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Abstract: Time-domain backprojection algorithms are widely used in state-of-the-art synthetic aper-
ture radar (SAR) imaging systems that are designed for applications where motion error compensation
is required. These algorithms include an interpolation procedure, under which an unknown SAR
range-compressed data parameter is estimated based on complex-valued SAR data samples and
backprojected into a defined image plane. However, the phase of complex-valued SAR parameters
estimated based on existing interpolators does not contain correct information about the range dis-
tance between the SAR imaging system and the given point of space in a defined image plane, which
affects the quality of reconstructed SAR scenes. Thus, a phase-control procedure is required. This
paper introduces extensions of existing linear, cubic, and sinc interpolation algorithms to interpolate
complex-valued SAR data, where the phase of the interpolated SAR data value is controlled through
the assigned a priori known range time that is needed for a signal to reach the given point of the de-
fined image plane and return back. The efficiency of the extended algorithms is tested at the Nyquist
rate on simulated and real data at THz frequencies and compared with existing algorithms. In
comparison to the widely used nearest-neighbor interpolation algorithm, the proposed extended algo-
rithms are beneficial from the lower computational complexity perspective, which is directly related
to the offering of smaller memory requirements for SAR image reconstruction at THz frequencies.

Keywords: complex-valued SAR data interpolation; complex SAR interpolation; THz SAR;
backprojection; GBP

1. Introduction

Synthetic aperture radar (SAR) is a remote sensing technique that has been developed
since the 1950s as an alternative to the optical imaging system and with the aim to acquire
images with a high cross-range resolution. Nowadays, it is used in a wide range of
applications, including stationary and moving target detection [1,2].

The range of SAR applications is directly correlated to the frequency band of the
SAR systems. For example, SAR systems, such as spaceborne and airborne, commonly
operate in the microwave frequency range below 30 GHz. The spaceborne SAR systems,
including TerraSAR-X, RADARSAT-2, and COSMO-SkyMed, provide an opportunity to
study geoscience and hydrology at a distance of hundred kilometers from the Earth’s
surface [3]. The airborne SARs that operate in this frequency range include ultrawideband-
ultrawidebeam SAR imaging systems (UWB SAR) that have been developed to perform
high-resolution ground imaging, even under adverse weather conditions [4]. The UWB
SARs refer to the systems that utilize radar signals with large fractional bandwidth and
synthesize a wide integration angle [4,5]. The typical examples of UWB SAR systems are
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CARABAS operating in the frequency range [20, 90] MHz [6] and LORA that operates in
the frequency range [200, 800] MHz [7].

The THz frequency spectrum is also suitable to achieve high-resolution imaging.
The SAR systems that operate at these frequencies are suitable for short-range applications,
including the indoor environment purpose. The development of such type of systems is
quite an active research topic, which has potential applications in the areas of security,
logistics, and medicine. Most of the state-of-the-art THz SARs have been designed to
process bandpass signals and are realized as ground- and rail-based systems. For example,
in [8–10], SAR imaging is performed at 0.3 THz, and, in [11,12], the imaging has been
implemented at frequencies 0.6 THz and 0.75 THz, respectively. Recent results include
imaging at 1.1 THz that have been published in [13].

Nevertheless, modern SAR systems face different technical issues caused by the
deviation of SAR platforms from the path. For example, unmanned aerial vehicle (UAV)
SAR imaging systems deal with platform vibrations. This problem becomes crucial for
UAV-based SARs that operate in the THz frequency range, which are extremely sensitive to
the platform path deviation [14,15]. To deal with this issue, the use of signal processing
algorithms that are capable to handle motion error compensation is required.

Among the SAR image formation algorithms, the backprojection algorithms, such as
Global Backprojection (GBP) [16], Fast Backprojection [17], and Fast Factorized Backprojec-
tion [18], have their own capability to manage the motion error compensation [19] based on
a priori knowledge on SAR platform deviation from the expected path [20]. Due to the fact
that in these algorithms the backprojection procedure always requires range calculation for
each aperture position, information about the platform deviations can be included in the
backprojection algorithm as a motion compensation procedure at this stage. In addition,
the backprojection algorithms are capable to handle radar signals with a large fractional
bandwidth [5,19]. For these reasons, the backprojection algorithms play an important role
in SAR data processing despite their high computational cost. One of the contributions
to the high computational cost is the interpolation procedure, at which a complex data
value is estimated based on given complex SAR data values for a given range-time delay.
Then, the interpolated complex value is backprojected into the defined image plane.

There exist various interpolation algorithms that are used for SAR applications.
Hanssen and Bamler introduced an evaluation of nearest neighbor, piecewise linear, four-
and six-point cubic convolution, and truncated sinc interpolators in [21] and presented their
application to SAR interferometry. According to the evaluation [21], the four-point cubic
convolution interpolator has been considered as the optimal interpolator among the de-
scribed interpolation algorithms. However, for high-resolution applications, the six-point
cubic convolution interpolator has been recommended. To improve coherency in SAR
interferometry, it has been proposed to combine the truncated sinc interpolator with the
Hanning window [22]. Nevertheless, the results obtained in [22] have demonstrated that
there is no interpolator for SAR image resampling that is optimal for all SAR data types
and quality. Capazzoli et al. have introduced in [23] Knab and approximate prolate
windows for sinc interpolator that is used for SAR backprojection and compared their
efficiency in terms of the root mean square error (RMSE). The results demonstrate that
windowed sinc interpolators provide better accuracy (the RMSE is about 0.01%) than the
other interpolators.

