intrinsic mode functions (IMF). It is an excellent adaptive signal processing
method and has been widely used in engineering [11,12]. However, there are some prob-
lems such as fitting overshoot, endpoint effect and modal aliasing, which seriously restrict
its practical application [13]. Local mean decomposition (LMD) [14] adaptively decomposes
the non-stationary multi-component signal into the sum of several product functions (PF)
with physical meaning of instantaneous frequency [15]. It has the disadvantages of signal
mutation and large amount of calculation caused by demodulation [16]. Inherent time scale
decomposition (ITD) [17] suffers from the problem that the waveform of PF component
fluctuates locally, resulting in signal distortion [18]. Although many scholars put forward a
large number of improvement methods to the above method, they also gained good results
and successfully applied them to mechanical fault diagnosis. Nevertheless, confined by the
theoretical framework, these problems can be suppressed to a certain extent, but cannot be
fundamentally excluded.

VMD [19] is a new adaptive signal processing method, which decomposes the signal
into a set of modal functions with limited bandwidth by iteratively solving the variational
problem. It realizes the frequency separation of each signal component and overcomes
the problems of endpoint effect, modal mixing and waveform fluctuation existing in EMD,
LMD and ITD. This strategy is very suitable for analyzing nonlinear and non-stationary
vibration signals, and has been widely used in the engineering field [20,21]. However,
the performance of VMD is affected by the inherent decomposition parameters i.e., the
total number of modes K, the quadratic penalty parameter α, update step τ. Moreover,
these parameters must be preset and have strong artificial experience. VMD converts
signal decomposition into a constrained variational problem and adaptively decomposes
the signal into the sum of several Intrinsic Mode Function (IMF) components, which is
essentially different from previous signal processing methods [22]. However, the key
parameters must be artificially set in advance, and these parameters have a great influence
on the decomposition results. The most important thing is that there is no standard to
measure the result of decomposition. Therefore, in practical application, the process of
artificially setting parameter values in advance indicates that it is not a fully adaptive
model [23,24]. In recent years, many scholars have conducted relevant research on VMD
parameters setting. Xiao et al. [25] proposed an optimal value search method for the
decomposition parameters (α and K) of VMD. However, the search method relies on
personal experience and intuitive search mechanism, and lacks the basis of mathematical
theoretical framework. Kaur et al. [26] used discrete wavelet transform (DWT) and wavelet
packet transform (WPT) to set the VMD decomposition mode number. However, under
the strong noise interference, it is a great challenge to obtain the modal number. Long
et al. [27] applied the center frequency observation method to set the number of modes,
and modified the parameter value τ according to the residual index to verify the influence
of the parameter on the signal decomposition. However, the method of screening single
parameter value based on single index does not take into account the interaction between
parameters. Considering the complexity and variability of actual vibration signals, the
application of this observation method in engineering may be limited. Recently, some
studies have proposed optimization algorithms to adjust the parameters. In Ref. [28],
particle swarm optimization (PSO) was adopted to select the optimal combination value
of decomposition parameters K and τ of VMD. This method alleviates the experience of
setting parameters manually to a certain extent. Wang et al. [29] obtained the optimal
selected parameters, namely the mode number and penalty parameter of VMD, by using a
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PSO optimization algorithm through the appropriate fitness function. Xu et al. [30] applied
the variable dimension composite chaotic algorithm to adaptively select parameters of
VMD and obtained excellent performance. However, the complexity of the algorithm and
the feasibility of practical application need to be verified. A new method termed variational
mode extraction (VME) extracts the natural mode function by knowing its approximate
center frequency [31], which can adaptively extract the modal components in the signal.
However, the residual signal in its decomposition has no strict mathematical definition
and physical significance. The improved VME method is named Successive VMD (SVMD)
in [32,33]. The SVMD achieves good adaptive effect, but the residual signal still lacks
strict physical definition. The mentioned methods have improved VMD performance and
achieved satisfactory effect to some extent. However, the synergistic influence of VMD key
parameters has not been fully considered.

In view of the above issues, this paper proposes an empirical VMD method based
on the binary tree model. Its main innovations and contributions can be summarized
as follows:

(1) The number of modes K in a traditional VMD needs to be manually set. In this
paper, K is set as a fixed value, that is, K = 2, which can effectively avoid empirically setting
the value of K. Then the decomposition is iteratively executed according to the binary tree
model until the single component of the decomposition is duplicated. Lastly, according
to the mutual information between each component, the components with larger mutual
information value are added to obtain the new IMF component.

(2) The α of traditional VMD still needs to be manually set. This paper presents a
calculation equation of α, namely α = round(RCMDE × (fs/2) ∗ log(K)). Where fs is the
sampling frequency of the signal, round(·) is the rounding function, RCMDE is the refined
composite multi-scale dispersion entropy. RCMDE can measure the complexity of signal
well and adjust the value of α dynamically.

