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Abstract: Wireless networks have drastically influenced our lifestyle, changing our workplaces and
society. Among the variety of wireless technology, Wi-Fi surely plays a leading role, especially in
local area networks. The spread of mobiles and tablets, and more recently, the advent of Internet
of Things, have resulted in a multitude of Wi-Fi-enabled devices continuously sending data to the
Internet and between each other. At the same time, Machine Learning has proven to be one of the
most effective and versatile tools for the analysis of fast streaming data. This systematic review aims
at studying the interaction between these technologies and how it has developed throughout their
lifetimes. We used Scopus, Web of Science, and IEEE Xplore databases to retrieve paper abstracts and
leveraged a topic modeling technique, namely, BERTopic, to analyze the resulting document corpus.
After these steps, we inspected the obtained clusters and computed statistics to characterize and
interpret the topics they refer to. Our results include both the applications of Wi-Fi sensing and the
variety of Machine Learning algorithms used to tackle them. We also report how the Wi-Fi advances
have affected sensing applications and the choice of the most suitable Machine Learning models.

Keywords: machine learning; Wi-Fi; BERTopic; topic modeling; artificial intelligence

1. Introduction

The advent of the first wireless connections radically changed our ever-growing and
ever-evolving society. Nowadays, mobiles, tablets, and laptops, with their ability to easily
have Internet access, represent indispensable tools for a large number of people. Wireless
Local Area Networks (WLANs) have become ubiquitous, and they are now essential to
people’s professional and personal lifestyles.

Among the variety of wireless communication technologies, Wi-Fi has played a fun-
damental role since its birth, becoming the dominant model of wireless Internet access
today. In 2019, more than three-billion Wi-Fi-enabled devices have been shipped [1], and it
is estimated that Wi-Fi’s share of Internet traffic will grow by 51% in 2022 [2]. Nowadays,
Wi-Fi is the most appropriate choice for WLANs, due to the more reliable and cost-effective
wireless connections with the higher data rate it provides in indoor environments.

Some recent innovations have even increased the interest and potential of this technol-
ogy. The advent of Internet of Things (IoT), with its multitude of physical interconnected
objects exchanging data coming from their sensors, brought Wi-Fi applications to a new
level. With the development of IoT infrastructures, Wi-Fi can regulate the communication of
the majority of objects in our houses and cities, our healthcare devices (Internet of Medical
Things), and industrial machines (Industrial IoT). Regarding the last one, the formalization
of the Fourth Industrial Revolution, or Industry 4.0 (I4.0), could lead in future years to the
spread of fully automatized dark factories, in which Wi-Fi will play a key role [3].

Finally, the constant evolution of Wi-Fi standards and technologies has enabled
its durability, allowing it to last more than 30 years. Among the innovation brought
by Wi-Fi, honorable mentions go to high-speed optical communications, multiple-input
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multiple-output (MIMO), and orthogonal frequency-division multiplexing (OFDM) trans-
mission technologies, which allowed faster and more reliable communications [4]. Other
important aspects that Wi-Fi has to face are security and privacy. These issues led to
the development of novel encryption standards, such as Wi-Fi Protected Access and
anonymization techniques.

The growth in the number of devices using Wi-Fi to connect to wireless networks has
led to an increase in the pervasiveness of Wi-Fi signals. The abundance of these signals
has resulted in the development of techniques that exploit connectivity data for various
tasks. These techniques created a new research field called Wi-Fi sensing [5] and exploit the
information contained within each message, e.g., the signal intensity. Studying the signal
intensity of each message can give information about the position of the emitting device,
and the analysis of the variation of the signal allows us, for example, to understand the
behavior or the motion of a user. The enormous spread of Wi-Fi-enabled devices, however,
makes these analyses challenging both for the amount and the variability of the available
data. To overcome these problems, another technological breakthrough of the last couple
of decades can become helpful: Machine Learning (ML).

Machine Learning no longer needs an introduction. It has proven itself useful in almost
every aspect related to technology, and the global interest in it suggests its future potential.
ML applications have reached unthinkable performances in, for example, computer vi-
sion [6], Natural Language Processing (NLP) [7], and competitive games [8]. ML algorithms
are a flexible and efficient way to analyze an arbitrary—quite often large—amount of data
coming from a big variety of sources. Its ability to generalize and to adapt to every situation,
as long as the data used during the training of ML algorithms are well-representative for
the given task, makes these techniques helpful in a wide range of applications.

For these reasons, it should not be surprising that Wi-Fi connections and their signal
intensity represent another application for Machine Learning algorithms. In recent years,
applications involving both Wi-Fi and Machine Learning have multiplied, giving rise to
a variety of independent research fields. Although this specialization has led to great
improvements in individual fields, it is increasingly difficult to navigate through their
multitude. The goal of this systematic review is to give a broader perspective on the
applications of Machine Learning on Wi-Fi connection data. By doing so, it is possible to
help both new researchers who are interested in finding their way in such a wide space
and experts in the field to search for possible solutions in fields similar to their own.

In particular, in this work we aim at answering the following research questions:

1. Which tasks and applications relative to Wi-Fi signals have been tackled with Machine
Learning techniques?

2. What are the most widely used Machine Learning methods applied to Wi-Fi data?
3. How did this field of research develop with respect to the evolution of Wi-Fi technology?

Given the breadth of the analysis we want to perform, in this work we exploit an NLP
technique, topic modeling [9], to obtain a preliminary classification of the papers presented
in the literature. This technique has proven itself useful in clustering and extracting
meaningful insight from a corpus of documents [10,11]. The groups obtained after this
preliminary step will ease our analysis and allow us to examine a wider variety of articles.

The rest of the paper is organized as follows: In Section 2, we present an overview
of similar works presented in the literature; Section 3 offers an introduction on the Wi-Fi
technology and ML techniques; in Section 4, we describe the methodology and algorithms
used in this work; Section 5 reports the results of the topic modeling phase; in Section 6,
we answer the proposed research questions; finally, in Section 7, we summarize our work
and results.

2. Related Works

The vastness of topics covered in this work and the possible different points of view im-
ply the presence of various reviews. However, these primarily focus on specific applications
or technologies.
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In the context of applications, one of the most popular uses of Machine Learning
for Wi-Fi data is indoor positioning, and a plethora of reviews and surveys on this topic
are present in the literature. These works give different points of view and perspectives.
Some of them are more general [12–14] and differ from each other mainly for the review’s
procedure. Others analyze in more detail the data source, differentiating between channel
state information [15] and received signal strength [16]. The literature also offers surveys
on Machine Learning techniques that leverage Wi-Fi data to face human fall detection [17],
human activity recognition [18], smart homes [19], motion detection [20], and human
mobility [21]. Despite being useful for understanding specific tasks, these reviews fail to
provide a more general overview of the usefulness of ML in the Wi-Fi context.

