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Abstract: With the construction of the smart grid, the distribution network with high penetration of
the photovoltaic (PV) generator relies more and more on cyber systems to achieve active control; thus,
the uncertainty of PV power and the line-switch state will inevitably affect the distribution network.
To avoid the situation, a min–max multi-objective two-level planning model is proposed. Firstly, the
uncertainty of PV power is considered, and a multi-time PV power model is established. Followed by
the analysis of the line-switch state uncertainty in the distribution network, and according to Claude
Shannon’s information theory, the line-switch state uncertainty model is established under multiple
scenarios. After the distribution network reconfiguration, the Latin hypercube sampling (LHS)
method is used to determine the line-switch state when the uncertainty budget is different. Finally,
considering the worstcase by the uncertainty of PV power and line-switch status, the control model
is proposed to improve the stability of the distribution network with the minimal maintenance cost.
The model feasibility is verified by the test system and the characteristics of PV power uncertainty,
the line-switch state uncertainty is analyzed, and the influence of the scheduling strategy is discussed,
thus providing practical technical support for the distribution network.

Keywords: distribution network; PV power; LHS; distribution network reconfiguration; line-switch
state

1. Introduction

With the application of various intelligent technologies, the smart grid has gradually
developed into a cyber-physical system. As an important part of the smart grid, the distribu-
tion network can provide basic support to ensure the quality of power supply and improve
the electrification level, and its intelligent research has made great progress [1]. However,
due to the increasing access of distributed generators (DGs), intelligent sensors, and com-
munication devices, the distribution network is facing huge challenges. Particularly, the
uncertainty of photovoltaic (PV) power will lead to frequent changes in load voltage, and
the distribution network thus will rely more on the operation of line switches. If the status
of the line switch cannot be determined, there will be a series of power safety problems in
serious cases [2,3], such as the cause of the load losses, and even the radial topology of the
distribution network will change. On 13 May 2021, Taiwan Province, China experienced
a power outage caused by the uncertainty of PV power, affecting 13.19 million residents.
At the beginning of the power outage, about 2 million residents had restricted access to
electricity. During the outage, the line switches failed to operate properly, then dispatchers
were unable to determine the actual line status, further leading to the expansion of the
outage. Ultimately, the load losses caused by the accident amounted to 3.5 million KW.

To cope with the above problems, the distribution network has received widespread
attention, which can provide active control and management of DG (e.g. PV) to improve
power quality. Thus, many scholars have focused on the development of the distribution
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network: Jiao et al. proposed a distributed coordinated voltage control scheme for dis-
tribution networks with DG and the on-load tap changer; through the coordination of
DGs and other devices, the distributed coordinated voltage control is achieved and the
computation burden is mitigated [4]. Wang et al. present a uniform control strategy for
the bidirectional ac/dc interlinking converter hierarchical controlled hybrid microgrid;
the negative consequences can be avoided, and the strategy could be applicable for the
hierarchical controlled hybrid microgrid [5]. Sedghi et al. aim at improving the capability
of DG planning, then an improved PSO algorithm is proposed to minimize the invest-
ment cost and operating cost; meanwhile, the constraints of technology, variable load,
DG, and energy storage are considered [6]. Cupelli et al. propose a data-driven adaptive
control for power electronic interfaced distributed energy resources to guarantee a good
performance and bus voltage stability without prior knowledge of the uncertainties, while
Aziz et al. have achieved the control of the voltage across the low-voltage network, making
the low-voltage system more PV friendly [7,8]. For the security of distribution network,
Shafiee et al. propose a comprehensive model to study the plug-in hybrid electric vehicle
impact on distribution systems; the sensitivity analysis is performed to demonstrate the
effects of operation modes on the network load profile [9]. Kharrazi et al. investigate the
application of the supervisory control of the discrete event system to the management and
control of a custom power park, and the developed systematic method can be applied
to several control problems in microgrids [10]. Additionally, Liu et al. point out that the
security of the distribution network is vulnerable to the cyber system; then, an analytical
method is presented to quantify the impact of cyber faults considering the functionality
validity during distribution automation [11]. Garmrudi et al. believe the islanding is one of
the problems that arise with integrating these resources into the distribution system; if no
effort is made, it will cause great damage to the distribution network [12].

The above literature focuses on control methods, DG planning, demand management,
and the security of the distribution network; however, the impact of PV power uncertainty
and line-switch state uncertainty are less concerned. Currently, the impact of PV power
uncertainty is mainly analyzed from the perspective of security risk assessment, while line-
switch state uncertainty is analyzed from the perspective of system reliability assessment.
Aghamohamadi et al. present a two-stage adaptive robust optimization while considering
the uncertainty of the PV power, and the immunization of the model against uncertainties
is justified by testing the obtained solutions against 36,500 trial uncertainty scenarios in
a postevent analysis [13]. Scolari et al. propose and validate a comprehensive method
to assess the overall PV power uncertainties, and the uncertainties are quantified [14].
Wen et al. present two probabilistic approaches based on the bootstrap method and the
quantile regression method, to estimate the uncertainty associated with solar PV power
point forecasts [15]. From an assessment view, the impact of the cyber system (such as
communication infrastructures and operation infrastructures) on the distribution network
are discussed in detail [16–18]. Cintuglu et al. show that the line switch is an important
component of the communication system infrastructures [19]. Liu et al. propose a multi-
objective optimization approach to address the multiple solutions of line switching and
verify the effectiveness of the proposed approach [20].

Further, researchers consider the impact of PV power uncertainty and switch-state
uncertainty from the perspective of distribution network reconfiguration. Zheng et al.
propose the distributionally robust model to obtain the optimal configuration under the
worstcase and point out that uncertainties of DG power should be considered before
determining the status of switches [21]. Based on the active cyber-physical distribution
network, Liu et al. establish the cyber subsystem model to describe the performance
in distribution communication; line switches are used for quantifying the interactions
between subsystems [22]. This shows that the existing methods achieve good results;
the mathematical optimization and algorithmic prediction are used to reduce the impact
caused by PV power uncertainty; and through modeling of information disturbances and
faults in the cyber system, the specific form of switch state uncertainty is characterized.
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Based on them, the impact caused by different scenarios and factors is analyzed. However,
these ideas cannot accurately analyze the distribution network characteristics when the
uncertainty of PV power and line-switch state act together and cannot provide a reference
basis for schedulers.