(3) The τ critically affects the convergence of VMD. Hence, it is required to select an
appropriate τ value according to the noise level of the signal to guarantee the optimal
convergence of the algorithm. In this paper, the signal to noise ratio (SNR) is proposed
to dynamically set the τ value, which can effectively guarantee the convergence and
convergence speed of the algorithm.

(4) The algorithm proposed in this paper fully considers the common influence of
several key parameters of VMD and is adaptive. Compared with the improved method
based on the intelligent optimization algorithm, its computational complexity is lower.

Lastly, the effectiveness and superiority of the proposed method are verified by ana-
lyzing the simulation signal and the measured vibration signal.

The rest of this paper is organized as follows. The Section 2 introduces the relevant
basic theoretical knowledge in detail. The Section 3 introduces the empirical VMD algo-
rithm structure based on binary tree model in detail. In the Section 4, the effectiveness of
the proposed algorithm is experimentally verified. Finally, the conclusion is drawn in the
Section 5.

2. Related Works
2.1. Brief Introduction of VMD

VMD is an adaptive signal decomposition method based on Wiener filter, Hilbert
transform and heterodyne demodulation. Its purpose is to decompose a real-valued input
signal x(t) into a set of sub-modes {uk} with a particular sparsity. Each of the limited
bandwidth sub-modes is tightly centered around a central frequency ωk. In the process of
VMD, each submode uk is transformed by Hilbert transform to obtain the corresponding
unilateral spectrum. The analytical signal of each component is mixed with a pre-estimated
center frequency e−jωkt and the spectrum of each mode is modulated to the corresponding
base-band. In order to obtain the bandwidth of the sub-modes, the constraint variational
problem is introduced to calculate the square L2-norm of the gradient of the demodulated
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signals and estimate the bandwidth of each mode. The optimized variational model
constructed is shown in Equation (1).

min
{uk},{ωk}

{
K
∑

k=1
‖∂t

[(
δ(t) + j

πt

)
∗ uk(t)

]
e−jωkt‖

2

2

}
s.t.

K
∑

k=1
uk(t) = x(t)

(1)

where, K is the number of mode components, {uk} = {u1, u2, · · · , uK} and {ωk} =
{ω1, ω2, · · · , ωK} are components and corresponding central frequency respectively.
∑k := ∑K

k=1 is equivalent to the sum of all band components.

2.1.1. Solution of Variational Problem

By introducing the quadratic penalty factor α and the Lagrange multiplication op-
erator λ(t), the constrained variational problem is transformed into a non-constrained
variational problem. The quadratic penalty factor can guarantee the signal reconstruction
accuracy under the condition of Gaussian noise, and the Lagrange multiplier emphasizes
the strictness of constraints.

L({uk}, {ωk},λ ) := α∑
k
‖∂t
[(

δ(t) + j
πt

)
∗ uk(t)

]
e−jωkt‖

2

2
+‖ f (t)−∑

k
uk(t)‖

2

2
+

〈
λ(t), f (t)−∑

k
uk(t)

〉 (2)

Then, the
{

un+1
k

}
,
{

ωn+1
k

}
and λn+1 are updated alternately by using the alternate

direction method of multipliers (ADMM). By seeking the ‘saddle point’ of the extended
Lagrange expression, that is, meeting the stop condition of iteration, mutually independent
frequency band components {uk} are finally concluded. The decomposition process of the
variational model is summarized in Algorithm 1.

Algorithm 1: Complete optimization of VMD

Initialize:
{

û1
k
}

,
{

ω1
k
}

,λ̂1, n← 0
repeat:

n← n + 1
for k = 1 : K do

Update ûk for all ω ≥ 0:

ûn+1
k (ω)← f̂ (ω)−∑i<k ûn+1

i (ω)−∑i>k ûn
i (ω)+ λ̂n (ω)

2

1+2α(ω−ωn
k )

2 (3)

Update ωk:

ωn+1
k ←

∫ ∞
0 ω|ûn+1

k (ω)|2dω∫ ∞
0 |ûn+1

k (ω)|2dω
(4)

end for

Dual ascent for all ω ≥ 0:

λ̂n+1(ω)← λ̂n(ω) + τ

(
f̂ (ω)−∑

k
ûn+1

k (ω)

)
(5)

until convergence: ∑k ‖ûn+1
k − ûn

k ‖
2
2/‖ûn

k ‖
2
2 <ε (6)

More detailed description of the VMD algorithm can refer to Ref. [19].

2.1.2. Parameter Influence Analysis

The process of solving the variational model shows that the performance of VMD is
closely related to the intrinsic parameters [34], such as the total number of modes K, the
quadratic penalty α, the update step τ, and the convergence fault tolerance threshold ε.
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The influence of each parameter on the decomposition performance of VMD is analyzed
as follows.

The performance of VMD is very sensitive to the value of K. If K is set too small, the
signal will be under-segmented and some components will be included in other modes.
On the contrary, the high value of K will cause mode duplication and other problems.

Parameter α is related to the performance of suppressing noise interference. A large
value of α may result in a narrow bandwidth of modal components, and some information
may be lost in the original signal. An α value that is too small will lead to too large of a
bandwidth of modal components, some components will be included in other modes or
extra noise will be captured.

