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Abstract: The hot spot effect is an important factor that affects the power generation performance
and service life in the power generation process. To solve the problems of low detection efficiency,
low accuracy, and difficulty of distributed hot spot detection, a hot spot detection method using a
photovoltaic module based on the distributed fiber Bragg grating (FBG) sensor is proposed. The FBG
sensor array was pasted on the surface of the photovoltaic panel, and the drift of the FBG reflected
wavelength was demodulated by the tunable laser method, wavelength division multiplexing tech-
nology, and peak seeking algorithm. The experimental results show that the proposed method can
detect the temperature of the photovoltaic panel in real time and can identify and locate the hot spot
effect of the photovoltaic cell. Under the condition of no wind or light wind, the wave number and
variation rule of photovoltaic module temperature value, environmental temperature value, and
solar radiation power value were basically consistent. When the solar radiation power fluctuated, the
fluctuation of hot spot cell temperature was greater than that of the normal photovoltaic cell. As the
solar radiation power decreased to a certain value, the temperatures of all photovoltaic cells tended
to be similar.

Keywords: optical measurement; photovoltaic module; hot spot; fiber Bragg grating; wavelength
division multiplexing

1. Introduction

The power generation of traditional fossil fuel thermal power is faced with environ-
mental pollution, fuel depletion, and other problems. To achieve carbon peak and carbon
neutrality, the proportion of non-fossil energy consumption will gradually increase [1]. As a
green, efficient, low-cost new energy technology, photovoltaic power generation technology
has been widely used in construction, agriculture, transportation, and other fields [2,3].
Photovoltaic modules are an important part of photovoltaic power generation systems. Its
temperature is an important factor that affects photoelectric conversion efficiency, and the
two have a negative relationship. With a 25 ◦C reference temperature, the actual output
power drops by 0.4 W compared with the expected value when the temperature of the PV
module increases by 1 ◦C [4]. The influence factors of the photovoltaic module temperature
include the accumulation of dust on photovoltaic panels, solar radiation power, and mete-
orological conditions [5,6]. When a single cell in the photovoltaic module is damaged or
shielded by leaves and dust, its output current becomes smaller, and both ends of the cell are
reversely biased into a load of the other cells. This results in local high-temperature and hot
spot effects [7,8]. The hot spot effect is a typical fault of the photovoltaic module that causes
serious combustion of the whole cell module, and it seriously affects the performance and
service life of the photovoltaic system [9]. Therefore, the efficient and accurate detection of
photovoltaic module temperature and hot spots is of great significance to ensure the safe
operation of photovoltaic power generation systems. At present, the detection methods of
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the temperature and hot spots for photovoltaic modules can be divided into two categories:
the electrical characteristics method and the external physical characteristics method. The
electrical characteristics method usually collects the output voltage, current, and other
parameters by an auxiliary circuit around the photovoltaic array or photovoltaic module.
Then, the detection of temperature and hot spots is conducted by a mathematical statistical
model or a machine learning algorithm for data analysis. Kim et al. performed hot spot
detection by AC parameters [10]. Liu and Wu et al. obtained the leakage current of hot
spot cells by detecting the slope of the line segment at the step of the I-V curve of the
photovoltaic module [11,12]. Jia et al. proposed a multi-sensor fault detection and location
method of photovoltaic arrays based on an improved BP neural network [13]. For large-
scale photovoltaic arrays, the auxiliary circuit based on the electrical characteristic detection
method is a relatively large, high-cost, complex data processing method with low efficiency.
Detection methods based on external physical characteristics usually achieve the detection
of hot spots by the temperature distribution of the photovoltaic array. Bohorquez et al. used
thermal resistance sensors or digital temperature sensors to measure the surface or back
temperature of the photovoltaic module [14]. Tsanakas et al. analyzed the gray histogram
and temperature contour characteristics of an infrared thermal image. The results showed
that the hot spots on the photovoltaic array were related to a specific discontinuous cell.
In addition, the Canny edge detection operator has been selected as a diagnostic tool to
detect module-related faults leading to the hot spot heating effect [15,16]. Niazi et al. used
the texture and gradient histogram features of photovoltaic module thermal images for
classification, and hot spots were identified by training a machine learning algorithm [17].
Jiang et al. proposed a processing method of B-spline least-square fitting based on a gray
histogram, which can suppress infrared image noise and improve the accuracy of detecting
hot spots [18]. For the detection of hot spots of large-area distributed photovoltaic arrays,
the efficiency of the infrared image detection method is low due to the need to collect and
process a large number of thermal images. Some scholars obtained the infrared thermal
image by scanning the photovoltaic array at a low altitude with a UAV and infrared thermal
imager. The thermal image underwent image splicing and processing, which improved the
detection efficiency to a certain extent [19,20].