To the knowledge of the authors, none of the interpolators described above, with the
exception of the nearest neighbor, the performance of which can be improved through
the support of the FFT interpolation [20], has been clearly formulated to interpolate SAR
data with complex-valued representation. The FFT interpolation in combination with the
nearest neighbor interpolator can lead to a huge amount of unused data, which might not
be stored or processed by the real-time THz SAR system due to constructive limitations
(e.g., installation of such a system on compact UAV platforms to monitor the environment,
which brings limitations on energy and computational power). Furthermore, none of
these interpolators accounts for the relationship between the range distance from the SAR
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platform antenna to the point in the defined image plane and the phase of interpolated
SAR data value, which affects the accuracy of reconstructed SAR scenes. In the rest of the
paper, we define SAR data with complex-valued representation as complex SAR data.

In this paper, we introduce the extended versions of linear, cubic, and sinc interpolation
algorithms that, in comparison with the interpolators described in [21–23], include the
phase control procedure. The initial results on the phase control of complex SAR data under
linear and cubic interpolation have been partially reported in [24]. The idea of the proposed
control procedure is naturally related to the complex SAR data processing. To control
the argument of the interpolated SAR data value, a priori known information about the
range distance between the SAR platform antenna and the given point in the defined
image plane has to be assigned to the phase of surrounding nearest neighbor sample
points. The procedure is implemented through the multiplication of surrounding nearest
neighbor data samples with corresponding phase compensation terms. The developed
interpolators can be incorporated into the backprojection algorithms to process complex
SAR data, and GBP is selected as an example in this paper. The results achieved with
the developed interpolators are compared with the results obtained with the nearest
neighbor and corresponding conventional (existing) interpolation algorithms. Furthermore,
the efficiency of the developed interpolators is tested on simulated and real data at THz
frequencies, where the accuracy of interpolation methods plays a crucial role, and is verified
by comparison with the results provided by the analytical approach introduced in [4]. The
effects of the sampling rate on the accuracy of SAR image formation are also considered
in this paper. The novelty of the proposed scheme is highly beneficial for SAR sensing at
THz frequencies. The computational complexity drastically increases at the THz spectrum
due to the large number of pixels to be processed. Especially for UAV-based THz SARs, the
payload and energy resources are limited and hence the limited computational power for
on-board processing.

The rest of the paper is organized as follows. Section 2 describes the problem formu-
lation, which includes the measurement setup description, the image formation process,
and the proposed phase-control procedure. In Section 3, the extended versions of the
existing interpolation algorithms, which are adopted for processing complex SAR data,
are described. The simulation-based examples are considered to study the efficiency of
the extended interpolation algorithms in Section 4. The practical application of the devel-
oped interpolation algorithms in the processing of the data that has been acquired at THz
frequencies is presented in Section 5. The paper is concluded in Section 6. Furthermore,
the impulse response function for SAR scenes that contain a point target in their center is
described in Appendix A and the peak-sidelobe ratio is introduced in Appendix B.

2. Problem Formulation

In this section, we introduce a measurement setup and the image formation process
based on the time-domain GBP algorithm. The novel part of the image-formation process
is the phase control of estimated complex SAR data, which is performed under the interpo-
lation stage of the backprojection algorithm to assign the range distance between the SAR
imaging system and the given point of space in the defined image plane.

2.1. Notation and Conventions

Throughout this paper, the time convention ej2π f t is used for raw data, where f
denotes the frequency and t the time. Let µ0, ε0, and c0 denote the permeability, the
permittivity, and the speed of light in vacuum, respectively, where c0 = 1/

√
µ0ε0. The real,

the imaginary parts, and the complex conjugate of a complex number ζ, ζ ∈ C, are
denoted by Re{ζ}, Im{ζ}, and ζ∗, respectively. Finally, the right and the left complex
half-planes are indicated by C+ and C−, respectively, where C+ = {ζ ∈ C|Re{ζ} > 0}
and C− = {ζ ∈ C|Re{ζ} < 0}, respectively.
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2.2. Setup

Consider a monostatic UAV-based SAR imaging system that transmits frequency
modulated signals st(τ) and receives backscattered echoes of a similar waveform sr(ξ, τ)
at the same aperture position, where τ denotes the range time and ξ the azimuth. The SAR
system operates at THz frequencies and is mounted on a quadcopter, which is one of the
desirable platforms for such systems under development; see the problem setup in Figure 1.
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Figure 1. Problem setup. Representation of a UAV-based THz SAR imaging system. Here, R0 denotes
the reference (minimal) range distance between the platform antenna and the center of the object
located in the scene under illumination.

Assume that the THz SAR system follows the straight path that agrees with the
azimuth axis, and the object under test is of an arbitrary shape and located in the center of
the scene under illumination at the reference range distance R0. The range distance between
the platform antenna and the point of the scene under illumination at each aperture position
can be defined as

R =
√
(ξ − ξ ′)2 + (ρ′)2, (1)

where (ξ, 0) and (ξ ′, ρ′) are the coordinates of the actual aperture position and the point of
the scene under illumination, respectively.