When the noise level of the signal is low, the Lagrangian multiplier can ensure the
optimal convergence by choosing the appropriate value of τ (τ > 0). Accordingly, when
the noise level of the signal is high, the Lagrangian multiplier will seriously hinder the
convergence of the algorithm if τ > 0. Setting τ = 0 can effectively turn off the Lagrangian
multiplier to ensure the effective convergence of the algorithm.

The value of convergence tolerance ε will affect the reconstruction accuracy of VMD de-
composition. The reconstruction error (RSE) can be controlled by reducing the convergence
of stop criterion to a certain extent.

From the above analysis, the above four key parameters seriously affect the perfor-
mance of VMD. In addition, the interaction between parameters will affect the algorithm’s
performance. Therefore, choosing the right combination of VMD parameters is the key
factor to determine its performance.

2.2. Least Squares Mutual Information

Mutual information [35–37] is a nonparametric and nonlinear measure index in in-
formation theory that can quantitatively express the correlation between two random
variables and is more accurate than the correlation coefficient method [38]. According to
the principle of irrelevance and orthogonality equivalence between zero mean random
signals, mutual information can measure the coupling degree between Intrinsic Mode
Function (IMF) components and residual information obtained in VMD decomposition.
In other words, mutual information can measure whether modal mixing occurs and the
determine its degree. Mutual information is defined as follows:

MI =
1
2

∫
∑c

y=1 p(x, y) log
p(x, y)

p(x)p(y)
dx (7)

where p(x, y) is the joint probability density function of signals x and y, p(x) and p(y)
are marginal probabilities distribution, respectively. In Equation (7), the response of the
logarithm function in mutual information to outliers fluctuates greatly, which affects the
accuracy of estimation. Therefore, in order to overcome this problem, in this paper, the
square loss mutual information is induced to replace the logarithmic function, so as to
reduce the interference of outliers and obtain more accurate mutual information estimator.
The definition of substitution is as follows:

MI =
1
2

∫
∑n

y=1 p(x)p(y)
(

p(x, y)
p(x)p(y)

− 1
)2

dx (8)

Avoiding the calculation of joint probability p(x, y), marginal probability p(x), and
marginal probability p(y), the least square estimation method is introduced to calculate the
mutual information of the square loss, and the combined density ratio function is learned
directly. The density ratio function is defined as follows:

ω(x, y) =
p(x, y)

p(x)p(y)
(9)
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By taking the Gaussian radial basis kernel (RBF) model related to the parameters, the
density ratio function can be approximated as:

ωα(x, y) = ∑n
j=1 αj exp

(
−
‖xj − yj‖2

2
2h2

)
(10)

where α = (α1, · · · , αn)
T is the parameter vector. Gaussian radial basis kernel is selected

as the basis function ψ. Then, the least square learning is performed for the parameter α
corresponding to the minimum of the following J(α).

J(α) = 1
2

∫
∑n

y=1 (ωα(x, y)−ω(x, y))2 p(x)p(y)dx

= 1
2

∫
∑n

y=1 αTψ(x, y)ψ(x, y)Tαp(x)p(y)dx

−
∫

∑n
y=1 αTψ(x, y)p(x, y)dx + C

(11)

where the third term C = 1
2

∫
∑n

y=1 ω(x, y)p(x, y)dx is a constant independent of parame-
ters, which can be ignored in the calculation. By using the sample average approximation of
the expected values contained in the first and second terms of Equation (11) and introducing
the L2 regularization term, the learning rule can be derived as:

min
α

[
1
2

αTĜα− αTĥ +
λ

2
‖α‖2

]
(12)

{
Ĝ = 1

n2 ∑n
i,i′ ψ(xi, yi′)ψ(xi, yi′)

T

ĥ = 1
n ∑n

i=1 ψ(xi, yi)
(13)

where Ĝ is a matrix with n× n order and ĥ is a n dimensional vector. The learning rule is a
convex quadratic form related to α, and its optimization problem is as follows:

α̂ := argmin
α

[
1
2

αTĜα− αTĥ +
λ

2
‖α‖2

]
(14)

The analytical solution can be obtained by taking the derivatives of Equation (14) and
solving it equal to zero, namely,

α̂ = (Ĝ + λI)−1ĥ (15)

where λ is the regularization parameter and I is the identity matrix. The density ratio esti-
mator obtained by the above method is substituted into Equation (16), which is equivalent
to the square loss mutual information.

MI =
1
2

∫
∑n

y=1 ω(x, y)p(x, y)dx− 1
2

(16)

Then, the least squares mutual information (LSMI) estimation is obtained as follows:

LSMI =
1
2

ĥT
(Ĝ + λI)−1ĥ− 1

2
(17)

where the regularization parameter λ and the parameters contained in the basis function ψ
can be determined by the optimization algorithm related to rule J.

