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Abstract: The gradient vector flow (GVF) model has been widely used in the field of computer
image segmentation. In order to achieve better results in image processing, there are many research
papers based on the GVF model. However, few models include image structure. In this paper, the
smoothness constraint formula of the GVF model is re-expressed in matrix form, and the image knot
represented by the Hessian matrix is included in the GVF model. Through the processing of this
process, the relevant diffusion partial differential equation has anisotropy. The GVF model based
on the Hessian matrix (HBGVF) has many advantages over other relevant GVF methods, such as
accurate convergence to various concave surfaces, excellent weak edge retention ability, and so on.
The following will prove the advantages of our proposed model through theoretical analysis and
various comparative experiments.

Keywords: gradient vector flow; Hessian matrix; image structure; anisotropy

1. Introduction

Image segmentation is a key step from image processing to image analysis. Traditional
segmentation methods include threshold [1], clustering [2], active contour model [3],
region growth [4], etc. Since someone proposed the snake or active contour model in
1988, the snake or active contour model has become one of the mainstream models of
image segmentation [3]. Generally, an active contour performs image segmentation by
minimizing the combination of internal and external energy and deforming the curve on
the image plane; the internal energy keeps the curve continuous and smooth, while the
external energy attracts the curve to the boundary of the object to be segmented on the
image. Therefore, the problem of finding the boundary of the segmented object can be
transformed into the problem of minimizing the internal and external energy. According to
the representation of the curve, the active contour is divided into a parametric contour and
geometric contour. The parametric model uses explicit parameter representation [3,5–9],
and uses image edge mapping to stop the evolution of contour. Parametric models rely
heavily on high gradient amplitudes to extract object boundaries, and are effective only
when the contrast between background and foreground is clear enough. The geometric
model [10–24] is based on the theory of level set technology and usually adopts specific
regional homogeneity criteria to guide the evolution of contour.

External force plays a leading role in the evolution of parametric snake contour, so
people have invested a lot of energy in the research of external force to improve the
robustness of active contour. At present, the proposed gradient vector flow (GVF) [25] is
still one of the most successful methods. It spreads the gradient vector from the object
boundary to the rest of the image, which not only expands the capture range, but also
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weakens the influence of noise to a certain extent. Due to its effectiveness, a large number of
fast algorithms for the GVF model have been proposed, including vector field convolution
(VFC) [26], BVF [27], GVF based on augmented Lagrange [28], the multi-grid method of
GVF [29], and efficient numerical format of GVF [30]. Some other efforts focus on improving
the initial edge map, for example, a guided filter is employed to enhance the initial edge
map [31,32] and a directional edge map is coined for the GVF model [33]; in the literature,
the GVF is modified by using the initial contour position and introducing additional
boundary conditions of Dirichlet type [34]. Many efforts pay attention to reformulating
the energy functional of the GVF model, among others, examples include the harmonic
gradient vector flow (HGVF) [35], harmonic surface [32,36], 4DGVF external force field [37],
NGVF [38], EPGVF [39], MGVF [40], and CN-GGVF [41]. Recently, the GVF model also has
some interesting applications, as well as some interesting work on GVF snake initialization
for ultrasonic image segmentation, such as walking particles [42,43]. Very recently, Jaouen
proposed an image enhancement vector field based on the partial differential equation
(PDE) [44], and pointed out the similarity between the vector field and gradient vector
flow, which allows a natural connection between impulse filtering and a large number of
work on GVF like fields. It is important to note that the deep learning method plays a very
important role for image-based applications presently, such as image segmentation [45–49],
detection [50,51], and classification [52,53], and it needs big data for training and the active
contour is still of importance for image segmentation.

We can see that although the above contents provide various methods to improve
the GVF model, they do not consider the characteristics of image structure. Ref. [54]
pointed out that the “Hessian method is a method to extract the direction of image features
through high-order differentiation”. Inspired by this principle, we express the smooth
constraint formula in the GVF model in matrix form, then incorporate the Hessian matrix
into the energy functional of the GVF model, and finally get the GVF based on the Hessian
matrix, that is HBGVF. Compared with other methods, we experimentally prove that
HBGVF has many advantages, such as accurately converging to various concave surfaces
while maintaining weak edges. There is more information related to this work in the
literature [55,56].