The above methods have low detection efficiency and low accuracy, and they cannot be
applied to detect distributed hot spots. The FBG sensor can achieve distributed monitoring
with small-volume, anti-electromagnetic interference, and corrosion resistance [21–24]. It
has been widely studied in distributed temperature measurement [25–28]. To solve the
above problems, a hot spot detection method using a distributed FBG sensor is proposed.
The FBG array is pasted on the surface of the photovoltaic panel with thermal conductive
silicone grease, the shift of the reflected wavelength of FBG is demodulated by wavelength
division multiplexing technology, the temperature of each measuring point is obtained,
and the identification and location of hot spots are realized.

2. Hot Spot Effect of Photovoltaic Module and Its Influence
2.1. Hot Spot Effect of Photovoltaic Module

The defective areas (covered, cracked, bubble, dirt, etc.) in photovoltaic modules
become loads and consume the energy generated by other areas. This results in local
overheating, and then the hot spot effect of the photovoltaic module occurs, as shown in
Figure 1.

The photovoltaic module is sealed by a certain number of single-chip cells in series
and parallel. The circuit model of the photovoltaic cell is shown in Figure 2a. Vi is the
normal working cell output voltage, and I is the cell output current.

The I-V curvilinear equation is obtained on the basis of the equivalent circuit model of
the photovoltaic cell [29]:
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I = Iph − ID

{
esp

[
q(V + IRs)

nkT

]
− 1

}
− V + IRs

Rsh
(1)

in which I is the output current, V is the output voltage, Iph is the photogenerated cur-
rent, ID is the diode reverse saturation current, q is the charge constant and equal to
1.6 × 10−19 C, Rs is series resistance, n is the diode quality factor, k is the Boltzmann con-
stant and the value is equal to 1.38 × 10−23 J/K, T is the thermodynamic temperature, and
Rsh is parallel resistance.
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Figure 2. Photovoltaic cell single-diode model: (a) normal photovoltaic cell; (b) hot spot cell.

When a photovoltaic cell has a hot spot effect, its photogenerated current decreases.
As the in-string cells work at the same current intensity, the hot spot cell is reverse biased
and becomes the load of the normal cells, as shown in Figure 2b, in which Vr is the reverse
bias voltage of the hot spot cell and Ist is the cell string current. When there is a hot spot cell
in a photovoltaic module, its photogenerated current decreases, and the I-V characteristic
curve changes, as shown in Figure 3 [11].
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2.2. Influence Analysis of Hot Spot Effect

The power consumed by the hot spot cell is:

P = I2
revRsh + I2Rs (2)

in which Irev is the reverse leakage current. The smaller the Rsh, the greater the reverse
leakage current of the hot spot cell. Extremely high heat is generated and accumulated
in the part with a large reverse leakage current. This results in a sharp temperature rise
in this part, generating a hot spot effect. When the hot spot temperature rises to a certain
extent, it destroys the surface packaging material of the module and shortens its service
life. The physical structure of the single photovoltaic cell is even burnt out, and this results
in permanent damage to the photovoltaic module. A fire caused by a hot spot will burn
multiple photovoltaic modules or cause a large area of cell panels to be scrapped.