2.3. Image Formation

The range-compressed received signal sr(ξ, τ) can be obtained through the matched-
filtering procedure, i.e., g = sr(ξ, τ) ∗ s∗t (−τ), where ∗ denotes the convolution operator.
Let GBP be the algorithm to be used to form the SAR image from the raw data g(ξ, τ).
Furthermore, let the slant-range plane be the image plane, into which the raw data g is
backprojected. Then, a SAR image h(ξ, ρ) can be formed through the superposition of
acquired data g(ξ, τ) and its corresponding backprojection into the image plane, which is
expressed mathematically as

h(ξ, ρ) =
∫ DSAR/2

−DSAR/2
g(ξ, τ)dξ, (2)

where DSAR is the length of synthetic aperture [25]. This expression is applied to common
pulse radars that use chirp signals.

The backprojection algorithm (2) can also be applied to other types of data with small
modifications. For example, for a FMCW radar, the Fourier transform in the range direction
is required to be applied before the backprojection process. Radar measurements can
also be based on a vector network analyzer (VNA), in which the output is the reflection
coefficient S11. The measured data in the time domain can then be considered based on the
Born approximation as a range-compressed signal from multiple point targets, which is
expressed analytically as
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g(ξ, τ) ≈
K

∑
j=1

Atj sinc[π( fmax − fmin)(τ − τtj)]e
j2π fc(τ−τtj), (3)

where fmin and fmax are the lowest and the highest frequencies processed, respectively, f ≥ 0,
Atj is the backscattering amplitude from the corresponding j-th target, fc = ( fmax + fmin)/2
the center frequency, and τtj the two range time, i.e., the time required for the wave
to travel from antenna to the corresponding j-th target and backwards. The reflection
coefficient peaks occur at the radar ranges, where targets are present. For this reason, the
backprojection process (2) can be directly applied to the output of VNA.

The fast and fast factorized backprojection algorithms operate similarly to GBP.
However, in these algorithms, the acquired data g(ξ, τ) are divided into subsets (sub-
apertures) along the azimuth axis. Each of the subsets is then superposed separately before
backprojection into the corresponding sub-image plane to form the final image.

2.4. Phase Control of Estimated Complex SAR Data

The interpolation procedure is required by the GBP algorithm, which is described
in Section 2.3. To ensure that the data is backprojected correctly, a phase control under
interpolation is necessary.

Let τp denote the two range traveling time from the aperture position (ξ, 0) to the
image position (ξp, ρp) given by

τp =
2
c0

√
(ξ − ξp)2 + ρ2

p. (4)

In modern radar systems, the raw data g(ξ, τ) is sampled signal in time domain.
To get the corresponding complex value at the range time τp, surrounding samples of g
given as a function of range time τi for fixed azimuth ξ have to be used for reconstruction,
which are of the form

g(ξ, τi) ≈
K

∑
j=1

Atj sinc[π( fmax − fmin)(τi − τtj)]e
j2π fc(τi−τtj). (5)

Here, i = 0, . . . , N, where the number of samples N depends on the one of the interpolation
methods that will be presented in Section 3. Note that the information about the range
distance between the SAR system and the target is contained in the phase of complex SAR
data, and thus phase control under the estimation of g(ξ, τp) is required. To achieve this,
the following compensation procedure is introduced

g̃(ξ, τi) = g(ξ, τi)ej2π fc(τp−τi) ≈
K

∑
j=1

Atj sinc[π( fmax − fmin)(τi − τtj)]e
j2π fc(τp−τtj), (6)

which is only used under the local interpolation procedure to estimate g(ξ, τp). Here, the
proposed procedure assigns the information about the range time difference between the
pixel in the defined image plane and the target to the samples to be used in the interpolation
procedure. Correspondingly, the interpolated parameter g(ξ, τp) will contain the assigned
phase information. Interpolation algorithms that include the proposed phase-control
procedure (6) will be described in Section 3.

3. Interpolation Methods

In this section, a set of methods for interpolation of complex SAR data is introduced.
Note that all the described methods, with the exception of nearest-neighbor interpolation,
involve the phase-control procedure that takes an important place in the processing of
complex SAR data. The proposed interpolation methods can further be incorporated into
different backprojection algorithms.
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3.1. Nearest Neighbor Interpolation

Nearest neighbor interpolation is one of the simplest interpolation methods, the
principle of which is to estimate a value of the unknown sample by assigning the known
data value of the nearest neighbor sample. The nearest neighbor interpolator pn(τ) can be
described on the real-valued interval [τ0, τ1], τ0 < τ1, by the following relation

pn(τ) =

{
y0, τ0 ≤ τ < 1

2 (τ0 + τ1),

y1, 1
2 (τ0 + τ1) < τ ≤ τ1.

(7)

Here, y0, y1 ∈ C denote the known data samples.

3.2. Extended Linear-Spline Interpolation

Linear spline function for complex-valued data interpolation pl(τ) is a linear polyno-
mial function on the interval [τ0, τ1], τ ∈ R, where the samples τ0 < τ1 are the knot points.
The linear spline pl is uniquely defined by

pl(τ) = a + b(τ − τ0), τ0 ≤ τ ≤ τ1, (8)

with the corresponding derivative

p′l(τ) = b, τ0 ≤ τ ≤ τ1, (9)

and where a, b ∈ C are the polynomial coefficients. Furthermore, the spline pl satisfies the
following spline conditions {

pl(τ0) = ỹ0,

pl(τ1) = ỹ1,
(10)

where ỹi, i = 0, 1, are the data values, the phase of which is controlled through the
procedure (6). It should be noted that the phase controlled in ỹi may vary with a factor of
π due to the corresponding location of complex data parameters either in the right C+ or
in the left complex half-plane C−.