2.3. Refined Composite Multi-Scale Dispersion (RCMDE)

Information entropy [39] is an indicator that measures the uncertainty of information
quantity, which represents the average uncertainty of a signal. In information theory, infor-
mation entropy is used to measure the amount of information. The larger the information
entropy, the greater the uncertainty and the complexity of the signal present. At present,
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information entropy is widely used in the field of mechanical fault diagnosis and medical
diagnosis, and has achieved fruitful research results. The commonly used information
entropy primarily includes approximate entropy, sample entropy, permutation entropy
and so on. Many achievements have been made in the application of these techniques in
signal nonlinear feature extraction. Sample entropy is characterized by large computation
and slow computation, and permutation entropy does not take into account the differ-
ences between vibration amplitudes. Rostaghi and Azami [40] proposed a new method
to measure the complexity of time series, namely dispersion entropy (DE), which solves
the shortage of sample entropy and permutation entropy to some extent. Furthermore,
Azami [41] proposed the fine composite multi-scale dispersion entropy (RCMDE) method,
which has the characteristics of good stability in multi-scale process.

2.3.1. Dispersion Entropy

(1) The normal distribution function (NDF) is used to map the time series x ={
xj
∣∣j = 1, 2, · · · , N

}
to y =

{
yj
∣∣j = 1, 2, · · · , N

}
y ∈ (0, 1). N denotes the length of the

sequence. The mapping function is as follows:

yj =
1√
2πσ

∫ xj

−∞
e
−(t−µ)2

2σ2 dt (18)

where µ and σ represent the expectation and standard deviation respectively.
(2) Map y to integers in the range [1, C] using a linear transformation.

zc
j = round(cyj + 0.5) (19)

where round(·) is the rounding function, and zc
j is the j-th element of classification sequence zc.

(3) Calculate the embedding vector as follows:

zm,c
i =

[
zc

i , zc
i+d, · · · , zc

i+(m−1)d

]
, i = 1, 2, · · · , N − (m− 1)d (20)

zc
i = v0, zc

i+d = v1, , zc
i+(m−1)d = vm−1 (21)

where m is the embedded dimension. d is the time delay.
(4) The dispersion pattern corresponding to each zm,c

i is rv0,v1···vm−1 .zm,c
i . It contains m

digits in total, and each digit has c values. Therefore, the total number of dispersion modes
of zm,c

i is cm.
(5) The probability of each dispersion mode t can be defined as:

p
(
rv0v1···vm−1

)
=

N
(
rv0v1···vm−1

)
N − (m− 1)d

(22)

where N
(
rv0,v1···vm−1

)
is the number of dispersion modes corresponding to zm,c

i .
According to the definition of information entropy, the dispersion entropy can be

expressed as:

DE(x, m, c, d) = −
cm

∑
r=1

p
(
rv0v1v···vm−1

)
ln
(

p
(
rv0v1v···vm−1

))
(23)

where r represents the type of dispersion mode corresponding to zm,c
i . From the calculation

method of dispersion entropy, it can be seen that when the probabilities of all dispersion
modes are equal, the dispersion entropy has the maximum value ln(cm). The greater the
dispersion entropy is, the higher the unpredictable degree of time series denotes, and
vice versa.
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2.3.2. Multi-Scale Dispersion Entropy

The multi-scale dispersion entropy (MDE) proposed on the basis of dispersion entropy
can reflect the complexity of time series at different scales. The calculation method of
multi-scale dispersion entropy is as follows:

Firstly, The original signal u = {u1, u2, · · · , uL} with length L is roughened to obtain
N sequences with length τ, and the coarse-grained signal is obtained by calculating the
average value of each sequence.

xτ
j =

1
τ ∑

b=(j−1)τ+1
ub,1 ≤ j ≤

⌊
L
τ

⌋
(24)

where bL/τc represents the length of each coarse-grained time series.
Secondly, calculate the dispersion entropy DE(xτ , m, c, d) of coarse-grained signal

under each scale factor τ.
Finally, the MDE index can be obtained, as shown in the following:

MDE(x, m, c, d, τ) =
1
τ

τ

∑
i=1

DE(xτ , m, c, d) (25)

2.3.3. Refined Composite Multi-Scale Dispersion Entropy (RCMDE)

For time series with different scales, parameter τ actually corresponds to different
starting points of coarsening process. RCMDE value is defined as the average value
of dispersion entropy of coarsening sequence. The k-th coarsening sequence of signal
u = {u1, u2, · · · , uL} is:

xτ
k = {xτ

1 , xτ
2 , · · · , xτ

L} (26)

xτ
k =

1
τ

k+τ j−1

∑
b=k+τ(j−1)

ub,1 ≤ j ≤
⌊

L
τ

⌋
, 1 ≤ k ≤ τ (27)

The RCMDE value under scale τ. is calculated as follows:

ERCMD(x, m, c, d, τ) = −
cm

∑
r=1

p
(
rv0v1v···vm−1

)
ln
(

p
(
rv0v1v···vm−1

))
(28)

where ERCMD(x, m, c, d, τ) is the RCMDE value under scale τ. p
(
rv0v1v···vm−1

)
is the average

value of dispersion mode probability corresponding to coarsening sequence, as follows:

p
(
rv0v1v···vm−1

)
=

1
τ

τ

∑
k=1

pτ
k (29)

where pτ
k is the probability of the dispersion pattern corresponding to the k-th coarsening

sequence under scale τ.