There also exist surveys and reviews which shift the focus from applications to partic-
ular settings or technologies. For example, ref. [22] aims at analyzing the use of Machine
Learning in UAV-based communications. In [23], the authors study the use of Machine
Learning to improve Wi-Fi performance, by finding the best configuration of WLANs
parameters to optimize network performances.

In the literature, there are also works with more general views. In [5], the authors
categorize articles using various dimensions, i.e., signal processing, algorithm, application,
and performance, but focusing only on the channel state information. In [24], the evolution
of Wi-Fi technology is described, driven by the authors’ personal lens. They also report
some possible Wi-Fi applications without considering the methods used to fulfill them.

Our systematic review differs from the others in the literature, to the best of our
knowledge, because of its wider scope, not being limited to any particular application or
technology. In this work we aim at understanding how Machine Learning techniques have
been used in previous works in relation to Wi-Fi, i.e., using data coming from characteristics
of Wi-Fi connections as input. We also differ from the majority of the existing reviews in
the literature in this context, as far as we know, by the methodology we used. We will
adopt an NLP to to cluster a variety of articles into fewer and more easily interpretable
groups. This technique has be proven to obtain good results in other works, such as [10,11],
and we think that it could be helpful for analyzing other popular and rapidly growing
research fields.

3. Preliminaries

In this section, we provide some preliminary notions that will be helpful in the rest of
the paper. We firstly describe Wi-Fi technology and some of its changes over the years. We
also outline some of the difficulties that handling Wi-Fi data implies. Then we introduce
some general notions about Machine Learning and artificial intelligence, and some of the
most popular models and algorithms.

3.1. The Wi-Fi Technology

Wi-Fi technology is now part of our daily lives: mobiles, laptops, and smart TVs are
just some examples of devices that make use of it, and the advent of the Internet of Things
can only lengthen this list. Its ease of use and the continuous drop in the price of chipsets
for Wi-Fi contributed strongly to this expansion. The devices use Wi-Fi to communicate via
radio signals over the airwaves with an access point (AP), a piece of networking hardware
connected to a wired network or a cellular network using the tethering technique. The AP
essentially converts data conveyed through the Internet into radio waves and broadcasts
them into the surrounding environment.

The communication standard is a subset of the IEEE 802 protocol family. It provides
several distinct radio frequency ranges, which vary between 2.4 and 60 GHz [25–27] and
defines the organization of data packets, also known as frames. The frames are composed of
several fields, shown in Figure 1, that facilitate the management of sharing the same access
point between various devices. The most important fields regarding the communication
are the MAC addresses, which identify both the source and the destination of each data
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packet. Whenever a transmission is received, the receiver looks at the destination MAC
address and determines whether the transmission should be ignored or not.

Figure 1. A standard 802.11 frame. Figure obtained from https://en.wikipedia.org/wiki/802.11
_Frame_Types, accessed on 20 April 2022.

The ease of access to the wireless network is one of the biggest advantages of Wi-Fi,
but it also represents a serious issue when it comes to security and privacy. A possible
attacker could attack multiple devices just by being within the range of the Wi-Fi network.
Moreover, the communication between a user device and an AP could lead to serious
privacy leakage. The first of the two problems is constantly evolving and has led to the
creation of various encryption standards over the years. This process has resulted in the
creation of Wired Equivalent Privacy (WEP), Wi-Fi Protected Access (WPA), and finally
WPA2, which is the current encryption method adopted by Wi-Fi networks. Regarding the
second problem, one of the major issues is represented by probe requests (PRs), which will
be analyzed in detail in the next section.

Probe Requests

The IEEE 802.11 defines the set of protocols and standards for implementing wireless
local area networks (i.e., WLANs), specifically the “media access control” layer and the
physical layer [26]. In the media access control layer, for short MAC, endpoints communi-
cate with each other using frames. Frames are used both as a means to communicate and to
manage a WLAN: management frames do everything from authentication to discovering
access points. The way mobile devices discover new stations is using what is called a probe
request. A PR, as specified in the IEEE 802.11 standard, is a request of information from a
station to another station, and the answer is called a probe answer. How station discovery is
achieved is very simple: a device sends a probe request in a broadcast on the radio, and
all the access points which received it answer it. A station can also show itself using a
beacon frame. However, the probe approach is less energy-consuming and is preferred:
instead of always listening for a beacon frame on the radio, the device keeps the radio
on just for a few milliseconds, just in time to receive the probe response it needs. As for
the probe request frequency, it has been shown that bursts frequently happen, even when
a device is locked with the Wi-Fi option turned on [28]. Being broadcasted on the radio,
everyone can read these frames, which usually contain very important information about
the device that sent them. Each frame is composed of a header, a payload, and a frame
check sequence. The address used in the header to identify the destination is called the
MAC address, which needs to be unique in the same network. This need for the address to
be unique has brought to the creation of the IEEE Registration Authority, which assigns and
manages the “organizationally unique identifiers” (OUI): to each organization it is given a
unique 24-bit OUI, which is then used to create an extended unique identifiers (EUI). The
EUI are used for applications that require fixed-size globally unique identifiers, such as
network interfaces, but as the IEEE also states: “The IEEE Registration Authority makes
a concerted effort to avoid duplicate assignments but does not guarantee that duplicate
assignments have not occurred. Global uniqueness also depends on the proper use of
assignments and the absence of faults that might result in duplication” [29]. Saying that a
MAC Address is globally unique to a device is incorrect, but it helps track devices across
multiple networks.

https://en.wikipedia.org/wiki/802.11_Frame_Types
https://en.wikipedia.org/wiki/802.11_Frame_Types
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3.2. Wi-Fi as a Data Source

The ubiquity of Wi-Fi-enabled devices and APs represents a continuous source of data.
Every time a connection between two devices is established, the radio wave characteristics
of the data exchange can provide a variety of useful features. Unfortunately, this feature
extraction does not come for free: for their nature, radio wave signals present a huge variety
of problems.

First of all, the enormous diffusion of Wi-Fi connections makes it difficult to isolate the
radio waves coming from a target device, permeating every possible application location
with background noise and adding variability to the data.

Moreover, being a radio wave, the Wi-Fi signal depends on a variety of factors: the
frequency band, radio power output, receiver sensitivity, antenna gain, antenna type, and
modulation technique. For example, changing between an omnidirectional antenna and a
semi-parabolic antenna can change the range of an AP from 100 m to more than 30 km. A
change in any of these factors translates into data variability, increasing the difficulty of
possible applications. Additionally, the environment plays a fundamental role in signal
propagation. APs and devices are immersed in a dynamic environment, where the signal
can reflect, refract, or diffract due to buildings, trees, cars, or moving people. Despite
providing useful and exploitable environmental information, these waves characteristics
must be taken into account and thwarted whenever we want to use Wi-Fi signals.