Assume that the range time τp defined in (4) satisfies the condition τ0 < τp < τ1. Then, by
employing the spline conditions (10), the following system of equations can be constructed

Ac = y, (11)

where

A =

[
1 0

1 τ1 − τ0

]
, (12)

c = [a b]T, and y = [ỹ0 ỹ1]
T. The resulting filter that provides complex-valued data estima-

tion at range time τp based on linear-spline interpolation with phase control is given by

pl(τp) = a + b(τp − τ0). (13)

Here, the polynomial coefficients a = ỹ0 and b = (ỹ1 − ỹ0)/(τ1 − τ0) are determined from
the system of Equation (11).

3.3. Extended Cubic-Spline Interpolation

Cubic spline function for complex-valued data interpolation pc(τ) is a piecewise cubic
polynomial function on the interval [τ0, τ2], τ ∈ R, and where the samples τi−1 < τi for
i = 1, 2 are the knot points. The cubic spline pc can be uniquely defined by

pc,i(τ) = ai + bi(τ − τi−1) + ci(τ − τi−1)
2 + di(τ − τi−1)

3, τi−1 ≤ τ ≤ τi, (14)
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with corresponding first

p′c,i(τ) = bi + 2ci(τ − τi−1) + 3di(τ − τi−1)
2, τi−1 ≤ τ ≤ τi, (15)

second
p′′c,i(τ) = 2ci + 6di(τ − τi−1), τi−1 ≤ τ ≤ τi, (16)

and third derivatives
p′′′c,i(τ) = 6di, τi−1 ≤ τ ≤ τi. (17)

Here, ai, bi, ci, di ∈ C for i = 1, 2 are the polynomial coefficients. Furthermore, the spline
function satisfies the following conditions

pc,i(τi−1) = ỹi−1,

pc,i(τi) = ỹi,

p′c,i(τi) = p′c,i+1(τi),

p′′c,i(τi) = p′′c,i+1(τi)

(18)

for i = 1, 2, and where the last two conditions are not applicable at the edge knot points τ0
and τ2. Here, ỹ denotes the reference data values, the phase of which is controlled under
the procedure introduced in (6). It should be noted that controlled phase value may vary
with a factor of π due to corresponding location of data values in the complex plane, i.e.,
either in the right C+ or in the left complex half-plane C−.

Assume that the range time τp defined in (4) satisfies the condition τ0 < τp < τ1.
Let p′′c,i(τi−1) = ki−1, from which the unknown polynomial coefficient can be expressed
as ci = ki−1/2. Furthermore, let δi−1 = τi − τi−1. By employing spline conditions (18),
the unknown polynomial coefficients can be determined as

ai = ỹi−1,

bi =
ỹi − ỹi−1

δi−1
− ki + 2ki−1

6
δi−1,

ci =
ki−1

2
,

di =
ki − ki−1

6δi−1

(19)

for i = 1, 2. Substituting (15) and (19) into the third spline condition in (18) and applying
the natural boundary conditions [26,27], i.e., p′′c,1(τ0) = p′′c,2(τ2) = 0, one can construct a
system of linear equations

Ak = b, (20)

which provides a unique solution to unknown parameters ki, i = 0, 1, 2. Here,

A =

 1 0 0
δ0 2(δ0 + δ1) δ1
0 0 1

, (21)

b = 6


0

ỹ0

δ0
− ỹ1

δ0 + δ1

δ0δ1
+

ỹ2

δ1
0

, (22)

and k = [k0 k1 k2]
T. Note that since the interpolation of complex SAR data is of the

local type, where only three data samples are used, we assume that signal is compactly
supported on [τ0, τ2] and employ the natural boundary conditions.
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The resulting filter for estimating complex data value at range time τp based on
cubic-spline interpolation can be constructed by employing (14) as

pc,1(τp) = a1 + b1(τp − τ0) + c1(τp − τ0)
2 + d1(τp − τ0)

3, (23)

where the complex-valued polynomial coefficients a1 = ỹ0, b1 = (ỹ1 − ỹ0)/δ0 − δ0(k1 +
2k0)/6, c1 = k0/2, and d1 = (k1 − k0)/6δ0 are obtained by substituting parameters k
determined in (20) to (19) for i = 1.

3.4. Extended Sinc Interpolation

Sinc interpolation is the method that is used in the reconstruction of bandlimited
signals. Assume that the signal bandwidth is known and the signal is sampled at the rate fs,
which is two times or more higher than the maximal frequency in the considered frequency
band fmax, i.e., fs ≥ 2 fmax. Then, by employing the sampling theorem [28], the signal can
be perfectly reconstructed from its samples by employing the following relation

y(τ) =
∞

∑
i=−∞

yi sinc
[

π(τ − τi)

Ts

]
, (24)

where yi = y(iTs) and τi = iTs. Here, the interpolation kernel is represented by normalized
sinc functions and Ts is the sampling time. However, since the sinc function is infinite, it is
difficult to implement an ideal reconstruction of a sampled signal via (24). Furthermore,
the problem becomes even more complicated, when signal is complex-valued and phase
control under reconstruction procedure is required.