2.4. Efficient Signal Evaluation Index

Generally speaking, the observation signal consists of effective signal and noise com-
ponents. To verify the noise robustness of the proposed method, a kind of metric, namely,
the signal noise ratio (SNR), was applied and may be defined as follows:

SNR = 10 log

{
∑L

i=1 x2(i)

∑L
i=1 ((x(i)− x̂(i))2

}
(30)

where x(i) is the observed signal, x̂(i) is the mean value of x(i), and L denotes the length
of x(i).
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2.5. Analysis of Intrinsic Mode Function

At present, many signal decomposition methods take the orthogonality between
modal components as the stop condition of decomposition, including many improved VMD
algorithms. However, the orthogonality between IMF components could not guarantee
the unity of IMF component characteristics. According to the decomposition principle of
standard VMD, each IMF component has a single characteristic. A test was executed to
demonstrate the orthogonality between IMF components and its own singleness.

As shown in Figure 1a, three harmonic signals are selected, and their corresponding
frequencies are 2 Hz, 24 Hz and 288 Hz, respectively. The three harmonics are linearly
superimposed to obtain the mixed signal, as shown in Figure 1b. Then, the original
VMD is used to decompose the mixed signal. The preset parameters of VMD are K = 2,
α = 2000. The decomposition result is shown in Figure 1c. The LSMI between the two
IMF components (IMF1 and IMF2) in Figure 1c is 1.0 × 10−6, which is approximately
orthogonal. However, it can be clearly observed that the IMF1 component contains two
harmonic components (2 Hz and 24 Hz). It is not a single modal function. Finally, the IMF1
and IMF2 components are combined to reconstruct the representation signal, and the results
are shown in Figure 1d. Compared with the original mixed signal, the reconstructed error
is 1.0 × 10−10. Experimental results indicate that, although the orthogonal coefficient and
reconstruction error index between IMF components are very small, it cannot fully ensure
the unity of IMF components. On the one hand, it shows that the ideal built-in parameters
of VMD have a great influence on the decomposition. On the other hand, VMD is needed
to deal with the under decomposition and over decomposition of components adaptively.
Therefore, this paper proposes a decomposition method based on the binary tree mechanism
as shown in Figure 2, which can effectively ensure the unity of the IMF component.
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3. Proposed Algorithm Framework

In this research work, an empirical VMD algorithm based on a binary tree model
(BT-EVMD) is presented, which can effectively solve the problem of selecting the key
parameters of VMD and make the decomposition process of VMD completely an adaptive
process. The detailed procedure is as follows:

Step 1: Calculate the signal to noise ratio (SNR) and RCMDE of the original non-
stationary signal x(t), and initialize key parameters of VMD as K = 2, α = RCMDE ×
round((fs/2) ∗ log(K)) (f s is the sampling frequency and round(·) is the rounding func-
tion), τ = SNR and ε = 1 × 10−7. The signal is decomposed by VMD to obtain two IMF
components, called IMF1 and IMF2.

Step 2: Initializes the kernel parameters of the Gaussian radial basis function of LSMI.
Preset the threshold δ of LSMI estimator LMSIE and the threshold ρ of reconstruction error
(RSE, the error between the sum of decomposed modes and input signal).

Step 3: Compute the LSMI of IMF1 and IMF2 (if LMSIE = 0, there is no similar informa-
tion between IMF components, if LMSIE = 1, the information between IMF components is
exactly the same, 0 ≤ LMSIE ≤ 1). Determine whether LMSIE is greater than the threshold.
If yes, end the decomposition. Else, calculate the reconstruction error ρ. If ρ > 1 × 10−7,
terminate the process. Else, take the decomposed IMF components as two new signals, and
repeat the Step 1 to continue the iteration.

Step 4: The LSMI between each IMF is computed. A new IMF component is obtained
by adding the IMFs that meet LMSIE > δ.

After the decomposition of BT-EVMD, the multi-component and non-stationary signal
can be adaptively decomposed into several sub-components.

The schematic diagram of decomposition is shown in Figure 2.