Finally, radio waves suffer from interference. The signal coming from Wi-Fi devices
can collide with the ones coming from non-Wi-Fi devices which share the 2.4 GHz band,
such as microwave ovens, security cameras, and Bluetooth devices. The congestion of
certain channels can become a problem in high-density areas, such as large apartment
complexes or office buildings with many Wi-Fi access points, and affect the quality of the
Wi-Fi data we want to exploit. A signal can also interfere with itself in the phenomenon
called the multi-path effect. Among the causes of this phenomenon, there are atmospheric
ducting and reflection from water bodies or solid objects, such as buildings and mountains.
This effect results in signals reaching the receiving antenna by more than one path, causing
both constructive and destructive interference and phase shifting. The multi-path effect
causes jitter and ghosting, for example, in analog television and GPS receivers, and can
also lower the goodness of the incoming data.

Despite these problems, these radio waves contain much useful information. In the
next sections, we describe two of the most used features of Wi-Fi data.

3.2.1. Received Signal Strength

The received signal strength indicator (RSSI) is a measurement of the power present in
a received radio signal. In particular, in an IEEE 802.11 system, RSSI is the relative received
signal strength in a wireless environment, in arbitrary units. RSSI is an indication of the
power level being received by the receiving radio after the antenna and possible cable loss.
Therefore, the greater the RSSI value, the stronger the signal. It is possible to estimate
the physical distance between the transmitter and the receiver via a path loss model, as
described in [30]. The relationship between the distance d and the RSSI is given by:

RSSI = RSSI0 − 10nlog10(
d
l0
) + Xσ (1)

where RSSI0 is the signal power at a reference distance l0, n is the path loss exponent which
depends on the physical environment, and Xσ is normally distributed random noise with 0
mean and σ standard deviation. Using this relationship, it is possible to obtain a formula
for the distance given the RSSI as:

d = 10(RSSI0−RSSI)/10n. (2)
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Machine Learning approaches that deal with Wi-Fi signals typically use RSSI at dif-
ferent APs to associate each device with a fingerprint. These fingerprints are then used as
input for an ML model that solves a given task.

3.2.2. Channel State Information

The adoption of the latest wireless telecommunication innovations has allowed Wi-
Fi() data to go beyond the simple RSSI. In particular, the combination of multiple-input
multiple-output antennas and orthogonal frequency division multiplexing lead to the
adoption of the channel state information as the data source. In its simplest form, the
CSI is a complex matrix with one row for each transmitting antenna and one column
for each receiving antenna. When the OFDM also plays a role in the telecommunication
setup, the CSI matrix becomes a tensor with an additional dimension representing the
various subfrequencies into which the channel is divided. The goal of the CSI is to capture
information about the surrounding environment and the effects it produces, i.e., multipath
propagation and fading. To estimate its entries, periodical streams of known sequences are
transmitted from the source to the destination. By comparing the received and the input
signals, it is possible to estimate a matrix for each subcarrier that allows representing the
received signal vector yi as

yi = Hixi + ni, (3)

where xi is the input signal vector and ni is a noise vector, usually sampled from a normal
distribution [5].

Given its objectives and characteristics, it should not surprise the reader that CSI could
be very useful when we want to capture changes in an environment. The wireless signals’
sensitivity to people reflects variations in CSI that have shown themselves really helpful in
indoor localization [31], gesture recognition [32], and user authentication [33].

3.3. Overview of Machine Learning

Machine Learning (ML) [34] refers to a variety of statistical models that, given a
dataset, are able to automatically tune their parameters to reflect patterns and structures
hidden in the data. These learning techniques are usually divided into three categories,
based on the kinds of tasks they address.

Supervised learning [35] comes into play when the dataset is composed of two parts,
the input data and the target. The goal of supervised models is to find a function that
maps the input data into target values that minimize a user-defined loss function. The loss
function depends on the type of the target variable. If the target variable can assume a finite
number of alternative values, i.e., we are tackling a classification task, the most popular
loss function is cross entropy [36]. Instead, if we are predicting one or more real-value
outputs, we may use mean-squared error or mean-squared logarithmic error as the loss
function. On the contrary, unsupervised learning [37] models are used to find patterns
within unlabeled data, i.e., data where there is no prior information about the expected
model target. Relevant instances of unsupervised learning are clustering techniques and
generative models. In the former, the algorithm seeks groups, or clusters, of data, in order to
categorize them and ease their analysis. The latter are statistical models used to understand
the factors that characterize and generate the data. Finally, reinforcement learning [38]
refers to situations in which we want an agent to perform a sequence of actions (a policy)
in order to maximize a reward function. The focus of reinforcement learning is on finding a
balance between exploration of new and unknown situations and the exploitation of agent
current knowledge.

Note that this partition is not strict. In fact, for example, there are approaches that com-
bine ideas from both unsupervised and supervised learning. For instance, autoencoders [39]
and variational autoencoders [40] are particular models with supervised training whose
unsupervised objective is the generation or modification of the input data. They achieve
their goal by having the same input and target data (or some slightly modified version
of them) and minimizing a particular loss called reconstruction loss. Besides this rough
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but necessary partition, in recent decades a wide variety of models have been created that
are able to handle all sorts of input data (e.g., time series, images, and graphs). In the
following we describe in more detail some of the most popular Machine Learning and
artificial intelligence models.

3.3.1. The Neural Network and Its Descendants

Neural Networks (NNs) are the most popular, studied, and developed Machine
Learning models. They were introduced in 1934 by McCulloch [41], who took inspiration
from humans’ biological neurons. They consist of layers of neurons, or computation
units, connected together by weights. Each neuron aggregates the values coming from
nodes of the previous layer based on their connection weights. Then, it uses a non-linear
activation function to compute the output value and propagates it to the next layer. Figure 2
represents the computational schema of a neuron. Despite initial inactivity due to the
computational constraints of the period, they gained popularity with the introduction of
the backpropagation algorithm [42], which allows one to train NNs, i.e., find the ideal
values of the weights, quickly and efficiently.

Figure 2. Computational schema of a neuron in a neural network. The input values are aggre-
gated (usually by a weighted sum) and then a non-linear activation function is applied. Figure ob-
tained at https://commons.wikimedia.org/wiki/File:ArtificialNeuronModel_english.png, accessed
on 20 April 2022.