The rest of this paper is arranged as follows: in the next section, we briefly review the
snake model and four famous GVF-based external forces, including GVF [25], GGVF [57],
VEF [58], NGVF [38], and CN-GVF [41], and compare them with these GVF-based meth-
ods through experiments. Section 3 details the HBGVF model proposed in this paper.
In Section 4, we prove the advantages of the proposed model through a large number of
experiments, and finally draw a conclusion in Section 5.

2. Backgrounds
2.1. Traditional Model: Active Contours

When the early active contour was proposed, it was defined as the elastic curve
c(s) = [x(s), y(s)], s ∈ [0, 1] and the following is its energy function formula:

Esnake =
∫ 1

2

(
α
∣∣c′∣∣2 + β

∣∣c′′∣∣2)+ Eext(c(s))ds (1)

in Formula (1), c′(s), c′′(s) are the first and second derivatives of c(s), which are, respec-
tively, positively weighted by α and β. Eext(c(s)) is the image potential, which may be
caused by various things, such as edges. The Euler equation for minimizing Esnake can be
obtained by deformation calculus as follows:

αc′′(s)− βc′′′′(s)−∇Eext = 0 (2)

Formula (2) is a force balance equation in reference [8],

Fint + Fext = 0 (3)
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in Formula (3), Fint = αc′′(s)− βc′′′′(s) and Fext = −∇Eext. The internal force Fint keeps
the snake contour smooth, while the external force Fext shrinks the snake contour to the
desired image object.

In image I, Fext is often used as the gradient vector of image edge mapping, as shown
in the following formula: I, as follows,

Fext = −∇Eext = ∇|∇Gσ ⊗ I|2 (4)

In fact, this gradient vector is local, unable to take into account the overall situation,
and is not regular enough, so the snake can not evolve effectively under its guidance.

2.2. Gradient Vector Flow (GVF)

Due to the obvious disadvantage of external force in Formula (4), Fext is replaced
by a new vector field v = [u(x, y)V(x, y)] in the GVF model, which can be derived by
minimizing the following function,

EGVF =
∫∫

µ
(

u2
x + u2

y + v2
x + v2

y

)
+ |∇ f |2|v−∇ f |2dxdy (5)

In (5), µ is a positive weight, f is the edge map of the image I, and ∇ is the gradient
operator. The newly obtained vector field is a gradient vector flow (GVF) field. The GVF
field can be obtained by solving the following equation iteratively,{

ut = µ∆u− |∇ f |2(u− fx)
vt = µ∆v− |∇ f |2

(
v− fy

) (6)

where ∆ is the Laplacian operator. The diffusion equation is isotropic.
The generalized GVF (GGVF) is an extension of the GVF by replacing µ and f 2

x + f 2
y

in (6) with two spatially varying functions g(|∇ f |) = exp
(
−|∇ f |2/k2) and h(|∇ f |) =

1− g(|∇ f |) , respectively [57], k acts as a threshold and controls the smoothing effect.
The introduction of such terms makes the GGVF snake behave better than the GVF snake
on thin concavity convergence.

2.3. Virtual Electric Field (VEF)

Reference [58] proposed a virtual electric field model (VEF). In this method, each
pixel in the image is regarded as an electron, the charge is the size of the image edge,
and the virtual electric field at (x0, y0) is derived from the sum of all other electrons in the
surrounding area D, which is expressed by the following formula,

EVEF(x0, y0) =

∑
(x,y)∈D

 (x0 − x)(√
(x0 − x)2 + (y0 − y)2

)3 ,
(y0 − y)(√

(x0 − x)2 + (y0 − y)2
)3

 · f (x, y) (7)

in Formula (7), D = {(x, y) | −t ≤ x0 − x ≤ t,−t ≤ y0 − y ≤ t}, f is the size of the image
edge image. Fast Fourier transform (FFT) is applied to the VEF model, so Formula (7) is
usually written in convolution form, as follows,

EVEF(x, y) =

− x(√
x2 + y2

)3 ,− y(√
x2 + y2

)3

⊗ f (x, y) (8)

in Formula (8), ⊗ represents the convolution operation.
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Thanks to the use of FFT, the VEF model can be realized in real time. In addition, the
VEF model also has some characteristics better than the GVF model, such as a large capture
range and more sensitive concave convergence.