Assume that the range time τp defined in (4) satisfies the condition τ0 < τp < τ1, which
is similar to the case for linear and cubic interpolations. To implement the reconstruction
procedure, the normalized sinc kernel presented in (24) can be truncated up to a finite
number of sinc functions 2L + 1, where L is a nonnegative integer, i.e., L ∈ Z and L ≥ 0.
The functions are equally translated in both directions from the interpolation point and
normalized with the sampling time Ts to reach zero value at known range-time samples τi.
Then, the resulting filter for data estimation at range time τp based on sinc interpolation
gets the form

y(τp) =
L

∑
i=−L

ỹiwi sinc
[

π(τp − τi)

Ts

]
, (25)

where ỹi are the reference data samples, the phase of which is controlled through the
procedure (6) and may vary with a factor of π subject to their corresponding location in the
complex plane, i.e., in the right C+ or in the left complex half-plane C−. Furthermore here,
wi denotes the Hanning window, which is given by

wi = 0.5 + 0.5 cos
(

πi
L

)
, −L ≤ i ≤ L, (26)

for i ∈ Z and used to suppress the Gibbs phenomenon in the truncated normalized sinc
kernel [22].

4. Simulations

In this section, a simulation-based imaging scenario that is performed for a point scat-
terer in the frequency range [0.22, 0.33]THz is considered. The simulations are performed
to identify the most appropriate interpolation method as well as the optimal number of
functions needed for the truncated sinc kernel. The analytical approach, which is described
in Appendix A, and the peak-sidelobe ratio are used to validate the accuracy of the con-
sidered interpolation methods. All the simulations and analytical calculations have been
carried out in MATLAB software.
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4.1. Simulation Setup

Consider a point target placed at the reference range distance R0 = 2 m from a
quadcopter-based THz SAR imaging system, similarly as depicted in Figure 1. Assume
for simplicity that the SAR system transmits a frequency-modulated continuous signal
of the form

st(τ) = e
j2π fcτ+jπ fmax− fmin

Tp τ2
, −Tp

2
≤ τ ≤ Tp

2
, (27)

with a duration Tp = 0.1µs, and receives backscattered echoes of a similar waveform

sr(ξ, τ) = At1 rect
{

τ − τt1

Tp

}
e

j2π fc(τ−τt1)+jπ fmax− fmin
Tp (τ−τt1)

2
, (28)

which is a reduced version of (3) for j = 1. The range compressed received signal is given by

g(ξ, τ) = At1 sinc[π( fmax − fmin)(τ − τt1)]ej2π fc(τ−τt1) (29)

for Tp � τ − τt1. Note that the range-compressed version of backscattered echoes
in (29) agrees with the time-domain representation of raw data obtained in (5). Here,
the center frequency fc = 0.275 THz, fmin = 0.22 THz, fmax = 0.33 THz, and the two
range time τt1 = 2R/c0, where R can be determined by (1). The system parameters are
summarized in Table 1.

Table 1. Simulation Setup Parameters.

Parameter Value

The highest frequency processed, fmax 0.33 THz
The lowest frequency processed, fmin 0.22 THz

Number of aperture positions, Nξ 345
Aperture step, ∆ξ 0.997 mm

Integration angle, φ0 ≈9.8◦

Reference range, R0 2 m

4.2. Results

In Figure 2 is shown SAR images h(ξn, ρn) of 251× 251 pixels reconstructed with the
GBP algorithm (2) for sampling rate fs = fmax = 0.33 THz. Here, the intensity is normal-
ized with the peak intensity value, the range ρ and the azimuth ξ are normalized with
−3 dB beamwidths. The reconstruction procedure has been performed by corresponding
incorporation of the nearest neighbor (7), linear (13), cubic (23), and sinc (25) interpolation
algorithms to GBP. To evaluate the efficiency of the proposed interpolation algorithms, SAR
scenes reconstructed at the rate fs = fmax based on conventional linear, cubic, and sinc in-
terpolators (i.e., those, in which the phase-control procedure is not included), are depicted in
Figure 2b–d, respectively. The results demonstrate that linear, cubic, and sinc interpolators
provide more accurate results at the Nyquist rate fs = fmax in comparison with the nearest
neighbor approach and corresponding conventional interpolators, where distortions over
the normalized range interval ρn ∈ [−2, 2] are observed; see Figure 2a–g. Furthermore, sinc
interpolation without the phase-control procedure provides a defocused reconstruction of
the point target along the azimuth axis, as depicted in Figure 2d. It has been investigated
that the involvement of the phase control procedure (6) increases the computational costs
of linear, cubic, and sinc interpolators additionally by 14, 21, and 7(2L + 1) operations per
each iteration of the GBP algorithm, respectively, where L is the summation limit in the trun-
cated sinc kernel of the extended sinc interpolator. However, the order of computational
complexity of the GBP algorithm remains the same, i.e., O{Nξ Mρ Mξ}, where Nξ = 345
denotes the number of aperture positions, Mρ = Mξ = 251 the number of SAR-image
pixels in range and azimuth directions, respectively.
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Figure 2. Reconstructed SAR scenes h of 251× 251 pixels with nearest neighbor, linear, cubic, and sinc
(for L = 12) interpolations. Here, the sampling rate fs = fmax = 0.33 THz.