4. Experiment Validations
4.1. Simulation Analysis

In order to more clearly verify the effectiveness of the proposed method. This section
applies the BT-EVMD algorithm to a typical analog signal and compares its performance
with other decomposition algorithms. The signal is similar to those in references [15,29], but
its composition is more complex. It contains high-frequency weak signal with intermittent
time, periodic impulse signal and combined components with similar frequency. The signal
can be calculated via Equation (31).
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x(t) = x1(t) + x2(t) + x3(t) + x4(t)
x1(t) = sin(2π f1t)
x2(t) = 0.6× sin(2π f2t)
x3(t) = 0.4× sin(2π f3t) t ∈ [0.1, 0.2] ∪ [0.8, 0.9]
x4(t) = ∑i Aih(t− iT − νi)

(31)

The simulated signal x(t) is composed of three sinusoidal signals x1(t), x2(t) and x3(t)
with different center frequencies, and a high frequency intermittent signal x4(t), as shown
in Figure 3. Here, the sampling frequencies are f1 = 20 Hz, f2 = 35 Hz and f3 = 200 Hz,
respectively. x4(t) is a sinusoidal signal with periodic pulse attenuation and a frequency of
8 Hz, and is formed as: 

x4(t) = ∑i Aih(t− iT − νi)
h(t) = e−Ct sin(2π fnt)
Ai = 1 + A0 sin(2π frt)

(32)

where A0 is the initial amplitude of the impulse signal and Ai is the amplitude of shock
signal after the i-th attenuation. T is the cyclic period, νi is the random tiny slippage during
each T, usually considered as 0.01T–0.02T. C denotes the damping coefficient. fr is the
rotation frequency of the simulated transmission shaft and fn is the resonance frequency.
Here, the simulated signal parameters are set as follow: C = 750, fr = 8 Hz, fn = 3000 Hz,
A0 = 0.5.
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Figure 3. The simulated signal.

In order to illustrate the process of the algorithm, the binary tree empirical VMD
algorithm is used to decompose the simulation signal presented in Figure 3, and the
experimental results are shown in Figures 4–11. The simulated signal is firstly decomposed
into two modes: IMF1 and IMF2. According to experimental experience, the threshold
of decomposition termination is set as δ = 0.1 and ρ = 0.1, respectively. Then, the LSMI
and RSE between IMF1 and IMF2 are computed, and the results are shown in Table 1. The
parameters listed in Table 1 are LSMI [IMF1, IMF2] = 0.0329 and RSE = 0.0328, respectively.
The result of the comparison indicates that the first VMD decomposition of the simulated
signal does not meet the stop condition. Therefore, components IMF1 and IMF2 need to be
further decomposed, that is, the second-layer VMD decomposition. The decomposition
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results are shown in Figures 5 and 6, in which the waveforms of components IMF12
and IMF22 are actually very similar. In order to quantify the similarity between the two
components, the LSMI is computed as LSMI [IMF12, IMF22] = 0.8414, which satisfies the
stop condition. At this time, the components IMF12 and IMF22 do not need to be further
decomposed, and the first component IMF1’ is obtained by adding the modes IMF12 and
IMF22, as shown in Figure 7. The remaining components will then be decomposed by VMD.
The third level decomposition results are shown in Figures 8 and 9. The component IMF11
is decomposed into sub-components IMF111 and IMF112, and the sub-modes IMF211
and IMF212 are obtained by decomposing the IMF21. The corresponding computation
parameters of RSE and LSMI between sub-components can be found in Table 1. The
Components IMF112, IMF211, and IMF212 are selected as their values of LSMI satisfy the
stop condition. Thus, IMF112, IMF211 and IMF212 are added to construct a new mode
IMF2’, and the resultant signal is shown in Figure 10. Then, the remnant component IMF111
is decomposed, and the decomposition result is shown in Figure 11. It can be seen from
Figure 11 that the decomposed components IMF1111 and IMF1112 are two single wave
modes, so the decomposition is stopped and the two components are regarded as the
third component IMF3’ and the fourth component IMF4’ respectively. Finally, four modal
components are obtained, as shown in Figure 12. It can be observed from the experimental
results that the number of modal components obtained by the proposed method is the
same as that of the original simulation signal, and the waveform features are highly similar.
To further explain the quantitative relationship between each IMF component obtained
and its corresponding original simulated signal, the LSMI is computed between them. The
specification of the LSMI is listed in Table 1. From the measured data, except that the LSMI
between the component IMF4′ and the simulated signal x4 is slightly less than 1, other IMF
components are almost the same as their corresponding simulated signals. Experimental
results indicate that the proposed empirical VMD algorithm is adaptive and effective.
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Table 1. The LSMI and RSE obtained by BT-EVMD.

Decomposition
Hierarchy Modes LSMI Index Reconstruction Error

The first layer [IMF1, IMF2] LSMI [IMF1, IMF2] = 0.0329 RSE = 0.0328

The second layer [IMF11, IMF12]
[IMF21, IMF22]

LSMI [IMF11, IMF12] = 0.0002
LSMI [IMF21, IMF22] = 0.0016
LSMI [IMF11, IMF21] = 0.0028
LSMI [IMF11, IMF22] = 0.0004
LSMI [IMF12, IMF21] = 0.0012
LSMI [IMF12, IMF22] = 0.8414

RSE = 0.0414

The third layer [IMF111, IMF112]
[IMF211, IMF212]

LSMI [IMF111, IMF112] = 0.1441
LSMI [IMF211, IMF212] = 0.0849
LSMI [IMF111, IMF211] = 0.0052
LSMI [IMF111, IMF212] = 0.0228
LSMI [IMF112, IMF211] = 0.7181
LSMI [IMF112, IMF212] = 0.1325