3. Hot Spot Detection of Photovoltaic Module Based on FBG
3.1. FBG Temperature Detection Principle

According to the coupled mode theory, The Bragg wavelength of FBG is:

λB = 2neffΛ (3)

in which neff is the effective refractive index of the fiber core and Λ is the grating period.
The photothermal effect caused by temperature changes the effective refractive index for
bare fiber gratings without external force, and the thermal expansion coefficient changes the
grating constant. The relative displacement of the Bragg wavelength caused by temperature
change is:

∆λB

λB
=

1
Λ

∂Λ
∂T

∆T +
1

neff

∂neff
∂T

∆T = (α + ξ)∆T = KT∆T (4)

in which α = 1
Λ

∂Λ
∂T T is the thermal expansion coefficient of optical fiber, ξ = 1

neff

∂neff
∂T is

the thermal optical coefficient of optical fiber, KT is the temperature sensitivity coeffi-
cient of the fiber grating relative wavelength. For fused silica fiber, α = 0.55 × 10−6/◦C,
ξ = 6.8 × 10−6/◦C, and KT = 7.35 × 10−6/◦C. When λB = 1525 nm, the wavelength
shift caused by a temperature change of 1 degree is 11.21 pm. According to Equation (4),
when the optical fiber material is determined, there is a linear relationship between ∆λB
and ∆T. The temperature change can be determined by detecting the displacement of
the wavelength.

The relative displacement of the grating Bragg wavelength caused by fiber axial strain is:

∆λB

λB
= (1− Pe)εz = Kεεz (5)

in which Pe = n2
eff[P12 − υ(P11 + P12)]/2, P11 and P12 is the elastic optic coefficient, υ is

optical fiber Poisson’s ratio, and Kε is the relative wavelength strain sensitivity coefficient
of the fiber Bragg grating.

According to Equations (4) and (5), the relationship between the change in the grating
Bragg wavelength and the change in temperature and axial strain is:

∆λB

λB
= (α + ξ)∆T + (1− Pe)εz = KT∆T + Kεεz (6)

Therefore, the change in the grating Bragg wavelength is related to its axial strain and
temperature. When the temperature is measured by FBG, the interference of axial strain
and temperature on the grating must be considered [30].

3.2. Hot Spot Detection Method of Photovoltaic Module Based on FBG

The FBG array was pasted on the surface of the photovoltaic panel. The working
condition of the photovoltaic module and the occurrence of hot spots were monitored by
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the temperature measured. The structure of the distributed FBG temperature measurement
system was constructed by the wavelength division multiplexing method, as shown in
Figure 4. Multiple FBGs with different Bragg wavelengths were connected in series on
a transmission fiber. The wavelength of the narrow-band light source with a tunable
laser output can vary within a certain range. The laser scanning step size and frequency
can be controlled by the driver. The narrow-band laser was incident on the FBG array
through the circulator. When the wavelength of the light source was consistent with the
Bragg wavelength of an FBG, the light intensity of the reflected signal was the largest. The
reflected light signal reached the photoelectric converter through the circulator, and it was
converted into an electrical signal. The data processing computer collected the electrical
signal, and the signal voltage peak was obtained by the peak-seeking algorithm. Then,
the wavelength demodulation and positioning of the FBG were realized. By comparing
the Bragg wavelength variation of each FBG sensor, the temperature of the measured
photovoltaic module could be calculated. At the same time, the location of the hot spot was
determined through the location of the sensor with an abnormal temperature in the FBG
array. The smaller the distance between the sensors in the FBG array, the more accurate the
hot spot location of the system.
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4. Experiment and Analysis
4.1. Experimental Materials and Equipment

The experimental system was mainly composed of a photovoltaic panel, FBG sensors,
a fiber Bragg grating demodulator, a contact digital temperature measuring instrument, an
infrared thermal imager, a solar power meter, and an anemometer. The equipment model
is shown in Table 1.

The length and width of the photovoltaic panel were 960 mm and 480 mm, respectively.
The power of the photovoltaic power generation system was 800 W. The bandwidth of the
FBG was more than 2 nm, the length of the grating area was 10 mm, and the length of the
transmission fiber was 10 m. The wavelength band of the fiber Bragg grating demodulator
was 1525~1565 nm, the scanning frequency was 100 Hz, and the wavelength resolution was
1 pm. The contact digital temperature measuring instrument was used to collect the surface
temperature of the photovoltaic panel. The measurement results were compared with the
temperature measurement results of FBG sensors. The infrared thermal imager was used
to collect the infrared thermal image of the solar panel in order to observe the hot spot of
the solar panel and the temperature of the surrounding area. In addition, the solar power
meter and anemometer were used to measure solar power and wind speed, respectively.