To solve the above problems, we propose a min–max multi-objective two-level plan-
ning model to improve the security of the distribution network. Its objective is to reduce the
impact caused by the uncertainty of PV power and the line-switch state. First, we propose
a multi-time PV power model; its objective is to maximize PV power cost, and we use
different time periods of PV power errors to characterize the uncertainty of PV power. Then,
according to the form of line-switch state uncertainty, we propose the line-switch state
uncertainty model based on Claude Shannon’s information theory, and we use the Latin
hypercube sampling (LHS) method to maximize failure cost after distribution network
reconfiguration; the worst-case scenario is simulated. Finally, we propose the control model
with the objective of the minimum maintenance cost and verify the effectiveness of the
proposed model.

The rest of the paper is organized as follows. Section 2 displays the model of PV power
uncertainty. Section 3 displays the model of line-switch state uncertainty. Section 4 displays
the min–max multi-objective two-level planning model. Numerical results are presented in
Section 5. Section 6 concludes the paper.

2. Model of PV Power Uncertainty

As a disturbance source in the distribution network, the uncertainty of PV power is
difficult to predict, so there is an urgent need to establish the PV power uncertainty model.

2.1. The Model of PV Power

PV generally includes the solar panel, the solar controller, the battery, and solar inverter.
The solar panel is the core part, whose function is to convert the sun’s radiation into electrical
energy, so the output of PV power is closely related to the solar irradiance. The relationship
is shown in Figure 1, and its functional expression is referred to in Equation (1) [23].

O LLi Lmax

P
pv

Pi
pv

O LLi Lmax

P
pv

Pi
pv

Figure 1. The characteristics of PV power.

Ppv =

{
Ppv

rt ∗ L/Lrt
0 ≤ L ≤ Lrt

Ppv
rt Lrt ≤ L ≤ Lmax

(1)

where Ppv is the PV power, Ppv
rt is the rated PV power, L is the solar irradiance, Lrt is the

rated solar irradiance, and Lmax is the maximum solar irradiance.
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Equation (1) indicates that the PV power is weakly correlated with time. There
is no significant relationship between PV power at the current moment and the next
moment. Therefore, considering the factors that affect PV power in real situations (such
as temperature and weather), the relationship between PV power and time is established.
Based on the actual PV power data, the relationship is obtained by mathematical fitting, as
shown in Figure 2.
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Figure 2. The PV power curve.

It can be seen from Figure 2 that the relationship between PV power and time satisfies
the mathematical equation: Ppv = at2 + bt + c. After processing the data, the curve makes
it much easier to establish a mathematical model, and curve 1 is equal to test day 1, curve 2
is equal to test day 2, and so on. The time is referred to the Beijing time (BJT), which is eight
hours later than Universal Time Coordinated (UTC). The reason is that the solar irradiance
is increasing from 6 h to 12 h, the solar irradiance in per unit area is increasing, so the PV
power is increasing. At 12–15 h, the solar irradiance basically remains unchanged; the
PV power may fluctuate due to the influence of temperature and the power generation
efficiency of the solar panel. Then, it generally reaches its maximum value at 13–15 h.
After 15 h, the solar irradiance is the main factor while it keeps decreasing. According to
Equation (1), the PV power keeps decreasing and decays to 0 at 18–20 h.

To select the best fitting curve, the relevant index (R2) and the Nash–Sutcliffe efficiency
(NSE) are used as the evaluation criterion to evaluate the accuracy of the fitting curves [24].
The closer values of R2 and NSE are to 1, the better the curve is fitted. The fitting accuracy
of the curves is shown in Table 1.

Table 1. Comparison of fitting accuracy of each curve.

Curve R2 NSE

1 0.9605 0.9632
2 0.848 0.9023
3 0.8024 0.7891
4 0.8628 0.8829
5 0.8057 0.8554
6 0.8322 0.8583
7 0.8502 0.709
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Among all the fitting curves, the values of R2 and NSE for curve 1 are both closest to
1, which indicates that curve 1 is the best fitting curve. Therefore, this curve is chosen as
the fitted PV power curve, and the maximum value of the curve is Ppv

rt .

2.2. The Model of PV Power Error

In this paper, the actual PV power is modeled with reference to the idea of short-term
load forecasting, and the PV power uncertainty is expressed as the error obeying a specific
distribution function. Then, the actual PV power can be approximated as Equation (2).

Ppv
t =Ppv, f

t + ∆Ppv, f
t′ (2)

where Ppv
t is the actual PV power at time t, Ppv, f

t is the fitted PV power at time t, ∆Ppv, f
t′ is

the PV power error at error time t′, which is considered to obey the Gaussian distribution
(D1), Cauchy distribution (D2), and Laplace distribution (D3). The relationship between
the actual PV power at time t and time t + 1 is shown in Figure 3. The red points represent
the maximum value of the distribution function. The dashed line indicates the range of the
actual PV power at time t + 1 (Ppv, f

t+1 ).
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Figure 3. The actual PV power curve.

According to Equation (2), the actual PV power is made up of the fitted PV power and
the PV power error, the fitted PV power and the PV power error are calculated differently,
t is used to calculate the fitted PV power, and t′ is used to calculate the PV power error;
then t and t′ are different. With reference to the idea of obtaining the PV power through
mathematical fitting, we believe that the distribution of the PV power error should obey a
specific pattern based on the fitted PV power, so we use error time t′ as the x-axis, and the
PV power error as the y-axis, so the distribution is the time function.

Where Ppv, f
t , Ppv, f

t+1 are the fitted PV power at time t and t + 1, and the maximum value
of the PV power error at time t′ + 1 is

max ∆Ppv, f
t′+1 = 0.2(Ppv, f

t+1 − Ppv, f
t ) (3)

Then the maximum and minimum values of Ppv
t+1 at time t + 1 are

max Ppv
t+1 = Ppv, f

t+1 + max ∆Ppv, f
t′+1 (4)

min Ppv
t+1 = Ppv, f

t+1 −max ∆Ppv, f
t′+1 (5)

Considering the PV power uncertainty, Ppv
t+1 is

Ppv
t+1=Ppv, f

t+1 + ∆Ppv, f
t′+1 (6)
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The values of ∆Ppv, f
t′+1 are determined by three distribution functions, and the range of

∆Ppv, f
t′+1 is

0 ≤ ∆Ppv, f
t′+1 ≤ max ∆Ppv, f

t′+1 (7)

In summary, the paper establishes the connection between the PV power at time t
and t + 1 using the fitting curves; then, the PV power errors that obey three distribution
functions are introduced to simulate the PV power uncertainty. Using the fitting curves
and the PV power errors, the model of the PV power uncertainty is established.

3. Model of Line-Switch State Uncertainty

As shown in Figure 4, the distribution network can be abstracted as the bus system
consisting of buses, generators, and line switches. The line switch mainly plays the role
of connections, and its status information is mainly controlled by cyber channel and
physical channel. Moreover, through the operations of line switches, transmission lines can
be controlled.