Basic differentiation between neural networks is based on the network topology. The
simplest structure is the Multi-Layer Perceptron (MLP), in which each neuron of a layer is
connected to every neuron in the previous and the next layer. If feedback connections are
present, the model is called Recurrent Neural Network (RNN) [43], and it is typically used to
handle sequential data. RNNs have also been extended to more articulated forms of neural units
to avoid typical problems, e.g., the difficulty in learning long-term dependencies. The most
popular development of RNNs, in this sense, are Long-Short Term Memory (LSTM) [44] and the
Gated Recurrent Unit (GRU) [45]. Another kind of model that is widely used on sequential data
(although being originally devised for multi-sets) is the transformer [46]: it adopts a particular
mechanism to focus on significant parts of the sequence, called self-attention. Among the most
popular neural networks variations, we can cite the Convolutional Neural Networks (CNNs) [6],
which are designed to handle images and exploit a mathematical operation, the convolution,
to reduce the number of learnable parameters of the network while architecturally enforcing
spatial invariance properties.

3.3.2. K-Nearest Neighbors

K-Nearest Neighbor (K-NN) [47] is a supervised learning algorithm that classifies
unseen input data according to the class of the k closest seen data. This simple algorithm
only requires a definition of distance in the input data space and the number of neighbors
to be considered. The classification can be done in a variety of ways, including the most

https://commons.wikimedia.org/wiki/File:ArtificialNeuronModel_english.png
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frequent class among the neighbors or via a weighted contribution of the neighbors, in
which the weight of each neighbor is inversely proportional to the distance.

3.3.3. Support Vector Machine

The Support Vector Machine (SVM) [48] is a linear model that creates the ideal hyper-
plane to separate the classes. The term “ideal” here means that the hyperplane selected
is the one that maximizes the distances between the hyperplane and the closest elements
of each class. SVMs also adopts a technique that allows one to find a solution also for
non-linearly separable data. Moreover, by using the so-called kernel trick, SVMs can look
for an hyperplane in a higher-dimensional feature space in an efficient way. By using
this trick, the input data are mapped in a new space in which, ideally, the input data are
linearly separable.

3.3.4. Decision Tree and Random Forest

The decision tree (DT) [49] is an easily interpretable model that produces a tree-
structured sequence of decision nodes and leaves. Each decision node divides the dataset
into subsets according to the value of one of the features. The value and the feature of each
decision node are learnt during the training phase. The leaves are instead responsible for
predicting the target value for an input data. It is also possible to prune the tree after the
training process, to avoid too complex and overfitted models.

The random forest (RF) [50] is the evolution of decision trees. As the name suggests,
a random forest is composed of a multitude of decision trees. The target value is then
predicted by aggregating the contribution of each decision tree. The aggregation of a lot of
decision trees makes the model more robust and less prone to overfitting.

4. Review’s Methodology

This review follows the methodology described in the PRISMA statement [51]. The
complete diagram is shown in Figure 3. In the following, we describe and explain in more
detail the various steps of the review.

Figure 3. Workflow of this systematic review, following the one described in the PRISMA statement.

4.1. Data Retrieving and Screening

The analyzed articles have been downloaded on the 14th of March 2022 from three
different sources, the Scopus [52] and the Web of Science [53] databases, and the IEEE Xplore
digital library [54]. All of these sources are quite popular and frequently updated; they offer
APIs to easily query them and have been used for similar works in the past [12]. The Scopus
and IEEE Xplore search engines allow searching for strings inside titles, abstracts, and
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keywords; the Web of Sciences search engine allows only searching inside the abstract. In
each case, the string searched was the following:

(“wifi” OR “wi-fi”) AND (“machine learn*” OR “deep learn*” OR “artificial int*” OR
“neural net*” OR “svm” OR “decision tree” OR “knn”)

where the * indicates the presence of zero or more alphanumerical characters.
The query returned, respectively, 2987, 1885, and 1355 articles for Scopus, Web of

Sciences, and IEEE Xplore. The results of the queries were then merged, and duplicates
articles removed, thereby obtaining 3609 articles. Additionally, Scopus API returned results
that contain all the papers presented during a conference or symposium. The titles of these
results are the names of the event they summarize. Thus, we filtered the articles whose
titles include one of the following words:

• conference;
• workshop;
• symposium;
• meeting;
• forum;

The final dataset was composed of 3449 papers.

Dataset Exploration

After the data retrieving, we can begin our analysis with some considerations about
metadata. Figure 4 shows the article count for the last 20 years. The exponential trend
is very clear, and it reflects well both the increasing interest and spread of Wi-Fi-enabled
devices, and the exploitation of the huge amount of data they provide.

Figure 4. Number of articles retrieved for each year.

With respect to the academic interest, the total number of citations of the 3449 papers
is more than 27,000; each paper was cited 7.97 times on average. The most cited papers
are reported in Table 1. It is interesting to note how these articles differ in both the topics
covered and the points of view analyzed. This fact highlights the breadth of possible
application of Machine Learning and the pervasiveness of Wi-Fi in our lives.
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Table 1. List of the most cited papers.

First Author Year Reference Citations

Andrews J.G. 2012 [55] 950
Wang X. 2017 [56] 583
Ferris B. 2007 [57] 415
Pan S.J. 2008 [58] 367

Dimatteo S. 2011 [59] 261
Kolias C. 201 [60] 218
Zhao M. 2018 [61] 216

Table 2 reports the types of papers retrieved from the databases. More than half of the
results (56%) are composed of conference papers. Articles and proceeding papers combined
form 42% of the results.

Table 2. Numbers of different paper types and their percentages.

Paper Type Number of Papers Perc

Conference Paper 1943 56%
Article 1173 34%

Proceeding Paper 269 8%
Chapter 34 1%
Review 30 1%
Others 9 -

It is also interesting to notice that the same process repeated on articles related to Wi-Fi
only returned a little more than 34,000 results. Thus, the co-occurrence of both Wi-Fi and
ML terms was responsible for less than the 12% of the works about Wi-Fi.

4.2. Topic Modeling

The amount of available text data has produced an incredible spread of Natural Lan-
guage Processing (NLP) inside the Machine Learning world. In order to ease the analysis
of the huge number of text documents, the birth and development of topic modeling
took place. Usually, topic modeling techniques are unsupervised Machine Learning al-
gorithms to automatically detect phrase patterns and group together sets of documents
well-represented by the same set of co-occurring words and expressions.

A variety of techniques have been developed over the years. Among the most popular
methods, one needs to mention Latent Semantic Analysis (LSA) [62] and Latent Dirichlet
Allocation (LDA) [63]. The former refers to a sequence of statistical analysis of terms
frequency, where each document is treated as a bag of words. The second one is a gener-
ative model that assumes words’ distribution over a document as a finite mixture of an
underlying set of topic distributions.

In our work, we use BERTopic [64], a recent pipeline which exploits word embeddings
and real-valued vector clustering algorithms. In the next sections, we describe in more
detail the text preprocessing and the various steps of this method.