The experimental platform was built according to Figure 4, as shown in Figure 5. The
FBG array was composed of nine bare fiber gratings in series. The Bragg wavelengths
of FBG1–FBG9 were 1530.301 nm, 1533.189 nm, 1536.113 nm, 1542.027 nm, 1544.977 nm,
1548.086 nm, 1553.949 nm, 1557.017 nm, and 1560.137, nm respectively. The FBG array
was pasted onto the photovoltaic panel with thermal conductive silicone grease. The
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thermal conductive silicone grease used can maintain the paste state at−50~230 ◦C without
solidifying or adhesive force. Within the temperature range of the photovoltaic module,
the internal stress of thermal grease basically does not affect the Bragg wavelength of the
fiber Bragg grating. In addition, the thermally conductive silicone grease can avoid uneven
heating of the FBG. In the experiment, the FBG string pasted on the photovoltaic panel with
thermal conductive silicone grease was arranged up and down. The upper end of the fiber
was fixed with adhesive tape, and the lower end was in a free state, as shown in Figure 4.
In this way, the optical fiber could be attached to the photovoltaic panel, and the FBG
could be prevented from being affected by the strain deformation of the panel and other
stresses. FBG1–FBG9, respectively, corresponded to points P1–P9, and the temperature at
the corresponding position was measured. During the experiment, the photovoltaic panel
in the working state of power generation was placed in the outdoor sunny weather. The
geographic location of the experiment was latitude 31◦57′8′′ N, longitude 118◦51′8′′ E, and
altitude 15 m, and the cell panel was inclined at 45◦.

Table 1. Experimental equipment.

Equipment Model Manufacturer

Photovoltaic panel Polycrystalline, 960 mm × 480 mm ——
FBG demodulator BLY-FBG-5S, 1525~1565 nm China Wuxi Brillouin Electronic Technology Co., Ltd. (Wuxi, China)

Digital thermometer TASI-TA612C China Suzhou TASI Electronic Industry Co., Ltd. (Suzhou, China)
Infrared thermal imager VarioCAM®HD inspect 980 Germany InfraTec (Dresden, Germany)

Solar power meter TES-1333R China TES Electrical Electronic Corp (Taibei, China)

Anemometer Benetech GM8907 China Shenzhen Jumaoyuan Science And Technology Co., Ltd.
(Shenzhen, China)Sensors 2022, 22, x FOR PEER REVIEW 7 of 13 
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4.2. Experimental Results and Analysis
4.2.1. FBG Calibration

The temperature sensitivity coefficient of the bare FBG used in the experiment was
about 10 pm/◦C. The temperature sensitivity coefficient and linearity of the FBG were
recalibrated in the experiment. The FBG sensors to be calibrated were put into the tempera-
ture control box. The temperature of the temperature control box was set from 10~70 ◦C.
The Bragg wavelengths of the FBGs were recorded every 10 ◦C. The results are shown in
Figure 6. According to the calibration curve, the change in the Bragg wavelength of the sensors
had a good linear relationship with the temperature. After linear fitting, the temperature sen-
sitivities of FBG1–FBG9 sensors were, respectively, 10.50 pm/◦C, 10.57 pm/◦C, 10.49 pm/◦C,
10.49 pm/◦C, 10.50 pm/◦C, 10.60 pm/◦C, 10.63 pm/◦C, 10.59 pm/◦C, and 10.64 pm/◦C. The
temperature sensitivity coefficients of the nine sensors were close to each other.
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4.2.2. Photovoltaic Panel Temperature Measurement and Hot Spot Identification

Photovoltaic modules are often affected by shielding and dust coverage. This results
in abnormal operation and even the hot spot effect. In the experiment, a plastic film with
a light transmittance of 0.5 was used to cover 100% area of the cells at the P7 point to
simulate the hot spot effect, as shown in Figure 5c. The surface temperature measurement
experiment of the photovoltaic panel was carried out from 11:00 a.m. to 11:50 a.m. The
digital thermometer (the thermometer probe was placed near the FBG sensor on the cell
panel) and FBG sensors were used for temperature collection. During the measurement, it
was found that the temperatures at points P1, P2, P3, P4, P5, and P6 and their variations
were similar, and the temperatures at points P8 and P9 and their variations were similar.
The temperature measurement results at points P1, P5, P7, and P9 are shown in Figure 7
(the digital thermometer collected the temperature every 5 min).
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According to Figure 7, in most cases, the temperature at point P9 was slightly lower
than that at points P1 and P5. During the experimental period, the southeast wind level II
was conducive to the heat dissipation of the photovoltaic panel, especially on the point P9
side. This is the main reason for the low temperature at point P9. The temperature at point
P7 on the photovoltaic panel was significantly higher, reaching 66.9 ◦C; this indicates that
the hot spot effect occurred at this point.