The example system

The example CPS

Generator

Energy StorageEthernet

Load

Line communication

Optical fiber

Microwave

Software Sensors
Control platform

Application platform

Generator

Bus

Physical channel

Cyber channel

Line switch

Transmission line

Figure 4. The example bus system and CPS.

However, the actual distribution network can be regarded as the cyber-physical sys-
tem (CPS) formed by the combination of the physical system and the cyber system. The
physical system includes circuit breakers, disconnect switches, interconnection switches,
transmission lines, loads, generators, and energy storage units to realize the collection and
transmission of electrical data. The cyber system includes application platform, control plat-
form, operation software, and communication technology to realize remote coordination
and control of the physical system.

The relationship between the bus system and the CPS is established through the cyber
channel and the physical channel: switches and transmission lines in the CPS constitute the
main body of the physical channel in the bus system, while software and communication
technology in the CPS constitute the main body of the cyber channel in the bus system. The
load in the CPS can be simplified as the bus in the bus system; the sensors in the load are
used to collect voltage and current information from electricity consumers; the software
in the load is used to transmit the digital information; the generator in the CPS can be
simplified as a PV generator and system generator in the bus system; the optical fiber and
microwave, ethernet, and line communication in the CPS can be simplified as the main part
of the cyber channel and physical channel in the bus system (their hardware devices are
used to collect and transmit data, and their communication devices are used to receive and
execute commands); the circuit breakers, disconnect switches, interconnection switches
in the CPS can be incorporated into the line switch in the bus system, and the application
platform and control platform in the CPS can be simplified as the schedule center in the
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bus system. For example, in the CPS, when the power consumption behavior occurs at the
load, sensors collect and obtain the voltage information; then, the software transmits it to
the application platform and the control platform through the optical fiber. The control
platform is mainly used to analyze whether this power consumption behavior is normal
or not. If the power consumption behavior is abnormal, the application platform issues a
power outage command, which is transmitted to the load through the optical fiber. During
the process, the circuit breaker can be shut down directly, or this command can realize the
shutdown operation through the load’s software; both of them can achieve the purpose
of power-off. In the bus system, the power consumption behavior is generated at the bus;
through the line switch, the information is transmitted to the schedule center, which will
analyze whether the behavior is normal or not. If the behavior is abnormal, the schedule
center issues a disconnect command, then the line switch is disconnected, thus achieving
the purpose of power-off at the bus.

When the actual distribution network works normally, the schedule center controls
transmission lines, generators, and loads through the cyber system based on the information
collected by the physical system, and transmission lines, generators, and loads can send
information to schedule center and receive its instructions. At this point, the status of line
switches in the bus system are normal.

When faults occur in the actual distribution network, the schedule center completes
load transfer and tide equalization while considering physical system failures and cyber
system failures. At this point, due to the physical equipment failure, communication
transmission failure, and scheduling control failure, the line-switch status uncertainty in
the bus system occurs, resulting in the transmission line failure. We assume that faults in
the bus system only occur in the transmission line, and the uncertainty of the line-switch
status is the cause of the transmission line fault.

3.1. The Physical Equipment Failure

The actual distribution network contains massive physical equipment, which is com-
posed of the basic components for collecting electrical information. Once such equipment
fails, the command from the schedule center will not be executed; while the schedule
center cannot be informed of the status information of the equipment, this situation is
considered as a form of the line-switch status uncertainty in the bus system. For example,
the schedule center needs the designated disconnect switches to be closed, but some of the
designated disconnect switches cannot be connected to transmission lines. After analyzing
the power flow, schedule center can accurately know the overall status information of the
designated disconnect switches, but the status information of faulty disconnect switches
cannot be known.

Then, considering the physical equipment failure, the probability of state uncertainty
in line switches is:

pphy = we1{1− (1− peb)(1− pec)(1− pes)}+ we2{1− (1− pea)(1− per)} (8)

where pphy represents the probability of physical equipment failure, we1 represents the
weight when transmission lines perform abnormal operations, peb represents the probability
when circuit breakers perform abnormal operations, pec represents the probability when
interconnection switches perform abnormal operations, pes represents the probability when
disconnect switches perform abnormal operations, we2 represents weight when physical
components perform abnormal operations, pea represents the probability when physical
components perform abnormal operations, and per represents the probability of physical
components failure.

In this paper, the line-switch status uncertainty includes rejection and maloperation.
When the schedule center designates the line switch to be closed, the line switch refuses to
execute the action; it is manifested as rejection, resulting in the transmission line fault. When
the schedule center designates the line switch to be disconnected, the line switch refuses to
execute the action, and the transmission line is closed,; this is manifested as maloperation.
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3.2. The Communication Transmission Failure

In the actual distribution network, multiple communication technologies and protocols
cannot be separated from the information link, and its connectivity is directly related to the
reliability of information transmission. Once the connectivity of the information link is lost,
the schedule center cannot be informed of the status information of physical equipment,
the commands issued by the schedule center cannot be received by physical equipment, or
the status information of the physical equipment cannot be transmitted; this situation is
considered as a form of the line-switch status uncertainty in the bus system. For example,
the electrical energy data collected by physical equipment needs to be transmitted through
circuit breakers, interconnection switches, and disconnect switches to the schedule center.
During the process, there are four information links. If anyone of the information link loses
the connectivity, the schedule center will not be able to know the power flow information
of the branch accurately, or the schedule center will not be able to adjust the power flow
through operations.

Then, considering the communication transmission failure, the probability of state
uncertainty in line switches is

plink = pl1 ∗ pl2 ∗ · · · ∗ pln (9)

where plink represents the probability of communication transmission failure; plink = 0
indicates that the communication transmission failure has occurred; plink = 1 indicates
that the communication transmission failure has not occurred; pli represents the state of
the information component; pli = 0 indicates that the information link is not connected;
pli = 1 indicates that the information link is connected; and n represents the number of
information links.

3.3. The Scheduling Control Failure

During the transmission progress of the schedule center’s commands in the informa-
tion link (the bit error), delayed execution may occur. This will result in inconsistency
when the commands are executed, and it is considered as a form of the line-switch status
uncertainty in the bus system. For example, when commands are transmitted in the infor-
mation link, commands are continuously disturbed by noise, resulting in the signals not
being completely and accurately demodulated when the commands are executed. Then,
the schedule center is unable to achieve precise control of lines and components.