RSE = 0.0327

The fourth layer [IMF1111, IMF1112] LSMI [IMF1111, IMF1112] = 0.0185 RSE = 0.0112
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In order to verify the superiority of the proposed algorithm, this paper continues to
utilize common signal processing methods such as LDM, ITD, CEEMDAN and SVMD to
process the simulation signal. The decomposition mode results are shown in Figure 13.
Figure 13a denotes the result of the LMD decomposition. The signal is decomposed into
four independent components, the number of which corresponds to that of the simulation
signal without obvious aliasing, but the components corresponding to the simulation signal
have no similarity at all. Figure 13b is the result of the ITD decomposition. The number
of components decomposed by this method is inconsistent with that of the simulation
signal, and there is no similarity with the original components. The number of components
decomposed by the CEEMDAN method far exceeds the number of original signals, and
there is a certain amount of mode mixing. Some waveform trends have certain similarities
with the components of the original signal (such as IMF1−IMF3), but there are many
irrelevant terms due to the over decomposition phenomenon, and the results are shown
in Figure 13c. Figure 13d is the decomposition result of SVMD. Comparing the waveform
of the decomposed components with the original components, it can be observed that the
decomposed IMF1 is a mixed signal of the x1(t) and x2(t) in the simulation signal, that is,
the first IMF component is not a single component. In addition, the waveforms of the IMF3
and the IMF4 are similar, indicating that over decomposition occurs. Therefore, comparing
the decomposition results of Figures 12 and 13, it can be observed that the components
obtained based on the method proposed in this paper are not only consistent with the
simulated signal in quantity, but also the characterization of the components is almost the
same as that of the simulated signal. Compared with the above methods, the experimental
results indicate that the performance of the proposed method has obvious advantages.
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4.2. Analysis of Test Data

In order to further verify the effectiveness of the proposed method in actual signal
analysis, in this paper, the bearing fault signal of Western Reserve University was applied
as the verification data [42]. As shown in Figure 14, the bearing fault test rig mainly consists
of an induction motor (2 HP), a torque transducer, a dynamometer, and several units. Three
accelerometers are mounted on the housing at 3, 6 and 12 o’clock positions of the motor
drive ports. The vibration signals of rolling bearings were collected by a 16-channel data
recorder. The platform used electrical discharge machining to arrange a single point of
failure on the bearing (SKF6205).
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In the experiment, the fault data of the inner ring and outer ring of the drive end
bearing were collected for analysis. According to Ref. [43], the specification parameters are
listed in Table 2.

Table 2. The test platform parameters.

Bearing Fault
Type

Parameters

Speed (r/min) Characteristic
Frequency (Hz) Load (HP) Data Length (L) Sampling Frequency (kHz)

Inner ring fault 1797 162.1852 0 12,000 12
Outer ring fault 1796 107.3647 0 12,000 12