The temperature stability measured by the thermometer was poor, and the temperature
values were generally lower than those collected by FBG sensors. This is mainly related to
the contact time between the thermometer probe and the cell panel during measurement.
The contact time was too short, and the heat transfer was insufficient.

The system using the fiber Bragg grating to detect the photovoltaic module temperature
and hot spots had good stability, a short response time, and good real-time performance.

Figure 8 shows the infrared thermal image of the photovoltaic panel at a certain time
point. The infrared image shows the hot spot effect at point P7 and the low temperature on
one side of point P9.

The FBG demodulator selected in this experiment had 8 channels, and the wavelength
range of its embedded light source was 1525~1565 nm. If the bandwidth of each FBG
was 2 nm, theoretically, each channel could be connected in series with 20 FBGs, and a
demodulator could demodulate up to 160 FBGs using wavelength division multiplexing
and space division multiplexing technology. In order to ensure the safe operation of large-
scale photovoltaic panels and promptly find the hot spot fault of each photovoltaic cell, at
least one fiber Bragg grating must be arranged at each cell position.
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Therefore, it is necessary to increase the number of FBGs demodulated by a single
demodulator or increase the number of demodulators so that the equipment investment
increases accordingly. With the development of FBG multiplexing technology and de-
modulation technology, the number of FBGs demodulated by a single demodulator will
continue to increase, and the equipment cost of using FBGs to detect the temperature of
large photovoltaic arrays will gradually decrease.

4.2.3. Measurement Experiment of Photovoltaic Panel Temperature and
Environmental Conditions

Two FBGs were pasted on P7B and P5B on the backplane surface of the photovoltaic
panel, and they were used to measure the backplane surface temperature of the photovoltaic
panel. P7B and P5B corresponded to points P7 and P5, respectively. The other FBG was
placed freely in the air on the front of the photovoltaic panel to measure the ambient
temperature. At the same time, the solar radiation power was measured by the solar power
meter. The wind speed at the experimental position was measured with an anemometer.
The experiment was carried out on a cloudy day. The measurement results are shown in
Figure 9.

Sensors 2022, 22, x FOR PEER REVIEW 10 of 13 
 

 

 
Figure 8. Infrared thermal image of photovoltaic panel with hot spot effect. 

4.2.3. Measurement Experiment of Photovoltaic Panel Temperature and Environmental 
Conditions 

Two FBGs were pasted on P7B and P5B on the backplane surface of the photovoltaic 
panel, and they were used to measure the backplane surface temperature of the photovol-
taic panel. P7B and P5B corresponded to points P7 and P5, respectively. The other FBG 
was placed freely in the air on the front of the photovoltaic panel to measure the ambient 
temperature. At the same time, the solar radiation power was measured by the solar 
power meter. The wind speed at the experimental position was measured with an ane-
mometer. The experiment was carried out on a cloudy day. The measurement results are 
shown in Figure 9. 

 
(a) 

Figure 9. Cont.



Sensors 2022, 22, 4951 10 of 12Sensors 2022, 22, x FOR PEER REVIEW 11 of 13 
 

 

 
(b) 

 
(c) 

Figure 9. Photovoltaic panel surface temperature and environmental conditions: (a) temperature of 
photovoltaic panel and ambient; (b) solar radiation power; (c) wind speed. 

According to Figure 9, the temperature of the back side of the photovoltaic cell with 
the hot spot effect was slightly higher than that of the front side, while the temperature of 
the photovoltaic cell with normal operation was just the opposite. As the solar radiation 
power decreased to a certain value, the temperatures of all photovoltaic cells tended to be 
similar. 