That is, the probability of state uncertainty in line switches is

pcontrol = pbite pdelay (10)

where pcontrol represents the probability of scheduling control failure, pbite represents the
probability of bit error in information link, and pdelay represents the probability of delayed
execution in information link. In this paper, the software failure is considered as a form of
status information failure, and pbite and pdelay are 1 in all information links in this situation.

Above all, the probability of line-switch state uncertainty (pr) is

pr = wp1 pphy + wp2 plink + wp3 pcontrol (11)

where wp1, wp2, and wp3 are the normalized weights of pphy, plink, and pcontrol . As shown
in Equation (11), pr differs under different combinations of wp1, wp2, wp3, pphy, plink, and
pcontrol , which constitute the probability distribution of pr under multiple scenarios.

4. The Model
4.1. The Proposed Model

We propose a multi-objective two-level planning model in this section; the objective
is to minimize the maintenance cost under the worst-case condition, and we assume that
the line switches are the only components that can be affected in the bus syetem. First, we
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consider the uncertainty of PV power, and we determine the set of PV power by means of
fitting. Then, we consider the uncertainty of the line-switch state under multiple scenarios,
which is determined through entropy. Finally, we treat the maximum power cost and the
maximum failure cost as the worst-case condition, and we aim to minimize the maintenance
cost by simulating commands from the schedule center. The nomenclature is shown in
Appendix A.

4.1.1. The Objective Function

The objective function (12) is to minimize the maintenance cost under the worst case.
Respectively, the maintenance cost, the power cost, and the failure cost are represented by
Equations (13)–(16).

f = min Ccons{max Caloss} (12)

Ccons = ∑
ij∈Ωl

cl
ij,tηij,t (13)

Caloss = Cpvp + Cp f om (14)

Cpvp = ∑
i∈Ωp

cpv,tP
s,pv
i,t (15)

Cp f om = ∑
ij∈Ωl

cl
omij,tλ

s
ij,t (16)

4.1.2. The Power Flow Constraint

Constraints (17)–(20) are linearized DistFlow equations, while constraints (17) and (18)
represent the power balance at each bus, and constraints (19) and (20) represent the voltage
level at each bus. The DistFlow equations are used to describe the complex power flows at
each bus.

Ps
jk,t = Ps

ij,t − Ps,d
j,t + ∆Ps,d

j,t + Ps,g
j,t + Ps,pv

j,t (17)

Qs
jk,t = Qs

ij,t −Qs,d
j,t + ∆Qs,d

j,t + Qs,g
j,t (18)

− (1− λs
ij,t)M1 ≤ Us

i,t −Us
j,t −

Ps
ij,trij,t + Qs

ij,txij,t

U0
(19)

Us
i,t −Us

j,t −
Ps

ij,trij,t + Qs
ij,txij,t

U0
≤ (1− λs

ij,t)M1 (20)

4.1.3. The PV Power Uncertainty Constraint

Equations (21)–(23) represent the relationship between the PV power and time. Equa-
tion (22) assumes that the jth PV power at time t (Ps,pv, f t

j,t ) can be obtained though the fitting

curve 1. Equation (23) assumes that the power error of jth PV at error time t′ (∆Ps,pv, f et
j,t′ )

can be obtained through the distribution functions.

Ps,pv
j,t = Ps,pv, f t

j,t + ∆Ps,pv, f et
j,t′ (21)

Ps,pv, f t
j,t = [Ps,pv, f t1

j,t · · · Ps,pv, f tn
j,t ] (22)
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∆Ps,pv, f et
j,t′ = [∆Ps,pv, f et1

j,t′ · · ·∆Ps,pv, f etn
j,t′ ] (23)

4.1.4. The Line-Switch State Uncertainty Constraint

Constraints (24) and (25) represent the relationship between the system uncertainty
budget and the probability of line-switch state uncertainty. Constraint (24) is related to the
Claude Shannon’s information theory, and W is the uncertainty budget that can be decided
by schedule center. That is, the line state with a higher uncertainty probability takes up less
uncertainty budget if failure occurs. Constraint (25) provides the set of the state uncertainty
in the line switch, prs1

ij,t–prs1
ij,t represent the state uncertainty probability prs

ij,t under multi

scenarios. For example, prs1
ij,t represents the scenario that wp1 is 1, pphy is 0.7, wp2 is 0, plink

is 1, wp3 is 0, pcontrol is 0.5, and prs
ij,t is mainly decided by the physical device failure.

∑
ij∈Ωl

−log2βs
ij,t prs

ij,t ≤W (24)

prs
ij,t=[prs1

ij,t · · · prsn
ij,t] (25)

4.1.5. The Line State Constraints

Constraints (26)–(32) represent the relationship between αs
ij,t, βs

ij,t, λs
ij,t, and ηs

ij,t. For
example, αs

ij,t = 0, the line ij is closed by the schedule center. Under this condition, if the state
uncertainty occurs in the line switch (βs

ij,t = 1), the actual state of line ij is closed (λs
ij,t = 1),

and line ij needs to be maintained. If βs
ij,t = 0, the actual state of line ij (λs

ij,t = 0) is broken,
and line ij also needs to be maintained. ws

ij,t is used to linearize the relationship between
αs

ij,t, βs
ij,t, and λs

ij,t. Through constraints (26)–(32), the connections of the maintenance cost,
the power cost, and the failure cost are established.

αs
ij,t+βs

ij,t ≤ 2 (26)

αs
ij,t+λs

ij,t ≤ 2 (27)

βs
ij,t+λs

ij,t ≤ 2 (28)

αs
ij,t ≤ ηs

ij,t (29)

βs
ij,t ≤ ηs

ij,t (30)

λs
ij,t ≤ ηs

ij,t (31)

αs
ij,t + βs

ij,t + λs
ij,t + 2ws

ij,t = 2 (32)

4.1.6. The Voltage and Power Constraints

Constraints (33) and (34) limit the active and reactive power flow of line ij. Constraints
(35) and (36) limit the active and reactive power of generators. Constraint (37) imposes the
voltage limits. Constraints (38) and (39) limit active and reactive load shedding.