4.2.1. Data Preprocessing

Before moving to the actual topic modeling phase, we also performed some pre-
processing procedures on the texts of the abstracts. To do this, we applied a standard
data preparation pipeline, common to most of the NLP tasks, which consisted of the
following steps:

• Tokenization, i.e., splitting the text into tokens, usually into single words.
• Stop words’ removal, including both English stop words (e.g., “the”, “is”, “which”)

and ad hoc non-discriminative words: “Wi-Fi”, “method”, “paper”, etc.
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• Lemmatization, that is, the process of reducing a term to its root, e.g., “are” and “am”
become “be”, and “better” becomes “good”.

• N-gram extraction, i.e., sequences of n words from a sample of the text that satisfy
statistical constraints. In this work we use unigrams, bi-grams, and tri-grams.

Although these steps are not strictly necessary with the used topic modeling algorithm,
we noticed a big improvement in the results with preprocessed abstracts. In particular,
removing ad hoc stop words allows the algorithm to disregard common and general words
and better discriminate topics. At this point, the text corpus can be used as input for the
topic modeling algorithms.

4.2.2. The BERTopic Algorithm

BERTopic [64] is a recent framework for topic modeling composed of three steps which
leverages word embeddings, feature reduction, and classical clustering algorithms.

The first step is the mapping of words and documents into a real-value vector. As
the name suggests, the original version of this frameworks adopts the popular BERT
model [65] to obtain meaningful representations of the documents, but any of the modern
deep learning models for NLP can be used. In our work, we stuck with the original proposal
and adopt BERT.

Similarly, the second step can be performed with any feature reduction algorithm, such
as principal component analysis (PCA) [66] or TSNE [67]. The goal of this intermediate
step is to decrease the number of features of the embeddings and avoid the curse of
dimensionality, thereby easing the work of the clustering phase. In the first proposal of
BERTopic, the authors used UMAP [68], an algorithm that exploits differential geometry
and algebraic topology concepts to preserve the global structure of the vectors in the lower
dimensional space; we used the same approach here.

Finally, a clustering algorithm is used to group the documents into topics. Again,
the choice of the clustering technique is arbitrary: in our work this part was carried out
by Hierarchical DBSCAN (HDBSCAN) [69]. This algorithm combines the advantages of
hierarchical clustering methods with DBSCAN: instead of taking a cut level as a hyperpa-
rameter, as in standard DBSCAN, HDBSCAN allows varying density clusters by looking at
the most stable groups during a hierarchical split process. Like DBSCAN, it also allows one
to automatically recognize noise data, and it does not require prior knowledge of the ideal
number of clusters.

In conclusion, BERTopic takes advantage of the latest and advanced deep learning
models for NLP to cluster documents into topics. Despite not being specifically designed
for this task, it allows great flexibility in each of its steps, provides easily understandable
results, and does not require any prior knowledge of the number of topics.

4.2.3. Results Interpretation

After obtaining the clusters, we need to analyze the results. To do that, the first step is
to identify the most representative words for each topic. This task is achieved by modifying
the Term Frequency-Inverse Document Frequency (TF-IDF), a classic score to find the
relevance of a word in a collection of documents. The standard formula for TF-IDF of the
term i in document j is

(TF− IDF)i,j =
ni,j
|dj |
× log |D|

1+|{d∈D:i∈d}|

where ni,j is the number of occurrences of term i in document j, |dj| is the length of document
j, and D is the set of documents (one is added to the denominator of the logarithm argument
just to avoid division by zero). The first of the two factors is just the frequency of a given
term in a document, and the second one measures the importance of the term in the
collection of documents, i.e., whether it is common or rare in the overall corpus.

In order to identify the importance of a word within a topic, we considered the
documents forming a topic as a single document. In this case, the first term of the TF-IDF is
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the frequency of a given term in a topic, and the second one detects the importance of the
term across all the topics. This metric is called class-based TF-IDF (c-TF-IDF).

Embeddings are also useful for other analyses. For example, if we want to find the
most appropriate topic for a given term, we can simply compute the word embedding and
compare it with topic embeddings. The closer the two embeddings are, the more similar is
the topic to the provided term.

The last analysis we performed on our results focused on identifying the most rep-
resentative documents for each topic: to do that, we could use the λ values returned by
HDBSCAN. For each point in the dataset, i.e., each document embedding, the λ value was
bigger for the points that persisted the most during the hierarchical splitting process; hence,
it represented the strength of its cluster membership.

4.3. Reproducibility

Regarding the computer tools, Python was used for the analyses and figure creation.
Specifically, regarding libraries NumPy, Pandas, and xlrd were used to load and explore the
data downloaded from the various sources; SpaCy was adopted for the text preprocessing
phase; Bertopic (https://github.com/MaartenGr/BERTopic) and the libraries with which
it works (PyTorch, scikit-learn, and UMAP) were employed for extracting the topics; and
Matplotlib, Seaborn, and WordCloud were used to visualize the results and produce the
figures. The raw and preprocessed data, and the Python notebooks, are available in this
GitHub repository: https://github.com/daniele-atzeni/A-Systematic-Review-of-Wi-Fi-
and-Machine-Learning-Integration-with-Topic-Modeling-Techniques.

5. Topic Modeling Results

After running the topic modeling phase, we obtained nine clusters. The number of
papers for each cluster is reported in Table 3, along with articles detected as noise elements,
identified as members of Topic −1.

Table 3. Topics counts obtained with BERTopic and their relative proportions with respect to the
whole dataset.

Topic Count Perc

0 1136 33%
1 537 16%
2 280 8%
3 218 6%
4 200 6%
5 191 6%
6 160 5%
7 72 2%
8 70 2%
−1 585 17%

The most relevant words, considering their c-TF-IDF, are shown in Figure 5. The largest
topic by far, containing one-third of the documents in the corpus, refers to Indoor Local-
ization. Given the size of this topic, we tried another round of topic modeling to identify
possible subtopics, but the discriminant words between these subtopics were only related
to the type of data and the ML model used. We will better analyze these factors in Section 6.

Figure 5 also allows us to appreciate the clarity of the obtained results. In fact, the
majority of the topics are easily understandable by looking at their most representative
terms. The only result that is difficult to interpret is Topic 1. To better understand it, we
ran a manual investigation of the papers, showing the presence of applications of Machine
Learning for improving wireless connections. Among the most recent papers, there are [70],
in which a Machine Learning solution for solving the line-of-sight discovery problem in
indoor mmWave Wi-Fi networks is proposed. Another example is [71], where the authors

https://github.com/MaartenGr/BERTopic
https://github.com/daniele-atzeni/A-Systematic-Review-of-Wi-Fi-and-Machine-Learning-Integration-with-Topic-Modeling-Techniques
https://github.com/daniele-atzeni/A-Systematic-Review-of-Wi-Fi-and-Machine-Learning-Integration-with-Topic-Modeling-Techniques
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compare various Machine Learning algorithms to detect symbols in orthogonal frequency-
division multiplexing transmissions. The three most representative documents for this
topic are [72–74]. These three works face, from different perspectives, the problem of
optimizing the quality of service of a wireless network with the help of Machine Learning
models for resource allocation. The cited papers and a further in-depth analysis suggest
that this topic is related to the use of ML techniques to improve or understand the use of
Wi-Fi connections and wireless infrastructures.