Under the experimental conditions of a breeze or light wind, the number and varia-
tion law of wave peaks of the photovoltaic cell temperature value, ambient temperature 
value, and solar radiation power value were basically the same. 

When the value of the solar radiation power was large, the ambient temperature was 
correspondingly high, and the temperature of the photovoltaic panel was also high, but 
the fluctuation range of the ambient temperature was smaller than that of the solar radia-
tion power. 

The temperature fluctuation degree of the hot spot cell caused by solar radiation 
power fluctuation was generally greater than that of normal photovoltaic cells. For exam-
ple, at 500 s, the solar radiation power was 707 W/m2, the temperature at point P5 was 44.8 
°C, and the temperature at point P7 was 52.7 °C. At 1100 s, the solar radiation power rose 
to 810 W/m2, the temperature at point P5 rose to 45.7 °C, while the temperature at point 
P7 rose to 62.1 °C. 

The breeze had little effect on the temperature of the photovoltaic panel. 
  

Figure 9. Photovoltaic panel surface temperature and environmental conditions: (a) temperature of
photovoltaic panel and ambient; (b) solar radiation power; (c) wind speed.

According to Figure 9, the temperature of the back side of the photovoltaic cell with
the hot spot effect was slightly higher than that of the front side, while the temperature of
the photovoltaic cell with normal operation was just the opposite. As the solar radiation
power decreased to a certain value, the temperatures of all photovoltaic cells tended to
be similar.

Under the experimental conditions of a breeze or light wind, the number and variation
law of wave peaks of the photovoltaic cell temperature value, ambient temperature value,
and solar radiation power value were basically the same.

When the value of the solar radiation power was large, the ambient temperature
was correspondingly high, and the temperature of the photovoltaic panel was also high,
but the fluctuation range of the ambient temperature was smaller than that of the solar
radiation power.

The temperature fluctuation degree of the hot spot cell caused by solar radiation power
fluctuation was generally greater than that of normal photovoltaic cells. For example, at
500 s, the solar radiation power was 707 W/m2, the temperature at point P5 was 44.8 ◦C,
and the temperature at point P7 was 52.7 ◦C. At 1100 s, the solar radiation power rose to
810 W/m2, the temperature at point P5 rose to 45.7 ◦C, while the temperature at point P7
rose to 62.1 ◦C.

The breeze had little effect on the temperature of the photovoltaic panel.



Sensors 2022, 22, 4951 11 of 12

5. Conclusions

To solve the problems of the hot spot effect of photovoltaic modules and surface
temperature detection of photovoltaic panels, a detection scheme that uses wavelength
division multiplexing technology based on the distributed FBG sensor is proposed. In this
scheme, an FBG sensor array was pasted on the surface of the photovoltaic panel, and the
tunable laser method and peak-seeking algorithm were used for wavelength demodulation.
Multi-point temperature measurement was performed. The detection system was built,
and the measurement experiment was carried out in an outdoor environment. The results
showed that:

(1) The FBG temperature sensitivity of this detection method is greater than 10 pm/◦C,
and the response time of the sensing probe is short. The detection system can obtain the
surface temperature distribution of the photovoltaic panel in real time and can effectively
identify and locate the hot spot effect of photovoltaic cells.

(2) The temperature of photovoltaic cells with a hot spot effect is significantly higher
than that of normal working cells. The temperature of the upper wind side of the pho-
tovoltaic panel is slightly lower than that of the lower wind side due to the influence of
air cooling.

(3) When the value of solar radiation power is large, the ambient temperature is
correspondingly high, and the temperature of the photovoltaic panel is also high. As the
solar radiation power decreases to a certain value, the temperature of all photovoltaic cells
tends to be similar.

(4) The breeze has little effect on the temperature of the photovoltaic panel. Under the
experimental conditions of a breeze or light wind, the number and variation law of the
wave peaks of the photovoltaic module temperature value, ambient temperature value,
and solar radiation power value are basically the same.

(5) The temperature fluctuation of hot spot cells caused by solar radiation power
fluctuation is generally greater than that of normal photovoltaic cells.

The distributed FBG sensor network has good real-time performance, corrosion resis-
tance, and electromagnetic interference resistance. It can achieve multi-point and large-area
temperature measurement and positioning. It has good application prospects in the field of
photovoltaic panel temperature monitoring.
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