2.4. Gradient Vector Flow in Normal Direction (NGVF)

It was pointed out in [59] that the Laplace operator can be decomposed into two terms,
as shown below,

∆u = uTT + uNN (9)

Taking u(x, y) as an example, in Formula (9), uTT and uNN are the second derivatives
of u(x, y) in the tangential and normal directions of the isophotes, respectively. It was
pointed out in [60] that, as an interpolation operator, uNN has the best performance, ∆u
second and uTT third. The diffusion process in (6) is regarded as the interpolation process,
and the NGVF is proposed using the optimal interpolator, as shown in the following
formula, {

ut = µuNN − (u− fx)|∇ f |2
vt = µvNN −

(
v− fy

)
|∇ f |2 (10)

where µ is also a positive weight as in (6).

2.5. Component-Normalized Generalized Gradient Vector Flow (CN-GGVF)

In the CN-GGVF model, the diffusion equations are modified in the following form,{
ut = g(|∇ f |) · (g(|∇ f |)uNN + h(|∇ f |)uTT)− h(|∇ f |) · (u− fx)
vt = g(|∇ f |) · (g(|∇ f |)vNN + h(|∇ f |)vTT)− h(|∇ f |) ·

(
v− fy

) (11)

where the g(|∇ f |) and h(|∇ f |) are identical to those in the GGVF model, and uTT and
uNN are identical to those in the NGVF model. Based on deep analysis of the behavior
of the GGVF model, Qin et al. proposed to normalized the GVF vector in a component-
wise manner, such that the CN-GGVF model can converge to a deep and thin notch,
the component-normalized (CN) GGVF field reads,

uCN−GVF = sign(u) =


1, u > 0
0, u = 0
−1, u < 0

(12)

vCN−GVF = sign(v) =


1, v > 0
0, v = 0
−1, v < 0

(13)

3. The HBGVF Model
3.1. Gradient Vector Flow Expressed in Matrix Form

By observing Equation, we first reformulate the smoothness constraint in the GVF

model into matrix form as follows, u2
x + u2

y =
(

ux uy
)( ux

uy

)
=
(

ux uy
)( 1 0

0 1

)
(

ux
uy

)
, we first reformulate the smoothness constraint in the GVF model into matrix form

as follows,

EGVF =
∫∫

µ
[
(∇u)T ·W · ∇u + (∇v)T ·W · ∇v

]
+ |∇ f |2|v−∇ f |2dxdy (14)

in Equation (14), W is the identity matrix. It can be seen from the above formula that due to
the existence of this identity matrix, it induces the scalar L2 norm, so that the GVF model
fails to take into account the image characteristic of image structure. We completely replace
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all W with matrix D related to the image structure, so we use Hessian matrix to construct,
as shown below,

E =
∫∫

µ
[
(∇u)T ·D · ∇u + (∇v)T ·D · ∇v

]
+ |∇ f |2|v−∇ f |2dxdy (15)

where D =

(
a b
b c

)
is a symmetric and positive semi-definite matrix. The reconstructed

model is called the Hessian-based GVF (HBGVF for short). Using the variational method,
the HBGVF field can be obtained by solving the following equation, as shown below,{

ut = µdiv(D∇u)− |∇ f |2(u− fx) = 0
vt = µdiv(D∇v)− |∇ f |2

(
v− fy

)
= 0

(16)

in Equation (16), div is the divergence operator.

3.2. Using the Hessian Matrix to Construct Diffusion Matrix

Through the observation of Formula (16), we can know that its equation is exactly the
tensor based diffusion in [61]. The “Hessian method proposed in reference [54] regards
the direction of the maximum second-order directional derivative as the direction passing
through the image feature, and its vertical direction is regarded as the direction along
the image feature.” Inspired by this principle, we use Hessian matrix to reconstruct the
diffusion matrix D in Formula (16). Taking image I as an example, its Hessian matrix is
represented by the following formula,

H =

(
Ixx Ixy
Ixy Iyy

)
(17)

using the derivative in [61], the two eigenvalues of H can be solved by the following
formula, expressed by λ1 and λ2,

λ1 = 1
2

[(
Ixx + Iyy

)
+
√(

Ixx − Iyy
)2

+ 4I2
xy

]
λ2 = 1

2

[(
Ixx + Iyy

)
−
√(

Ixx − Iyy
)2

+ 4I2
xy

] (18)

the eigenvectors corresponding to λ1 and λ2 are e1 and e2, which are obtained by the
following formula:

e1 =

(
2Ixy

Iyy − Ixx +
√(

Ixx − Iyy
)2

+ 4I2
xy

)
(19)

e2 =

(
2Ixy

Iyy − Ixx −
√(

Ixx − Iyy
)2

+ 4I2
xy

)
(20)