Figure 5. List of the topics with the most relevant terms (ordered by c-TF-IDF).

The terms of Figure 5 and the previous considerations about the results were used to
assign each topic to the following representative names:

• Topic 0: Indoor Localization
• Topic 1: ML for Improving Wireless Networks’ Performances
• Topic 2: IoT and Smart Houses
• Topic 3: Privacy and Intrusion detection
• Topic 4: Human Activity Recognition
• Topic 5: Human Condition Monitoring
• Topic 6: Wi-Fi and ML for improving UAVs networks
• Topic 7: Gesture Recognition
• Topic 8: Crowd Monitoring and People Counting

To conclude this section, we analyze the article citations. Figure 6 shows boxplots
representing the distributions of the numbers of citations of the articles in each topic. This
image gives a clear idea of the importance of human-related applications, such as gesture
recognition and human activity recognition. Surprisingly, topics related to IoT and robotics
seem to attract less interest. It seems that the combination of Wi-Fi connections data and
Machine Learning has not yet been appreciated in these contexts, despite the continuous
growth of research fields about IoT and Industry 4.0.
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Figure 6. Boxplots obtained by the number of citations of the documents, grouped by topic.

6. Answers to the Research Questions

In this section, we try to answer the research questions introduced in Section 1.

6.1. RQ 1

Which tasks and applications relative to Wi-Fi signals have been tackled with Machine Learn-
ing techniques?

To answer this question, we refer to Section 5. In fact, among the clusters described
in that section, we can identify the tasks that have been faced with Machine Learning.
We can divide the articles’ clusters obtained by BERTopic into two main categories. The
first one, including topics 0, 4, 5, 7, and 8, contains articles that aim at studying mostly
human-related contexts. Topics 1, 2, and 6 focus more on the type of infrastructure in which
these applications have been deployed. Topic 3 is positioned in the middle of these two
categories and will be better analyzed later in this section.

With respect to the human-related studies, an interesting work on these applications is
the survey by Ma et al. [75], where the authors divided these activities into coarse-grained
activities and fine-grained ones (Figure 7). The first term refers to macro-level activities,
such as actions (e.g., running, sitting, or cooking) or presence detection. The second ones
are more specific and require more controlled environments, such as monitoring vital
signs or sleep quality analysis by looking at a patient’s breath or heartbeat. Other than
Indoor Localization, the first group contains three other topics identified by BERTopic, i.e.,
Human Activity Recognition, Gesture Recognition, and Crowd Monitoring and People
Counting. Among this group and the overall topics, indoor positioning and localization is
the most popular research field that adopts both Wi-Fi and ML. The performance drop of
GPS-based techniques in indoor environments justifies the interest related to this field. A
variety of techniques have been developed throughout the years. Typically, ML models
are usually fed with real-valued vectors constructed from the measurement of devices’
Wi-Fi signals, called fingerprints. A nice survey on this technique and its application in
indoor localization is [76]. These techniques can also be divided into active and passive
ones. Active positioning refers to the ability to locate users having a device that is actively
searching for nearby APs. On the contrary, passive positioning techniques have the ability
to understand the location by looking at the changes in the propagation of the signal
affected by the presence of a user. A comprehensive survey on the topic is given by [77].

Human Activity Recognition and Gesture Recognition also have attracted a lot of
interest, based on their topic sizes and numbers of citations, respectively. Interestingly,
from the most relevant terms of these topics shown in Figure 5, we can note the importance
of CSI for these tasks. The finer granularity of CSI data with respect to RSSI has allowed a
variety of methodologies and algorithms to be applied to device-free sensing applications,
which is well summarized in [78].
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Figure 7. Human-related activity classification by Ma et al. [75].

On the contrary, Crowd Monitoring and People Counting seem less relevant than other
similar applications. Despite a recent boost in their numbers of publications (two-thirds
of the article in this topic happened in the last three years), the statistics on the citations
suggest that this field has not reached yet its full potential. In fact, while GPS-based data
have been widely used for analyzing outdoor crowd behaviors [79], the same cannot be said
about the use of Wi-Fi data for its indoor counterpart. These kinds of studies could give,
for example, interesting insights about social behaviors, e.g., social dynamics in schools or
workplaces, by being less invasive than other technologies, such as video-based ones.

The second group described by [75] is well represented in Topic 5. This topic groups
together the studies in which Machine Learning algorithms have been used to control
human health parameters, such as heart rate and body temperature, and to detect falls,
which is among the major threats for elderly people [17]. Despite Wi-Fi connections
providing meaningful information in this scenario and allowing one to obtain encouraging
results both on their own [80,81] and in combination with other kinds of sensors [82], this
topic seems to be yet under-explored.

Regarding the category of papers focused on infrastructures, we have already an-
alyzed Topic 1 in Section 5. Topics 2 and 6 have the worst results in terms of citations,
as highlighted by Figure 6. A possible explanation for this phenomenon is the technical
challenges that these topics present. In fact, using Machine Learning in IoT scenarios (Topic
2) is quite challenging because of the low computational power and memory capacity of IoT
devices [83]. Topic 6 is related to the adoption of UAVs and drones for communication pur-
poses, and shows many technical difficulties regarding interference, resource management,
and channel modeling [22].

Finally, Topic 3, Privacy and Intrusion Detection, is positioned in the middle of the two
categories. By manually looking at the latest most cited and most representative papers, we
noticed that articles in this topic could be further divided into two distinct groups. The first
and seemingly bigger group is related to intrusion detection in wireless networks. In fact, ML
algorithms have, for example, proven useful for identifying both spoofing attacks [84] and
evil twins [85]. Reference [86] provides a comprehensive survey about this specific group.
The second group focuses on authentication of users and users’ actions. This aspect is clearly
related to the previous one, since identifying a user and its behavior implies intrusion detection.
However, this broader task brings up privacy issues, which in the past led to solutions such as
MAC address randomization. Examples of this second group are in [87,88], in which the authors
identified users’ actions through Machine Learning techniques to analyze user-AP interactions
and IoT devices (smart refrigerators, TVs, etc.), respectively.

6.2. RQ 2

What are the most widely used Machine Learning methods applied to Wi-Fi data?
To answer this question, and to understand whether there is any correspondence

between methods and tasks, we computed the frequencies of specific Machine Learning
models both inside the complete dataset and the topics. We search the papers for the
following keywords and/or their acronyms:
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• Neural Networks, even if this term refers to a superset that includes the following
models;

• Convolutional Neural Networks;
• Recurrent Neural Networks, for which we also used the terms Long-Short Term

Memory and Gated Recurrent Unit;
• Transformers;
• Support Vector Machines;
• K-Nearest Neighbors;
• Random forests and decision trees.