−λs
ij,tP

max
ij ≤ Pij,t ≤ λs

ij,tP
max
ij (33)

−λs
ij,tQ

max
ij ≤ Qij,t ≤ λs

ij,tQ
max
ij (34)
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Pmin
g ≤ Ps,g

j,t ≤ Pmax
g (35)

Qmin
g ≤ Qs,g

j,t ≤ Qmax
g (36)

Umin
j ≤ Us

j,t ≤ Umax
j (37)

0 ≤ ∆Pd
j,t ≤ Pd max

j (38)

0 ≤ ∆Qd
j,t ≤ Qd max

j (39)

4.1.7. The Islanding Constraint

Constraints (40)–(42) guarantee the radiality topology of the distribution network
when the state uncertainty occurs in the line switch. Constraint (40) guarantees that the
number of buses and the number of lines conform to the radial constraint. Based on
the directed multicommodity flow model, constraint (41) supposes all buses that exclude
the fictitious bus have 1 unit of load demand, so that the connectivity of the distribution
network is guaranteed. Constraint (42) limits the fictitious power flow of line ij. Particularly,
the virtual lines are determined by virtual buses and buses of broken lines. When we only
consider the PV power uncertainty, as the PV power becomes smaller, the load demand
decreases, and the shedding load increases; the load demand at the bus may be completely
removed because the distribution network reconfiguration is not considered. When we
consider the case of considering PV source and switches as uncertain, we ensure that the
radial topology remains unchanged during the distribution network reconfiguration, and
this is more relevant to the actual situation.

∑
ij∈Ωl_vir

µs
ij,t = nb − 1 ij ∈ Ωl_vir (40)

∑
ji∈Ωl

f s
ji,t − ∑

ij∈Ωl

f s
ij,t = 1 ij ∈ Ωl_vir (41)

− µs
ij,t M2 ≤ f s

ji,t ≤ µs
ij,t M2 ij ∈ Ωl_vir (42)

4.2. Solution Algorithm

In the above formulation, Ps,pv
j,t represents the variables of the power cost, βs

ij,t repre-
sents the variables of the failure cost, and ηs

ij,t represents the variables of the maintenance
cost. We solve the min–max problem by expanding the problem to the min–max–max
problem. That is, we take Ps,pv

j,t as the first-level variable to maximize the power cost, we
take βs

ij,t as the second-level variable to maximize the failure cost, and we take ηs
ij,t as the

third-level variable to minimize the maintenance cost.
The main part of first-level problem can be introduced as follows:

max ∑
i∈Ωp

cpv,tP
s,pv
i,t (43)

Ps
jk,t = Ps

ij,t − Ps,d
j,t + ∆Ps,d

j,t + Ps,g
j,t + Ps,pv

j,t (44)

Qs
jk,t = Qs

ij,t −Qs,d
j,t + ∆Qs,d

j,t + Qs,g
j,t (45)

Us
j,t = Us

i,t −
Ps

ij,trij,t + Qs
ij,txij,t

U0
(46)
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Ps,pv
j,t = Ps,pv, f t

j,t + ∆Ps,pv, f et
j,t′ (47)

Ps,pv, f t
j,t = [Ps,pv, f t1

j,t · · · Ps,pv, f tn
j,t ] (48)

∆Ps,pv, f et
j,t′ = [∆Ps,pv, f et1

j,t′ · · ·∆Ps,pv, f etn
j,t′ ] (49)

Given a series of sets of Ps,pv
j,t , we can determine the time set when the power cost

of PV is maximum. Moreover, we analyze the impact of the power error on the cost by
its fluctuation.

The main part of second-level problem can be introduced as follows:

max ∑
ij∈Ωl

cl
omij,tλ

s
ij,t (50)

Ps
jk,t = Ps

ij,t − Ps,d
j,t + ∆Ps,d

j,t + Ps,g
j,t + Ps,pv

j,t (51)

Qs
jk,t = Qs

ij,t −Qs,d
j,t + ∆Qs,d

j,t + Qs,g
j,t (52)

− (1− λs
ij,t)M1 ≤ Us

i,t −Us
j,t −

Ps
ij,trij,t + Qs

ij,txij,t

U0
(53)

Us
i,t −Us

j,t −
Ps

ij,trij,t + Qs
ij,txij,t

U0
≤ (1− λs

ij,t)M1 (54)

∑
ij∈Ωl

−log2βs
ij,t prs

ij,t ≤W (55)

prs
ij,t=[prs1

ij,t · · · prsn
ij,t] (56)

∑
ij∈Ωl_vir

µs
ij,t = nb − 1 ij ∈ Ωl_vir (57)

∑
ji∈Ωl

f s
ji,t − ∑

ij∈Ωl

f s
ij,t = 1 ij ∈ Ωl_vir (58)

− µs
ij,t M2 ≤ f s

ji,t ≤ µs
ij,t M2 ij ∈ Ωl_vir (59)

When state uncertainty occurs, the islanding effect maybe appear in the distribution
network, so it is necessary to introduce virtual buses to ensure that the distribution net-
work remains the radial topology after reconfiguration. Furthermore, we describe the
randomness of state uncertainty probabilities in multiple scenarios by using the Claude
Shannon’s information theory, and we use the uncertainty budget to simplify the process
of selecting scenarios.

The main part of the third-level problem can be introduced as follows:

min ∑
ij∈Ωl

cl
ij,tηij,t (60)

Ps
jk,t = Ps

ij,t − Ps,d
j,t + ∆Ps,d

j,t + Ps,g
j,t + Ps,pv

j,t (61)

Qs
jk,t = Qs

ij,t −Qs,d
j,t + ∆Qs,d

j,t + Qs,g
j,t (62)
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− (1− λs
ij,t)M1 ≤ Us

i,t −Us
j,t −

Ps
ij,trij,t + Qs

ij,txij,t

U0
(63)

Us
i,t −Us

j,t −
Ps

ij,trij,t + Qs
ij,txij,t

U0
≤ (1− λs

ij,t)M1 (64)

αs
ij,t+βs

ij,t ≤ 2 (65)

αs
ij,t+λs

ij,t ≤ 2 (66)

βs
ij,t+λs

ij,t ≤ 2 (67)

αs
ij,t ≤ ηs

ij,t (68)

βs
ij,t ≤ ηs

ij,t (69)

λs
ij,t ≤ ηs

ij,t (70)

αs
ij,t + βs

ij,t + λs
ij,t + 2ws

ij,t = 2 (71)

In this model, we consider the worst-case scenario: the presence of islands in the
distribution network leads to the fragmentation of its network structure. If the line is not
maintained, all the load demand of the buses will be removed. Therefore, it is necessary
to consider how to achieve line control by the schedule center with minimal maintenance
costs. According to the first-level problem and the second-level problem, the PV power and
line states are known, so we can obtain the optimal control strategy by constraints (60)–(71)
to provide a reference basis for system planners.

Next, we present the implementation steps of our algorithm; we use the Latin hypercube
sampling (LHS) method to determine the state when the uncertainty budget is different. The
LHS method improves the sampling strategy to achieve a higher sampling accuracy with a
smaller sampling size, and its sampling results are closer to the actual situation.