Obviously, through the observation of Formula (19), we can see that λ1 ≥ λ2. In ref-
erence [54], it is pointed out that because λ1 ≥ λ2, the feature vector e1 has the largest
second-order directional derivative direction in all directions, which is considered as the
direction passing through the image feature, and e2 is considered as the direction along
the image feature. Using the eigenvalues and eigenvectors of the derived Hessian matrix,
we construct the diffusion matrix D in formula (16). The eigenvector of D is used as the
eigenvector of H. We use η1,η2 to represent the two eigenvalues of D, as shown in the
following formula: {

η1 = 1
1+(|∇I|/K)2

η2 = 1
(21)
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where K serves as a threshold, and finally, the D takes the following form,

D = (e1e2)

(
η1 0
0 η2

)
(e1e2)

T (22)

From Formula (22) we can get some information: (I) when |∇I| → ∞, η1 → 0,
the HBGVF snake will give up continuing to spread along the image gradient direction on
the boundary and spread on the boundary. Therefore, the noise on the image edge can be
eliminated while the image edge is preserved; (II) when |∇I| → 0, η1 → 1 = η2, that is,
in the homogeneous region, the diffusion is isotropic, which is beneficial to the elimination
of noise.

Through the above methods, the HBGVF model will have anisotropy, so it can ac-
curately converge all kinds of concave surfaces and retain the weak edge of the image.
The methods in reference [61] are used for reference to solve the model proposed in this
paper, and the source code in Matlab is available to the public upon request. We note that,
since the Hessian matrix and the diffusion matrix should be calculated, the computation
time of the proposed HBGVF model is longer than the original GVF model.

4. Corresponding Comparative Experiments

In the experimental part, we show the important characteristics of the HBGVF model
by comparing the HBGVF model with GVF [25], GGVF [57], VEF [58], NGVF [38], and
CN-GGVF [41]. We normalized the image intensity to the [0,1] range, set and α, β to 0.1,
and set the time step for all snakes with the size of τ = 0.5. For an image of size M · N,
the iteration for the calculation of all GVF-like models is

√
M · N, and the time step is 1(less

than 1/(4µ)). In order to get a large capture range, µ is 0.2 for GVF, NGVF, and HBGVF, k
is 0.5 for the GGVF and CN-GGVF, the region D for the VEF model is of size M · N, k for
the HBGVF is 0.1, unless otherwise stated.

4.1. Common Concerns for the GVF-Like Snakes

The GVF model was originally proposed to overcome the shortcomings of traditional
gradient-based external force, such as narrow capture range and poor convergence on
concave surfaces. Through the following experiments, we will prove some excellent
characteristics of HBGVF snake compared with the GVF snake, such as large capture range,
accurate convergence to concave, and insensitive to image initialization. Figure 1 shows
the convergence results of HBGVF snake on a oom image, U-shaped image, and main body
contour respectively. The gray dotted line is the initial contour, and the red solid line is the
convergence result. It can be observed from the figure that the HBGVF snake converges
to the U-shaped concave surface and is automatically connected to the subject contour.
It can be seen from the initialization results in the figure that the HBGVF snake has the
advantages of being insensitive to the initial contour and large capture range.

Figure 1. (a) Test images: room image, U image, and subject contour. (b) Convergence results with
different initializations and evolutions of the HBGVF snakes.
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4.2. Convergence to Concavities

It can be seen from Figure 1 that the HBGVF snake performs well on converging to
the U-shape image. Next, in order to better test the advantages of the HBGVF snake, we
use the other three images with different concave surfaces to compare with other methods
similar to GVF. Figure 2 presents the convergence results of the corresponding approaches.
One can see that just the HBGVF and GGVF snakes can converge on the three images,
the reason behind this observation is that the HBGVF model takes into account the image
structure that was characterized by the Hessian matrix, and the GGVF model emphasizes
the image structure by paying more attention to the edges by using two varying weighting
functions. However, the CN-GGVF model also adopts the two varying weighting functions
that are identical to those in the GGVF model, the CN-GGVF snake cannot converge to
the various concavities at all, the reason is that the component normalization operation
changes the direction of the vector field. Taking the heart image as an example, Figure 2i
presents the associated GGVF vector field around the entrance of the concavity, one can see
that the vector field in the blue circle is approximately horizontal, since the vector left to the
blue circle is downward, it drives the snake contour into the concavity. Figure 2h presents
the associated CN-GGVF vector field, where the vectors in black and red are these before
and after component normalization, respectively, it is clear that the CN-GGVF field in the
yellow circle before component normalization (in black) is similar to the GGVF vector,
however, due to the component normalization, the CN-GGVF vector (in red) is upward,
and pushes the snake contour out of the concavity. As a result, the CN-GGVF snake stops
at the upper half of the concavity. This example tells us that component normalization is
not always beneficial to the evolution of the snake contour. The concavities in the man
and cat images are semi-close, and the CN-GGVF snake is also not good at converging to
these concavities. Therefore, the improper use of the weighting function may cause the
opposite effect. Of course, the appropriate use can greatly improve the accuracy of the
model, such as the application in [62]. The GVF and VEF snakes just failed in one case,
and we will see later that the shortcoming of the VEF snake is that it does not perform well
when preserving weak edges. The NGVF snake just works well on the man concavities,
and since the limited capture range, the initial contour for the cat image is very close to the
cat at the left-bottom corner.