Table 4 reports the occurrences of these words within the topics and the complete
dataset. As we can see, Neural Networks are the most used models by far, appearing more
than three times than SVM and KNN, and more than four times more than random forests
and decision trees. Among the different neural models, the most used are CNNs and RNNs.
Transformers have found less applications, possibly due to their recent in formalization
and diffusion.

Figure 8a shows the frequency of each model in each topic with respect to topics size.
We removed neural networks from the image to have clearer comparisons between models.
The heatmap brings out the importance of K-Nearest Neighbors in Indoor Localization. In
fact, one of the most popular techniques to locate devices in indoor environments is the
application of KNN using device fingerprints and a dataset of offline measured reference
points [89,90]. We can also notice the wide use of CNNs and RNNs for Human Activity
and Gesture Recognition. This fact should not surprise, since they are two of the most
popular architectures for Neural Networks. RNNs are also specifically designed for time
series analysis and perfectly match tasks that try to understand evolving phenomena such
as Gesture Recognition. On the contrary, the use of CNNs is more mysterious. It is not
clear whether their popularity is related to a lack of knowledge in these interdisciplinary
scenarios [91], or to their capability of extracting relevant features from multiple data
streams, e.g., subcarrier in MIMO communications.

Another interesting insight is given by Figure 8b, which again witnesses to the Neural
Network’s popularity. We can in fact notice how classical ML algorithms, i.e., K-NN, SVM,
and random forest, have been rapidly overcome by the advent of more advanced Machine
Learning models and NNs.

Table 4. Count of the number of occurrences of various ML models for each topic.

Topic Size NN CNN RNN Transf SVM KNN RF

0 835 196 29 46 12 80 206 74
1 529 161 54 33 10 11 3 16
2 354 160 89 61 8 50 8 15
3 270 47 6 10 3 23 6 11
4 211 44 12 7 14 32 5 27
5 194 51 15 8 2 20 2 13
6 156 35 13 2 2 6 6 7
7 138 102 57 7 33 7 7 2
8 80 30 25 7 6 16 5 4
−1 682 187 59 46 14 49 39 48

Tot 3449 1013 359 227 104 294 287 217
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(a)

(b)

Figure 8. Graphs representing the Machine Learning models counts grouped by topics (a) and years
(b). The term “Neural Network” is not present in order to have more comparable values. (a) Heatmap
of the occurrences of ML models. (b) Word hits of the different ML algorithms over the years.

How did this field of research develop with respect to the evolution of Wi-Fi technology?
The first way we can analyze to answer this question is the number of articles pub-

lished in each year for every topic found in Section 5 (Figure 9). From this figure we can
appreciate better the focus of the researchers in the last decade on indoor localization. It is
also interesting to note the rapid growth in recent years of the topic “ML for Improving
Wireless Networks’ Performances”. This growth in interest is possibly due to the recent
advancements in cellular networks and machine-to-machine communications and network
congestion, caused by the spreading of wireless devices.

Figure 9. Number of articles published over the years for every topic.
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Another interesting source of information is connected to how ML applications reacted
to the advent of CSI. Figure 10 shows the logarithms of the numbers of occurrences of the
terms “RSS” and “CSI”. The logarithmic scale allows us to compare the growth of these
two terms. As we can see, the late introduction of the CSI did not stop it from reaching and
overcoming the number of uses of RSSI. The CSI spread also correlates with the rise in the
number of applications that use CNNs, as shown in Figure 8b. In fact, CNNs seem to be
able to extract relevant features from the multiple CSI sub-carrier channels, as described
in [92].

Figure 10. Count of the number of occurrences of CSI and RSS in the logarithmic scale.

Finally, we wanted to understand how ML applications that use Wi-Fi data have
been influenced by the introduction of randomized MAC addresses in probe requests.
Unfortunately, this topic seems to be still little explored. In fact, only 53 articles contain the
words “probe”, “mac addr”, or “randomized”, with a total 597 of citations (for an average
of 11.3 citations for each paper). Moreover, several of them focuses on studying the real
effects of MAC randomization [93,94] or device de-anonymization [95,96]. There are in the
literature some works that leverage PRs, e.g., in crowd detection [97] and behavior [98] or
device classification [99], but we believe that there is still room for improvement.

7. Conclusions

In this paper, we presented a systematic review of the applications of Machine Learning
models for Wi-Fi connectivity data analysis. The aim of the work was to understand the
possible applications of Wi-Fi data that can take advantage of the flexibility of Machine
Learning and its ability to analyze a huge amount of data. We also wanted to understand
how the rapid evolution of these research fields affected their interactions.

In order to analyze a bigger number of articles, we adopted a recent topic model-
ing technique, i.e., BERTopic, that leverage word embeddings and clustering techniques
to extract meaningful topics from text data. The obtained topics clearly show the vari-
ety of fields that have been influenced by the combination of Wi-Fi data and Machine
Learning. The field that has exploited this type of data by far is indoor positioning, but
Wi-Fi’s ubiquity has facilitated progress also in human activity and gesture recognition,
privacy, and intrusion detection. The topics highlight also the technologies involved, which
vary from IoT and smart houses to UAVs and wireless networks. We also highlighted
possible under-explored fields of research, such as indoor crowd monitoring and people
counting, and pioneering and challenging studies, such as including UAVs in wireless
communication infrastructures.
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In our results, we also reported a comparison between the usage of different ML
techniques. We highlighted the growth in popularity of neural network architectures with
respect to classical ML algorithms. We also compared different models and algorithms
grouping them both by topic and year: we showed that the K-Nearest Neighbors algorithm
is still widely adopted for indoor localization in combination with the fingerprint technique;
and Convolutional Neural Networks and Recurrent Neural Networks have taken over in
human activity and gesture recognition.

Finally, we analyzed the role of Wi-Fi innovations, i.e., CSI and randomized MAC
addresses, showing the continuous growth in the numbers of applications of RSSI and
CSI. In particular, CSI, combined with CNNs and RNNs, has seen a steep increase in the
number of publications that cited it, and has assumed a dominant role as data source. We
also noted that probe requests have not attracted much interest compared to the former,
possibly because of randomized MAC addresses and privacy-preserving techniques.

Author Contributions: Conceptualization, D.A., D.B., D.M. and G.P.; methodology, D.A. and D.M.;
software, D.A.; validation, D.A., D.B., D.M. and G.P.; formal analysis, D.A.; investigation, D.A.;
resources, D.A.; data curation, D.A.; writing—original draft preparation, D.A.; writing—review and
editing, D.A., D.B., D.M. and G.P.; visualization, D.A.; supervision, D.M.; project administration, D.M.
All authors have read and agreed to the published version of the manuscript.