Step 1 sets the lower bound of time LBt = 0, the upper bound of time UBt = 24, solves
the first-level problem (43)–(49), obtains its optimal value, and updates LBt and UBt with
the optimal value; then, it obtains the lower bound of PV power LBpvt and the upper bound
of PV power UBpvt.

Step 2 sets the uncertainty budget and the number of the line-switch state, obtains its
optimal value using LHS method, and updatse LBpv and UBpv with the optimal value.

Step 3 is based on the optimal PV power and the optimal line-switch state; it solves
the third-level problem (60)–(71) and obtains its optimal value.

5. Numerical Results

As shown in Figure 5, we use the modified IEEE 33-bus system for simulation analysis.
For illustration, there are 33 buses, 32 lines, 1 system generator, and 5 PV generators in
the test system, and the reference voltage is 12.66 kV. The system generator is placed at
bus 1; the PV generators are placed at bus 9, 17, 20, 24, 27; and their capacities are 100 MW,
110 MW, 120 MW, 130 MW, and 140 MW. We set the failure cost of the one-switch to 1 $
(cl

omij,t = 1 $) and the maintenance cost of one-line to 1 $ (cl
ij,t = 1 $). We believe that data

in the distribution network can be affected by the cyber system, causing us to receive the
wrong data, even if these data are correct in the collection phase. Furthermore, the scenarios
we set are considered beforehand.
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Figure 5. IEEE 33-bus distribution system.

As for the power cost, we establish the change law of PV power under actual conditions
in Section 2, so in this section we propose to determine the power cost under actual
conditions. For illustration, we consider the mathematical equation of cpv,t and tsum as

cpv,t = at2
sum + btsum + c (72)

where a, b, c represents the coefficient of the equation, and tsum represents the accumulated
time of PV power. We take 6 h as the starting time tini and determine the generation time t
according to curve 1; the accumulated time is tsum = t− tini. Furthermore, we set the time
step of PV power as 1 h and the time period as 24 h.

The model proposed in this paper is programmed by using MATLAB and solved by
using the commercial solver GUROBI. The configuration of the computer is CPU: i7-9700,
RAM: 32GB, and 2666 MHz.

5.1. The Output Cost of PV

In Section 2, we use the fitting approach to determine the PV power while we consider
the actual situation, and we propose to introduce the power error to simulate the uncertainty
of the PV power. However, the power error obeying different distributions may have an
impact on the PV power and thus on the power cost. Therefore, it is necessary to study the
impact of different error distributions to obtain the maximum cost of PV power.

We analyze the overall impact of the power error on the power cost, and we set the
error time at 1 h’, 11 h’, and 21 h’, as shown in Figure 6 (the power error follows the
Gaussian distribution).
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Figure 6. The cost with different power error.
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As can be seen from the figure, the power cost and the PV power are basically con-
sistent, while the power cost reaches the maximum at 11 h, and the PV power reaches
the maximum at 15 h. The reason for this situation is that we consider the relationship
between accumulated time (tsum) and power cost (cpv,t) in the actual situation; the shorter
the accumulated time, the higher the power cost (the power cost is 2.3991 $/W at 11 h, and
the power cost is 1.7081 $/W at 15 h), which indicates that the accumulated time tsum has a
greater impact on the power cost cpv,t.

Furthermore, we can know that the fluctuation of the power error has the greatest
impact on the power cost when t′ is 11 h, followed by 21 h; when t′ is 1 h, the upper bound
and lower bound of the power cost are almost the same. The reason for this situation is
that we assume the PV power error to vary with error time (t′). According to the Gaussian
distribution, the power error is the largest when t′ is 11 h; the PV power fluctuates the most,
so the difference between the upper bound and lower bound of the cost can be obviously
observed at t′ = 11 h. Additionally, when t′ = 1 h, the PV power error is the smallest,
resulting in the upper and lower bounds of the power cost almost overlapping. This also
indirectly shows that the uncertainty of PV power has an impact on the power cost cpv,t.

Based on Figure 6, we synthesize the impact of the power cost when the PV power error
follows different distributions. As shown in Figure 7, we find that the impact of PV power
error on the power cost remains consistent with the distribution of PV power error, and the
baseline of its fluctuation is the curve when PV power error is not considered, and when the
error time is 13 h (t′ = 13 h), the cost all achieves the maximum in three distributions. After
considering the PV power error, if the PV power error follows the Gaussian distribution,
the upper and lower bounds of the power cost obey the Gaussian distribution.
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Figure 7. The cost under different distribution.

When the PV power error is considered, the PV power will be taken as the maximum
to maximize the power cost; especially in this paper, there is no removal of bus load after
considering the system generator. Additionally, since we choose to select the power cost as
the first-level variables, the upper and lower bounds of output cost are determined directly
by PV power and PV power error; once PV power is determined, the change of power cost
is only affected by PV power error. Through the change of PV power error, we can visually
analyze the change of power cost, which indicates that the proposed PV power uncertainty
model is more intuitive. This also indicates that modifying the maximum value of the PV
power error at time t′ + 1 does not result in a change in the trend of the output cost.

We also analyze the impact of the time on the power cost, as shown in Figure 8 (the
error time t′ is 11 h, and the PV power error follows the Gaussian distribution). The
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variation of the power cost remains consistent with Figure 6, but the upper and lower
bounds of the power cost are more influenced by the time. When the time is 11 h (t = 11 h),
the lower bound of the power cost is 1.15 M $, while the upper bound is 1.25 M $, an
increase of 8.6%, but when the time is 8 h (t = 8 h), the lower bound of the power cost is
0.5 M $, and the upper bound is 0.7 M $, an increase of 40%. This shows that as the PV
power continues to become larger, the PV power error has less influence on the power cost,
and the PV power has a stronger influence.
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Figure 8. The cost considering uncertainty.

Through the above analysis, the time plays a major role in the PV power cost, and its
change law is consistent with the PV power curve; when the time is 11 h, the power cost is
maximum. Once the time is determined, the PV power cost is affected by the PV power
error, and it is consistent with the change of the power error; when the error time is 13 h,
the power cost is maximum.

5.2. The Failure Cost of Line Switches

We simplify the causes of state uncertainty in the actual distribution network in Section
3 and then constitute state uncertainty probability under multiple scenarios by normalizing
the weights, and in Section 4 we introduce uncertainty budget for line state selection, so we
analyze the impact of the uncertainty budget on the failure cost under different scenarios.