4.3. Weak Edge Preserving

Figure 3a is an example of testing the ability of the HBGVF model to retain the weak
edge of the image. The outer ring of the image is seriously blurred in the upper right corner.
Refer to the edge diagram in Figure 3b. It can be seen that the contour of the snake is easily
attracted to the inner ring of the strong edge. Since it is a pair of contradictions to enlarge
capture range and to preserve weak edge simultaneously, the regularization parameters
are tuned to µ is 0.1 for GVF, NGVF, and HBGVF, k is 0.01 for the GGVF and CN-GGVF,
the size of region D for VEF model is just one twenty-fifth of that of the image, k for HBGVF
is 0.01. One can see that the HBGVF snakes can preserve the weak edge well although the
diffusion parameter µ is identical to those of the GVF and NGVF; the reason behind this
observation is that the HBGVF model takes into account the image structure. Although the
kernel size for the VEF is very small and the initial contour for the VEF snake is close to
the object, the snake contour yet collapsed at the weak edge. The CN-GGVF and GGVF
snakes also stop at the weak edge and the convergence results are almost identical due to
the similar diffusion mechanism, when compared with that of the HBGVF snake, the result
of the HBGVF snake is smoother, this observation implies the HBGVF field is more regular.
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Figure 2. Convergence to concavities. (a) Test images: heart image, man image, and cat image.
Evolution and convergence results of the (b) GVF snake, (c) GGVF snake, (d) VEF snake, (e) NGVF
snake, (f) CN-GGVF snake, and (g) HBGVF snake. (h) The CN-GGVF field, the vectors in black and
red are these before and after component-normalization, respectively, (i) the GGVF field.

Figure 3. (a) Test image, (b) edge map. Convergence results of each model: (c) the GVF snake,
(d) the GGVF snake, (e) the VEF snake, (f) the NGVF snake, (g) the CN-GGVF snake, and (h) the
HBGVF snake.
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4.4. Test Results of HBGVF Model on Real Images

In order to further highlight the comprehensive performance of the HBGVF snake, we
used several real images for comparison. Figure 4 presents a gear image, where there are
more than ten semi-close concavities with order number.

The parameter k is 0.2 for the GGVF and 0.3 for the CN-GGVF in order to get a balance
between entering the concavities and preserving a weak edge, the parameters for other
models are identical to those in Figures 1 and 2. One can see that the GVF snake converges
to the concavities from #0 to #9, although it collapses at the two teeth around concavity
5. The GGVF snake converges to the concavities from #0 to #8, and it seems that the
GGVF snake is good at preserving a weak edge, in fact, one can see that there is contour
entanglement from the right part in Figure 4d, which is a zoomed-in version of the blue
rectangle in the left part. The VEF snake suffers from weak edge leakage, and collapses at
most of the teeth, see Figure 4e. Figure 4f is the result of the NGVF snake treatment, which
manifests that the NGVF snake is not good at concave convergence, and this observation
agrees with that in Figure 2. The CN-GGVF snake performs similarly to the NGVF snake,
see Figure 4g. Since the HBGVF takes into account the image structure, the HBGVF snake
converges to the concavities from #0 to #12 except the 11th one. However, from the zoomed-
in part of the blue rectangle in the left part, HBGVF snakes also performed poorly, as shown
in the right part of Figure 4h; in fact, the performance in this example can be enhanced by
decreasing the parameter k in HBGVF.