When the sampling rate is twice higher, i.e., fs = 2 fmax, the point target can be
reconstructed accurately with all the interpolation methods discussed in this paper, as
shown in Figure 3a–d. However, the azimuthal and some minor range distortions are
still observed over the normalized range interval ρn ∈ [−2, 2], when the nearest neighbor
approach is used; see Figure 3a. Note that the upsampling procedure for the nearest
neighbor interpolator can be provided through the FFT interpolation, the computational
complexity which is O{2NξuNρ log2{uNρ}}, where u ≥ 2, u ∈ Z, is the upsampling factor,
Nρ = 66017 the number of range samples. It has been investigated that for upsampling
factors u ≥ 2, the computational complexity of the FFT interpolation becomes dominant
over the computational complexity of the global backprojection algorithm. This fact demon-
strates additional advantages of the extended interpolators, which provide the opportunity
to avoid the FFT-based upsampling procedure, in terms of computational costs and mem-
ory resources. It should also be noted that the kernel of the sinc interpolator used in
this numerical example is truncated to 2L + 1 = 25 normalized sinc functions, where
L = 12 and based on which the reconstruction results are accurate; see Figures 2g and 3d.
Nevertheless, the optimal length of the kernel has to be investigated.
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Figure 3. Reconstructed SAR scenes h of 251× 251 pixels with nearest neighbor, linear, cubic, and sinc
(for L = 12) interpolations. Here, the sampling rate fs = 2 fmax = 0.66 THz.

Figure 4a,b depict SAR-scene cuts reconstructed by the GBP algorithm that involves
sinc interpolation, as well as SAR-scene cuts obtained based on the impulse response
function (A1), which is defined in Appendix A, for ϕ = 0 and ϕ = π/2, respectively.
The scene cuts are plotted as functions of the normalized range ρn (for ξn = 0) and the
normalized azimuth ξn (for ρn = 0), respectively, where the intensity is normalized with
the peak intensity value. Here, the sampling rate fs = fmax = 0.33 THz, the range and
the azimuth are normalized similarly as in the example described above, and the kernel is
truncated to the length 2L + 1, where L ∈ {4, 6, 8, 10, 12, 14}. It has been observed that for
L ≥ 12, the reconstruction results converge both for range and azimuth SAR-scene cuts.
Furthermore, the results have a good agreement with the solution based on the approach
(A1) in range and azimuth directions. It should be noted that intensity deviation in the
third sidelobe, which is observed in Figure 4b, can be reduced by increasing the sampling
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rate fs. Hence, the sinc interpolator with the kernel truncated up to 2L + 1 = 25 normalized
sinc functions, where L = 12, is sufficient to obtain accurate interpolation results. Therefore,
let the truncated sinc interpolator (25) for L = 12 be defined as the sinc interpolator and used
in the rest of the paper.
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Figure 4. Evaluation of truncated normalized sinc kernel based on reconstructed SAR scenes h(ξn, ρn)

for the sampling rate fs = fmax = 0.33 THz: (a) for ξn = 0; (b) for ρn = 0.

In Figure 5a,b are shown SAR-scene cuts h(ξn, ρn) that are reconstructed for the
Nyquist rate based on the GBP algorithm and the interpolation methods described in
Section 3 and plotted as functions of normalized range (for ξn = 0) and normalized
azimuth (for ρn = 0). Here, the reconstructed SAR-scene cuts are compared the results
provided by the impulse response function (A1) for ϕ = 0 and ϕ = π/2. Here, the intensity
of cuts is normalized with the intensity value of the SAR-scene center, i.e., with h(0, 0).
Furthermore, range and azimuth are normalized similarly to the examples described above.
It has been observed that reconstructions obtained with the cubic and sinc interpolation
techniques are more accurate both in range and azimuth directions than the results obtained
based on the nearest neighbor and linear interpolation algorithms. The results based on
nearest neighbor interpolation contain strong distortions in range and indistinguishable
sidelobes in azimuth. The reconstructions based on cubic and sinc interpolations have the
same azimuth resolution as the analytically-based result (A1); see Figure 5b. However, in
comparison with the SAR-scene cuts based on sinc interpolation and (A1), h(0, ρn) based
on the cubic interpolation algorithm has lower range resolution; see Figure 5a. It has
also been investigated that sinc interpolator provides the most accurate reconstruction
results in terms of the peak-sidelobe ratio (PSLR) (A4), which is introduced in Appendix B,
and the root mean square error (RMSE). The PSLR-deviation of SAR scene h, which is
reconstructed with sinc interpolation, from the analytical solution at the Nyquist rate
is around 0.5%; see the calculated PSLRs in Table 2. It should be noted that PSLR of h
obtained with the extended linear interpolation procedure is higher (18.9%-deviation from
the analytical PSLR) in comparison with the ratios of scenes obtained with the extended
cubic and sinc interpolation approaches. To determine RMSE, we used the results obtained
via the impulse response function (A1) as reference values; the results are summarized in
Table 3. The results for SAR scene cuts in the range and azimuth directions demonstrate
that the extended sinc interpolator provides the most accurate results at the Nyquist rate
with an error around 0.7%. Note that linear and cubic interpolators provide good accuracy
with deviation from the reference results around 3% and 1.26%, respectively, in range,
and around 1.18% and 0.79% in azimuth, respectively. In the case of the nearest neighbor
interpolator, the upsampling procedure is required.
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Figure 5. Evaluation of interpolation methods based on reconstructed SAR scenes of a point target
h(ξn, ρn) for the sampling rate: (a,b) fs = fmax = 0.33 THz; (c,d) fs = 2 fmax = 0.66 THz.

Table 2. Peak-sidelobe Ratios (in dB).

Interpolation

Sampling
Rate fmax 2 fmax

Nearest neighbor −7.395 −13.37
Linear −10.756 −12.555
Cubic −14.372 −13.586
Sinc −13.335 −13.331

Analytical −13.265

Table 3. Root Mean Square Error (in %).