We consider the relationship between the failure cost and the uncertainty budget as
we set prs

ij,t = 0.9. As shown in Figure 9, the failure cost and uncertainty budget W satisfy a
linear relationship when the LHS method is not used. The larger the uncertainty budget set
by the schedule center, if the state failure probability of the line switch is determined, the
greater the number of state failures occurring on the line; then, the greater the number of
line state abnormalities will result in a larger failure cost.

When we use the LHS method, we find that as the uncertainty budget increases,
and the failure cost is less, which is in apparent conflict with constraint (25), so we use
Figures 10–12 to show the process of the LHS method (we consider the uncertainty proba-
bility of line switch to remain unchanged, and we set the uncertainty budget to be 5 units).
We find that after we use the LHS method, the distribution of line switches with state
uncertainty is reasonable, and it is closer to the real situation: all the lines switches with
state uncertainty, and none of line switches with state uncertainty occur the least, while
most cases are in between of them.
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Figure 9. The relationship between W and failure cost.
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Figure 10. The LHS method process when the number of failure lines is 5.
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Figure 11. The LHS process method when the number of failure lines is 15.
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Figure 12. The LHS process method when the number of failure lines is 25.

From Figures 10–12, we can see that as the number of failure lines increases, its
percentage keeps decreasing. For example, there may occur state uncertainty in five line
switches (n f = 5); during the sampling progress, there may be 0, 1, 2, 3, 4, and 5 failure
lines; their percentages are 1%, 7%, 42%, 42%, 7%, and 1%. When n f = 15, the percentage of
the maximum value is 17%; when n f = 25, the percentage of the maximum value is 11%;
when n f = 32, the percentage of the maximum value is 8.4%; and the failure cost is 32 M $,
which is consistent with constraint (25). However, the use of the LHS method needs to
consider all state of line switches, such as n f = 31, n f = 20, and other cases. Then, according
to Figure 9, the failure cost in these cases decreases, combining with its percentage; these
will lead to a decay of the failure cost. Similarly, we can vary the uncertainty budget to
analyze the impact of different n f .

We also consider the variation of failure cost for different scenarios, as shown in
Figure 13. We set the uncertain budget cost to be five units—pphy = 0.9, plink = 1, and
pcontrol =0.7—and we adjust the probability by weights to ensure that the range of values
for line-switch state information failure is 0.9,0.7,0.5. Scenario 1 represents that all line
switches have a probability of 0.9; scenario 2 represents that there are only 2 line switches
that have a probability of 0.7, 0.5; scenario 3 represents that there are only 4 line switches
that have a probability of 0.7, 0.5; scenario 4 represents that there are only 8 line switches
that have a probability of 0.7, 0.5; scenario 5 represents that there are only 10 line switches
that have a probability of 0.7, 0.5; and scenario 6 represents that there are only 14 line
switches that have a probability of 0.7, 0.5.

As seen in the figure, as more and more lines fail, the failure cost diminshes, which is
consistent with Figure 10. Among all lines, the lower the probability of line-switch state
uncertainty, the greater the failure cost, for example, comparing scenario 1 and scenario
2, since the probability of line-switch state uncertainty in scenario 2 is 0.9, 0.7, and 0.5,
according to constraint (25), when the uncertain budget is set, the number of failure lines is
higher in scenario 1, resulting in the sampling value of each variable in the LHS method
being larger, which in turn makes the line failure cost in scenario 1 higher than that in
scenario 2. This shows that when we consider the probability of line-switch state uncertainty
in different scenarios, the higher the probability of failure of all line-switch states, the higher
the failure cost.
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Figure 13. The failure cost under different scenarios.

Through the above analysis, we find that the effect of uncertainty budget on failure
cost is consistent with the effect of line-switch state uncertainty probability after we use
the LHS method. That is, to obtain the maximum failure cost, we tend to choose a larger
uncertainty budget and state uncertainty probability.

5.3. The Maintenance Cost Planning by Schedule Center

To minimize the impact caused by the uncertainty of PV power and line-switch status,
we aim at using the minimum maintenance cost. The time of PV power is 11 h, the error
time is 13 h, the state failure probability is 0.9, and the uncertainty budget is 5 units, as
shown in Figure 14.
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Figure 14. The curve of failure cost.

It shows that the maintenance cost and the number of failure lines satisfy the linear
growth relationship; the more failure lines caused by the uncertainty state of line switches,
the higher the maintenance cost, and the relationship remains the same when the uncer-
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tainty budget is different. For example, if there is only one line switch whose status is not
determined (βs

ij,t=1, the line failure occurs), according to constraint (30), the number of lines
to be maintained is at least 1 (ηs

ij,t ≤ 1). To obtain the minimum maintenance cost, the value
of ∑

ij∈Ωl

ηij,t should be small, and ηs
ij,t is supposed to be 1. If the assisted binary variable

ws
ij,t is 0, then constraint (31) can be simplified as αs

ij,t + βs
ij,t + λs

ij,t = 0, βs
ij,t=0; it conflicts

with βs
ij,t=1. Then, ws

ij,t is 0, and constraint (31) can be simplified as αs
ij,t + βs

ij,t + λs
ij,t = 2;

combined with constraints (26) and (28), it is clear that αs
ij,t ≤ 1, λs

ij,t ≤ 1, according to
constraints (29) and (31), ηs

ij,t=1. So the maintenance cost remains the same as the number
of failure lines.

As shown in Figure 15, when we consider the upper bound of uncertainty budget,
the maintenance cost still satisfies the linear growth relationship, and it increases as the
uncertain budget increases. As we use the Claude Shannon’s information theory, the
larger the upper bound of the uncertainty budget, the more frequent the uncertainty of
the line-switch status occurs, and the greater the number of line failures, the more lines
need to be maintained, leading to an increase in maintenance cost, and the change trend
remains consistent with Figure 14. When we consider the change of prs

ij,t, the maintenance
cost still satisfies the linear growth relationship. According to constraint (24), when W
remains unchanged, the smaller the value of prs

ij,t, the less the number of failure lines, the
less the maintenance cost, and the change trend remains consistent with Figure 14. For
example, when we consider prs

ij,t of line ij in scenarios 1 to 6, the prs
ij,t in scenario 6 is

smaller than the prs
ij,t in scenario 1; according to constraint (24), the uncertainty budget W

remains unchanged, and the βs
ij,t in scenario 6 is larger than the prs

ij,t in scenario 1. Thus,
the situation is consistent with our analytical approach of considering the upper bound of
uncertain budgets. This also shows that when considering line-switch state uncertainty, the
probability of its occurrence must be minimized so that maintenance costs can be reduced.
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Figure 15. The curve of failure cost considering the upper bound of W.