Figure 5 presents a second real image, a flying eagle, and the feathers on the wings
are difficult for the active contour to extract. In order to get a balance between extracting
the feathers on the wings and enlarging the capture range, the regularization parameter
µ is 0.05 for GVF, NGVF, and HBGVF, k is 0.05 for the GGVF and CN-GGVF, the size of
region D for the VEF model is just one sixty-forth of that of the image, k for HBGVF is 0.01.
The white dash-point lines are the initial contour and the red solid lines are the convergent
results. As can be seen from Figure 5a, the GVF snake works well except for the feathers on
the right wing. Figure 5b shows that the GGVF snake yields good results in extracting the
feathers on both wings, however, it is trapped in local minimum behind the tail. The result
of the VEF snake is reported in Figure 5c, and it is obvious from the results that the snake
contour is trapped in a local minimum and also fails on extracting the feathers. The NGVF
and CN-GGVF snakes are also trapped in a local minimum, see Figure 5d,e, respectively,
and the CN-GGVF snake cannot enter the concavities formed by the feathers. On the
contrary, Figure 5f shows that the HBGVF snake works well on extracting the feathers and
is not trapped in a local minimum, which manifests that the HBGVF field is regular.

Figure 4. (a) Original test metal gauge image; (b) edge map; the convergence results of each model:
(c) the GVF snake, (d) the GGVF snake, (e) the VEF snake, (f) the NGVF snake, (g) the CN-GGVF
snake, and (h) the HBGVF snake.

Figure 6 presents a medical image, and for the weak edge shown in the white box
in Figure 6a, the snake contour is prone to leakage here, the intensity inhomogeneity is
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also a difficulty. In order to achieve a balance between maintaining the weak edge and
overcoming inhomogeneity, the regularization parameter µ is 0.02 for GVF, 0.03 for NGVF
and HBGVF, k is 0.03 for the GGVF, and 0.07 for the CN-GGVF, the size of region D for
VEF model is just 1/144 of that of the image, k for HBGVF is 0.01. One can see that there is
weak-edge leakage and local minimum trap simultaneously for the GVF, VEF, and NGVF
snakes. The GGVF, CN-GGVF, and HBGVF snakes yield similar results, where there is no
weak-edge leakage or local minimum trap. It is clear that the µ for HBGVF and NGVF are
identical, and even larger than that for the GVF, however, the HBGVF snake preserves a
weak edge well, the reason behind this observation is that the HBGVF model takes into
account the image structure. Figure 7 shows more results of the HBGVF snake on real
images, the initial contours are dash-point lines and the convergence results are the solid red
lines. The first row presents flowers and leaves and the HBGVF snake extracts the objects
accurately, the second row shows three eagles and the difficulty for the HBGVF snake is
similar to that in Figure 5, the HBGVF snake also yields satisfactory results. There are three
medical images in the third row, and in each panel, the image on the left is the original
image with initial contour, from which one can see the blurred and weak boundaries of
the objects. The display result on the right shows that the HBGVF snake can satisfactorily
delineate the object boundaries.

Figure 5. The convergence results of each model: (a) the GVF snake, (b) the GGVF snake, (c) the
VEF snake, (d) the NGVF snake, (e) the CN-GGVF snake, and (f) the HBGVF snake. In order to get a
balance between preserving the feathers on the wings and enlarging the capture range, the regularization
parameter µ is 0.05 for GVF, NGVF, and HBGVF, k is 0.05 for the GGVF and CN-GGVF, the size of region
D for VEF model is just one sixty-forth of that of the image, k for HBGVF is 0.01.

Figure 6. (a) Test medical image; the convergence results of each model: (b) the GVF snake, (c) the GGVF
snake, (d) the VEF snake, (e) the NGVF snake, (f) the CN-GGVF snake, and (g) the HBGVF snake.
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Figure 7. More examples of the convergence results of the HBGVF snake.

5. Conclusions

To sum up, the smoothness constraint formula is expressed in the form of a matrix,
and the image structure represented by the Hessian matrix is introduced into the GVF
model. This GVF model based on the Hessian matrix is abbreviated as HBGVF. Through the
above theoretical analysis and experimental comparison, it can be proved that compared
with other GVF-based models, the HBGVF snake has many advantages, such as excellent
convergence on various concave surfaces, retaining weak edges, and so on. The above
experiments include synthetic images and real images in real life. These experiments have
proved the excellent characteristics of the HBGVF model. The proposed HBGVF model can
also be employed for other applications such as those in [63–72], and this is our next goal.
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