According to the method applied in [24], the inner and outer ring bearing fault signals
are superimposed to obtain a mixed fault signal, as shown in Figure 15. Figure 15a shows
the time domain waveforms of inner and outer ring bearing fault signals and the mixed
signal. Figure 15b corresponds to their envelope spectrum analysis, respectively. The inner
ring fault characteristic frequency finner, outer ring fault characteristic frequency fouter and
its frequency doubling items can be observed in the spectrum of the mixed signal. Then,
the mixed signal is analyzed by using SVMD, CEEMDAN, LDM, ITD and the proposed
BT-EVMD methods. The decomposition results are shown in Figures 16–20, respectively.
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The decomposition result of the proposed BT-EVMD is shown in Figure 16. The rele-
vant decomposition parameters are shown in Table 3. The decomposition results of the first
layer are shown in Figure 16a, in which the left part is the two IMF components obtained,
and the right part is the envelope spectrums corresponding to the IMF component. From
the envelope spectrum corresponding to IMF1 and IMF2 components, it can be observed
that the envelope spectrum of IMF1 component includes the fault characteristic frequency
finner and its doubling frequency 2 finner of the bearing inner ring. Correspondingly, the en-
velope spectrum of IMF2 contains the fault characteristic frequency of the bearing outer ring
(fundamental frequency , harmonic components 2 fouter, 3 and 4 fouter). The decomposition
results of the first layer show that the fault signals representing the inner and outer rings of
the bearing can be significantly separated. The mutual information results in Table 3 also
verify the effectiveness of this decomposition. Although the mutual information between
the two IMFs is very small, it cannot be proved that each mode is a mono-component signal.
According to the decomposition process of BT-EVMD, the termination condition needs to
be further verified. Thus, the two IMFs are further decomposed, and the results are shown
in Figure 16b,c, respectively.
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From the time domain components decomposed by IMF1 and IMF2 and their cor-
responding envelope spectra, it can be observed that the spectrum of IMF11 and IMF12
contain the fault characteristic frequency of the bearing inner ring, and the envelope spectra
of IMF21 and IMF22 primarily contain the fault characteristic frequency of the bearing outer
ring. The results in Table 2 show that the mutual information of the signals decomposed
by IMF1 and IMF2 is relatively large. The situation indicates that the components are
duplicated in the process of signal decomposition and there is no need to decompose.
Afterwards, the components of the second layer decomposition are superimposed, that is,
the original IMF1 and IMF2 components are restored. The final decomposition results are
shown in Figure 16d.
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To evaluate the decomposition effect, some commonly used signal decomposition
methods are used for signal processing and comparative analysis. Figure 17 shows the
decomposition result based on the SVMD method, which finally obtains 16 IMF components.
By observing the envelope spectrum corresponding to IMF components, it can be seen that
many IMF components have common frequency items, indicating that they have copied
themselves. The envelope spectrum of IMF6 component includes the fault characteristic
frequencies of the inner and outer rings of the bearing at the same time. It shows that
this method cannot effectively decompose the fault signals of the inner and outer rings in
the signal. Figure 18 shows the decomposition results based on the CEEMDAN method,
and six independent IMF components are obtained by this method. From the envelope
spectrum analysis corresponding to each IMF component, it can be observed that some
IMF components replicate each other. In particular, the envelope spectra of IMF2 and IMF3
components include the fault characteristic frequencies of the inner and outer rings of
the bearing at the same time. In other words, there is a certain mixing feature. It shows
that this method lacks the ability to effectively distinguish the internal and external fault
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characteristics in the signal to some extent. Based on the decomposition of the LMD method,
six PF components are obtained, and the results are shown in Figure 19. The observation
shows that some PF components are duplicated, and the envelope spectrum of the PF1
component includes the fault characteristic frequencies of the inner and outer rings of
the bearing. The results show that the LMD method still underperforms in the effective
differentiation of fault items in the signal. The decomposition result of the ITD method is
shown in Figure 20, which finally obtains four PRC components. In the component envelope
spectrums shown in Figure 20b, PRC1 includes the fault characteristic frequency of the
inner ring bearing, and the frequency spectrum of PRC4 contains the fault characteristic
frequency of the bearing outer ring. However, the PRC2 and the PRC3 contain both inner
and outer ring fault characteristic frequencies of the bearing. The results show that this
method does not effectively distinguish the fault items in the signal. The comparative
experimental results show that the BT-EVMD is more effective and robust than the above
four methods.
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Table 3. The measurements obtained by BT-EVMD.

Decomposition
Level Parameters Components LSMI Reconstruction

Error

The first layer K = 2, α1 = 16,363, τ = 0.019 [IMF1, IMF2] LSMI [IMF1, IMF2] = 0.0058 RSE = 0.0008

The second layer K1 = 2, α1 = 21,386, τ1 = 0.011 [IMF11, IMF12] LSMI [IMF11, IMF12] = 0.1849 RSE1 = 0.0004
K2 = 2, α2 = 5258, τ2 = 0.010 [IMF21, IMF22] LSMI [IMF21, IMF22] = 0.1916 RSE2 = 0.0002

5. Discussion and Conclusions

Novelties and Contributions: In this paper, an empirical VMD algorithm based on
binary tree is proposed. By introducing the binary tree model and merging it into the
VMD algorithm, the problem of selecting the total modal K of VMD can be effectively
avoided. The binary tree model is a type of ergodic model that needs to select suitable
stop conditions. In this paper, the least square mutual information is introduced as one
of the stopping conditions of the VMD algorithm, which can effectively measure the
nonlinear coupling degree of information between two IMF components and guarantee
the orthogonality between IMF components. In addition, the performance of VMD is also
affected by the value of the parameter [α, τ]. By analyzing the influence of parameter
[α, τ] on the performance of the VMD algorithm, the RCMDE of the signal is empirically
introduced to dynamically adjust the value of parameter α, and the SNR of the signal is
taken as the value of parameter τ. These improvements not only effectively avoid the
experiential, blind and accidental problems of artificially setting parameters, they also
avoid the rationality of designing fitness functions when searching VMD key parameters
with an intelligent optimization algorithm, and the problem of excessive computational
complexity. Lastly, simulation and measured signals are compared and analyzed with
LMD, ITD, CEEMDAN and excellent SVMD methods. Experimental results indicate that
the proposed method has better decomposition performance and robustness, and has
full adaptability.

Further Work: The binary tree model requires a certain iterative process and certain
judgment conditions, so it has increased certain computational complexity compared to
traditional VMD. In addition, the value of the VMD parameter [α, τ] is set through the
computation of the signal time domain method, which is very empirical and lacks rigorous
mathematical derivation and proof. Therefore, further research is required. In addition,
there is a drawback when using RCMDE to dynamically adjust parameter α. That is, when
the number of components in the signal is tiny, and their center frequency is too near,
the value of RCMDE will lead to the value of α being too small, and the components
whose center frequency is too close will be divided into the same frequency band, hence
generating mode aliasing. Although this defect can be resolved through the iterative
process of the binary tree, it will expend a large amount of computation. As a result, the
value of parameter α and its solution need to be further researched.
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