In addition, we analyze the impact of commands on PV power. When the PV power
is determined, the actual output of PV power is approximately 76 MW, 86 MW, 90 MW,
100 MW, and 100 MW, which is in consistent with the fitting results. This indicates that as
we consider the maintenance cost, the impact caused by the uncertainty of PV power is
small. Since the PV will be powered separately after the reconfiguration, its output will be
different; the distribution network still mainly relies on the system power. Moreover, the
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more lines that are shut down by schedule center, the more load needs to be removed from
the bus system, which gradually increases from 3.3 MW (the number of failure line is 1)
to 13 MW (the number of failure line is 16), which indicates that the schedule center must
ensure that no excessive load is removed when shutting down the lines.

In order to analyze the advantages of the uncertainty presented in this paper, we
compared the running time (T); as shown in Figure 16, C1 represents the certainty of PV
power, C2 represents the certainty of PV power and line-switch state, and C3 represents
the uncertainty in both PV power and line-switch state. We find that the uncertainty
presented in this paper has a negligible disadvantage in terms of running time, and the
smaller the uncertainty budget W is, the shorter the running time is. This is due to the
difference in constraints when running the program: the fewer factors considered, the
faster the optimization, so the shortest running time is achieved by considering only one
factor (PV power or line-switch state). If both factors (PV power and line-switch state)
are considered, the increase in constraints leads to an increase in running time. This also
shows that for a single simulation experiment, the running time is the same for certainty
and uncertainty. Due to the constraints (24) and (25) presented in this paper, additional
iterations are required, resulting in an increase in running time. However, as the W becomes
smaller, the smaller the floating space for uncertainty in PV power and line switching state,
i.e., the boundary between uncertainty and certainty becomes blurred, so the running time
will be consistent.

We use the Monte Carlo method for sampling, as shown in Figure 17. We find that the
number of the sampled failure line is the same, implying that the probability is the same
in the actual distribution network. Combined with the analysis of the actual distribution
network, the number of failure lines varies with the probability. Furthermore, when
carrying out optimization, priority is given to maximizing the objective function, which
can also lead to different fault lines having different chances of being sampled. We use the
LHS method for uncertainty sampling; Figures 10–12 is closer to the actual situation.
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Figure 16. The running time of different experiments.

Therefore, we believe that the advantages of our proposed uncertainty are as follows:
(1) the increase in running time during a single sampling is negligible, which means that
when considering many scenarios, we only need to adjust the uncertainty budget W, and
its running time is basically 0.05 s, which no longer requires repeated iterations and greatly
reduces the operation time; (2) the uncertainty sampling results are more realistic after
using the LHS method; it can avoid the uniform sampling.
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Figure 17. The Monte Carlo method.

6. Conclusions

This paper presents a new approach to protect the distribution networks against
the uncertainty of PV power and the line-switch state. The problem is formulated as a
multi-objective two-level planning model and then reformulated as a min–max-max model,
which is a mixed-integer linear program. The first-level model solves the uncertainty of the
PV power problem; its objective is to maximize the PV power cost. The second-level model
solves the uncertainty of line-switch state; its objective is to maximize the line failure cost.
Lastly, the third-level model solves the maintain problem under the worst-case scenarios; its
objective is to minimize the maintenance cost. The proposed model is tested on a modified
IEEE 33-bus system. The numerical results show that the proposed model can act as a
reference for the schedule center to improve the stability of the distribution network while
considering the uncertainty of PV power and the line-switch state.

The major contributions of this paper are as follows:

• We combine mathematical fitting and distribution functions to establish the PV power
uncertainty model: we use the relevant index (R2) and Nash–Sutcliffe efficiency (NSE)
to obtain the best PV fitting curve, and then we use PV power errors that obey three
distribution functions to represent the uncertainty of PV power. We have found that
once the fitted PV power is determined, the PV power cost is affected by the PV power
error, and it is consistent with the change of the distribution functions.

• After conducting an in-depth analysis of the correlation between the bus system and
the actual distribution network (CPS), we propose the line-switch state uncertainty
model: we guarantee the radial topology during the distribution network reconfigura-
tion process, and we introduce uncertainty budgets and the probability of line-switch
state uncertainty, Claude Shannon’s information theory to simplify scenarios, while
we use the LHS method for sampling process. We have found that after we use the
LHS method, the effect of uncertainty budget on failure cost is consistent with the
effect of line-switch state uncertainty probability.

• We propose the maintenance model under the worst-case scenarios: based on the
optimal PV power cost and the line failure cost, we have established the linearized
line state model to achieve line control by the schedule center. With the minimal
maintenance cost, we have found that the maintenance cost and the number of failure
lines satisfy the linear growth relationship.
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Appendix A. Nomenclature

Appendix A.1. Sets and Indices

Ωl_vir: Set of lines containing the fictitious lines.
Ωl : Set of lines.
Ωb: Set of buses.
Ωt: Set of time.
Ωt′ : Set of error time.
Ωp: Set of photovoltaic generators.
Ωg: Set of generators.
ij: Line index.
j: Bus index.
t: Time index.
t′: Error time index.
s: Scenario index.

Appendix A.2. Parameters

W: Uncertainty budget.
cl

ij,t: Maintenance cost of line ij.
cpv,t: Output cost of photovoltaic generators.
cl

omij,t: Failure cost of line switch.
Pmax

g /Qmax
g : Active/reactive power limits of generators.

Pmax
ij /Qmax

ij : Active/reactive power limit of line ij.

Pd max
j /Qd max

j : Active/reactive load demand.

Umax
j /Umin

j : Maximum/minimum voltage magnitude.
U0: Reference voltage magnitude.
M1/M2: Big numbers.
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Appendix A.3. Variables

αs
ij,t: Binary variable indicates whether the line ij is closed through the schedule center

(1) or not (0).
βs

ij,t: Binary variable indicates whether the line ij is failed due to the state failure of
line switch (1) or not (0).

λs
ij,t: Binary variable indicates whether the actual state of line ij is closed (1) or not (0).

ηs
ij,t: Binary variable indicates whether the line ij is maintained (1) or not (0).

µs
ij,t: Binary variable indicates whether the state of line ij is closed (1) or not (0).

ws
ij,t: Assisted binary variable.

∆Pd
j,t/∆Qd

j,t: Active/reactive load shedding.

Ps,g
j,t /Qs,g

j,t : Active/reactive power output of generators.
Ps

ij,t/Qs
ij,t: Active/reactive power flow.

Ps,pv
j,t : Active power output of photovoltaic generators at time t.

f s
ij,t: Fictitious power flow.

Us
j,t: Actual voltage magnitude of bus j.

prs
ij,t: State failure probability of line ij at scenario s.
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