Interpolation

Sampling
Rate fmax 2 fmax

Nearest neighbor 12.92 23.93 6.36 2.3
Linear 3.02 1.18 1.02 0.79
Cubic 1.26 0.79 0.77 0.71
Sinc 0.71 0.72 0.71 0.71

Figure 5c,d depict reconstructed cuts h(ξn, ρn) plotted and compared similarly as in
Figure 5a,b, but for the twice increased sampling rate, i.e., for fs = 2 fmax. The reconstruction
accuracy based on the nearest neighbor interpolation improved significantly by increasing
the sampling rate , with the RMSE reduced from 24% to 6.4%; see Table 3. However, the
reconstruction result does not agree with the results provided by linear interpolator in the
range direction. It contains sidelobe distortions in azimuth SAR-scene cut, as shown in
Figure 5c,d. Furthermore, the SAR-scene cuts h(0, ρn) and h(ξn, 0) that are reconstructed
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with the nearest neighbor and linear approaches still have a lower range and azimuthal
resolution, which can be improved with a further increase of the sampling rate. It has
also been investigated that by increasing the sampling rate, the SAR-scene cuts obtained
with cubic interpolator have the same spatial resolution as the result based on the impulse
response function (A1). Furthermore, the reconstructed scene h based on cubic interpolation
deviates from the analytical result around 2.4% in terms of PSLR and less than 0.8% in terms
of RMSE; see PSLRs in Table 2 and RMSE in Table 3, respectively. Hence, it can be concluded
that the incorporation of cubic and sinc interpolators into the GBP algorithm provides the
most accurate reconstruction of SAR scenes, which motivates further investigations with
application to real data.

5. Experimentation

In this section, we describe imaging of a mannequin head that was performed in the
frequency range [0.22, 0.33] THz and validate the efficiency of the developed interpolation
approaches on the real data. The head is made of a foam material and coated with metallic
paint. The measurement data was acquired via the setup depicted in Figure 6.

z

x

y

R0
= 2 m

Object under
test

Frequency
extender

Horn
antenna

Figure 6. Measurement setup. A ground-based monostatic THz SAR imaging system was based
on a vector network analyzer (VNA) and a transceiver, which was mounted on a mobile platform.
The transceiver consisted of a frequency extender and a horn antenna to perform measurements in
the frequency range [0.22, 0.33] THz. Here, R0 denotes the reference range distance between the
platform antenna and the object under test (mannequin head).

5.1. Measurement Setup

The monostatic THz SAR imaging system was based on Rohde&Schwarz ZVA67 VNA,
the operating frequency range of which is between 10 MHz and 67 GHz. The setup was
further equipped with Rohde&Schwarz ZC330 frequency extender and the rectangular
horn antenna, the parameters of which are described in ([13] Table 1, p. 578), which gave
the opportunity to perform one-port measurements of the reflection coefficient in the
frequency range [0.22, 0.33] THz. Note that the reflection coefficient measured in the
frequency domain can then be transformed to the time domain and used for the SAR
scene reconstruction. The frequency extender incorporated with the horn antenna as a
transceiver was mounted on the mobile platform, which was shifted in the azimuthal
(vertical) direction with a uniform step ∆ξ = 1 mm to form a synthetic aperture. The
object under test was placed at the reference range distance R0 = 2 m from the platform
antenna. The measurements were performed based on stop-and-go approximation: at each
corresponding measurement position, a frequency sweep was transmitted and received,
respectively. The total number of measurement and frequency points was 344 and 3001,
respectively. The acquired raw data g(ξ, τ) was filtered in the frequency domain with the
cosine-tapered window (the cosine fraction α = 0.25) and time-gated [29] to suppress from
the surrounding environment, outside of the range of interest [30]. The measurement setup
parameters are summarized in Table 4.
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Table 4. Measurement Setup Parameters.

Parameter Value

The highest frequency processed, fmax 0.33 THz
The lowest frequency processed, fmin 0.22 THz

Number of aperture positions, Nξ 344
Number of frequency bins, N f 3001

Aperture step, ∆ξ 1 mm
Integration angle, φ0 ≈9.8◦

Reference range, R0 2 m

5.2. Results

In Figure 7 is shown comparison of SAR scenes h(ξ, ρ) of 251× 251 pixels that have
been reconstructed from the acquired raw data g(ξ, τ). Here, nearest neighbor interpolation
algorithm (7) has been used as a part of GBP to reconstruct SAR scenes, and the sampling
rate is fs = 2 fmax = 0.66 THz. Figure 7a, depicts the result, where the raw data has not
been filtered and time-gated. The scene contains noise, which is caused by reflections of
the surrounding environment, as well as by the absence of the phase control procedure
in the nearest neighbor interpolation algorithm. In Figure 7b, the SAR scene has been
reconstructed from the raw data, which has been postprocessed, i.e., filtered in the frequency
domain and time-gated. It has been observed that the postprocessing procedure allows us
to suppress ringing noise in the SAR scene and improves the visibility of the object under
test. Nevertheless, the SAR scene in Figure 7b contains distortions, which requires the use
of other interpolation methods to suppress them and, furthermore, an investigation of the
appropriate sampling rate. Thus, in the rest of the examples, the acquired raw data will be
filtered in the frequency domain and time-gated.
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Figure 7. SAR scenes h of 251× 251 pixels reconstructed with nearest neighbor interpolation for the
sampling rate fs = 2 fmax = 0.66 THz. Here, the raw data g(ξ, τ): (a) has not been postprocessed;
(b) has been filtered in the frequency domain and time gated.

Figure 8 depicts scenes h(ξ, ρ) of 251× 251 pixels reconstructed at the Nyquist sam-
pling rate via the GBP algorithm (2), into which nearest neighbor (7), linear (13), cubic (23),
and sinc (25) interpolation algorithms have been incorporated, respectively. Furthermore,
SAR-scenes reconstructed at the Nyquist rate based on conventional linear, cubic, and
sinc interpolators are included for comparison; see Figure 8b–d, respectively. Here, the
intensity of SAR scenes is normalized with the peak intensity, similarly as in Figure 2. It has
been observed that linear, cubic, and sinc interpolators provide an accurate reconstruction
of the mannequin head at the Nyquist rate in comparison with corresponding conven-
tional sinc interpolators that do not include the phase-control procedure (6). When nearest
neighbor interpolation is used, strong azimuthal distortions occur and the image cannot be
reconstructed accurately. To suppress them, the sampling rate has to be increased.
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Figure 8. Reconstructed SAR scenes h of 251× 251 pixels with nearest neighbor, linear, cubic, and sinc
interpolations: (a–d) without the phase-control procedure; (e–g) with the phase control procedure.
Here, the sampling rate fs = fmax = 0.33 THz.

In Figure 9 is depicted the comparison of SAR scenes h(ξ, ρ), the reconstruction of
which has been based on the incorporation of nearest neighbor and sinc interpolators into
the GBP algorithm. Here, the results based on the nearest neighbor approach are given
for the rate fs = 16 fmax = 5.28 THz and provide approximately similar accuracy, as the
results obtained via the sinc interpolation at the Nyquist rate fs = fmax = 0.33 THz. The
comparison demonstrates that to obtain an accurate reconstruction of the object under test,
even at the Nyquist rate, it is enough to employ one of the proposed extended interpolation
algorithms that contain the phase control procedure (6) into the GBP algorithm (2).
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Figure 9. SAR scenes h of 251× 251 pixels reconstructed with: (a) nearest neighbor interpolation for
the sampling rate fs = 16 fmax = 5.28 THz; (b) sinc interpolation for the sampling rate fs = fmax =

0.33 THz.

6. Conclusions

In this paper, the existing linear, cubic, and sinc interpolation algorithms have been
extended and adapted to process complex SAR data. The extended algorithms include the
phase control procedure that relates the phase value of interpolated complex SAR data to
the given range-time sample. The proposed phase control procedure (6) has increased com-
putational costs of linear, cubic, and sinc interpolators additionally by 14, 21, and 7(2L + 1)
operations per each iteration of the global backprojection algorithm, respectively, where L
denotes the summation limit in the truncated sinc kernel of the extended sinc interpolator.
The developed interpolation approaches are incorporated into the GBP algorithm, and their
efficiency is tested at THz frequencies. Similarly, the interpolation methods can be incorpo-
rated into other backprojection algorithms, such as fast and fast factorized backprojections.
It can be concluded that the use of the phase control procedure (6) provides the opportunity
to achieve accurate image reconstruction results both in azimuth and range directions, even
at the Nyquist sampling rate. At the same time, to reach an approximately similar level of
reconstruction accuracy with the nearest neighbor approach, sixteen times higher sampling
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rate, fs = 16 fmax, is required. It has been investigated that for such a sampling rate and
at THz frequencies, the computational complexity of the nearest neighbor interpolator
becomes much higher than the computational complexity of the extended interpolation
algorithms at the Nyquist rate. Correspondingly, the amount of raw data needed in the
image reconstruction procedure can be significantly reduced, which is of great importance
in the SAR hardware realization, especially at THz frequencies.
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Appendix A. Impulse Response Function

A SAR scene h that contains a point target located in its center can be expressed
analytically as an impulse response function in polar coordinates ([4], Equations (9)–(11))

h($, ϕ) =
ejϕ

$
hs($, ϕ) + φ0

ejϕ

$

∞

∑
n=−∞

jnhj,n−1($)

ej(n−1)ϕ
sinc

(
n

φ0

2

)
, (A1)

where

hs($, ϕ) = Br sinc
[

Br

2
$ cos

(
φ0

2
− ϕ

)]
ej$ cos

(
φ0
2 −ϕ

)
+j φ0

2

− Br sinc
[

Br

2
$ cos

(
φ0

2
+ ϕ

)]
ej$ cos

(
φ0
2 +ϕ

)
−j φ0

2 (A2)

and

hj,n−1($) =

(
1− Br

2

)
Jn−1

[(
1− Br

2

)
$

]
−
(

1 +
Br

2

)
Jn−1

[(
1 +

Br

2

)
$

]
. (A3)

Here, $ and ϕ are related to azimuth and range via ξ = $ sin ϕ and ρ = $ cos ϕ, respectively,
Jn−1(·) is the Bessel function of the first kind [31], Br = B/ fc the relative bandwidth, and
φ0 the integration angle. Note that analytical realizations of SAR-scene cuts h(0, ρ) and
h(ξ, 0) can be obtained from the impulse response function (A1) for ϕ = 0 and ϕ = π/2,
respectively.

Appendix B. Peak-Sidelobe Ratio

The image quality of a reconstructed SAR scene h can be evaluated in terms peak-
sidelobe ratio [32]. The peak-sidelobe ratio (PSLR) is a dimension that characterizes the
ability to measure weak reflective targets in the presence of strong reflective targets in their
neighborhood. PSLR can mathematically be expressed in dB as

PSLR|dB = 10 log10 |ISL| − 10 log10 |IML|, (A4)

where ISL and IML denote the peak-intensity value in the sidelobe and in the main-lobe
area, respectively.
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