Funding: This work has been partially funded by Programme Erasmus+, Knowledge Alliances,
Application Number 621639-EPP-1-2020-1-IT-EPPKA2-KA, PLANET4: Practical Learning of Artificial
iNtelligence on the Edge for indusTry 4.0.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The code and data used to produced the results and images are
available in the following GitHub repository: https://github.com/daniele-atzeni/A-Systematic-
Review-of-Wi-Fi-and-Machine-Learning-Integration-with-Topic-Modeling-Techniques. The data
have been downloaded with the previously described queries from https://www.scopus.com/
search/form.uri?display=basic#basic (Scopus), https://www.webofscience.com/wos/woscc/basic-
search (Web of Science), and https://ieeexplore.ieee.org/search/advanced (IEEE Xplore).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Tzeng, C.L. Global Wi-Fi Enabled Devices Shipment Forecast, 2020–2024; Market Intelligence & Consulting Institute (MIC): Taiwan,

China, 2020.
2. Barnett, T.; Jain, S.; Andra, U.; Khurana, T. Cisco visual networking index (vni) complete forecast update, 2017–2022. In

Americas/EMEAR Cisco Knowledge Network (CKN) Presentation; EMEAR Cisco Knowledge Network (CKN): San Jose, CA, USA,
2018.

3. Varghese, A.; Tandur, D. Wireless requirements and challenges in Industry 4.0. In Proceedings of the 2014 International
Conference on Contemporary Computing and Informatics (IC3I), Mysuru, India, 27–29 November 2014; IEEE: Piscataway, NJ,
USA, 2014; pp. 634–638.

4. Bolcskei, H. MIMO-OFDM wireless systems: basics, perspectives, and challenges. IEEE Wirel. Commun. 2006, 13, 31–37.
5. Ma, Y.; Zhou, G.; Wang, S. WiFi sensing with channel state information: A survey. ACM Comput. Surv. CSUR 2019, 52, 1–36.

[CrossRef]
6. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf.

Process. Syst. 2012, 25, 1–9. [CrossRef]
7. Sutskever, I.; Vinyals, O.; Le, Q.V. Sequence to sequence learning with neural networks. Adv. Neural Inf. Process. Syst. 2014, 27,

1–9.
8. Silver, D.; Hubert, T.; Schrittwieser, J.; Antonoglou, I.; Lai, M.; Guez, A.; Lanctot, M.; Sifre, L.; Kumaran, D.; Graepel, T.; et al.

Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv 2017, arXiv:1712.01815.
9. Wallach, H.M. Topic modeling: beyond bag-of-words. In Proceedings of the 23rd International Conference on Machine Learning,

Pittsburgh, PA, USA, 25–29 June 2006; pp. 977–984.
10. Amado, A.; Cortez, P.; Rita, P.; Moro, S. Research trends on Big Data in Marketing: A text mining and topic modeling based

literature analysis. Eur. Res. Manag. Bus. Econ. 2018, 24, 1–7. [CrossRef]

https://github.com/daniele-atzeni/A-Systematic-Review-of-Wi-Fi-and-Machine-Learning-Integration-with-Topic-Modeling-Techniques
https://github.com/daniele-atzeni/A-Systematic-Review-of-Wi-Fi-and-Machine-Learning-Integration-with-Topic-Modeling-Techniques
https://www.scopus.com/search/form.uri?display=basic#basic
https://www.scopus.com/search/form.uri?display=basic#basic
https://www.webofscience.com/wos/woscc/basic-search
https://www.webofscience.com/wos/woscc/basic-search
https://ieeexplore.ieee.org/search/advanced
http://doi.org/10.1145/3310194
http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.1016/j.iedeen.2017.06.002


Sensors 2022, 22, 4925 20 of 23

11. Mazzei, D.; Chiarello, F.; Fantoni, G. Analyzing social robotics research with natural language processing techniques. Cogn.
Comput. 2021, 13, 308–321. [CrossRef]

12. Bellavista-Parent, V.; Torres-Sospedra, J.; Perez-Navarro, A. New trends in indoor positioning based on WiFi and machine
learning: A systematic review. In Proceedings of the 2021 International Conference on Indoor Positioning and Indoor Navigation
(IPIN), Virtual, 29 November–2 December 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–8.

13. Roy, P.; Chowdhury, C. A survey of machine learning techniques for indoor localization and navigation systems. J. Intell. Robot.
Syst. 2021, 101, 63. [CrossRef]

14. Nessa, A.; Adhikari, B.; Hussain, F.; Fernando, X.N. A survey of machine learning for indoor positioning. IEEE Access 2020,
8, 214945–214965. [CrossRef]

15. Yousefi, S.; Narui, H.; Dayal, S.; Ermon, S.; Valaee, S. A survey on behavior recognition using WiFi channel state information.
IEEE Commun. Mag. 2017, 55, 98–104. [CrossRef]

16. Singh, N.; Choe, S.; Punmiya, R. Machine Learning Based Indoor Localization Using Wi-Fi RSSI Fingerprints: An Overview.
IEEE Access 2021, 9, 127150–127174. [CrossRef]

17. Rastogi, S.; Singh, J. A systematic review on machine learning for fall detection system. Comput. Intell. 2021, 37, 951–974.
[CrossRef]

18. Ramasamy Ramamurthy, S.; Roy, N. Recent trends in machine learning for human activity recognition—A survey. Wiley
Interdiscip. Rev. Data Min. Knowl. Discov. 2018, 8, e1254. [CrossRef]

19. Jiang, H.; Cai, C.; Ma, X.; Yang, Y.; Liu, J. Smart home based on WiFi sensing: A survey. IEEE Access 2018, 6, 13317–13325.
[CrossRef]

20. Guo, L.; Wang, L.; Liu, J.; Zhou, W. A survey on motion detection using WiFi signals. In Proceedings of the 2016 12th International
Conference on Mobile Ad-Hoc and Sensor Networks (MSN), Hefei, China, 16–18 December 2016; IEEE: Piscataway, NJ, USA,
2016; pp. 202–206.

21. Toch, E.; Lerner, B.; Ben-Zion, E.; Ben-Gal, I. Analyzing large-scale human mobility data: a survey of machine learning methods
and applications. Knowl. Inf. Syst. 2019, 58, 501–523. [CrossRef]

22. Bithas, P.S.; Michailidis, E.T.; Nomikos, N.; Vouyioukas, D.; Kanatas, A.G. A survey on machine-learning techniques for
UAV-based communications. Sensors 2019, 19, 5170. [CrossRef]

23. Szott, S.; Kosek-Szott, K.; Gawłowicz, P.; Gómez, J.T.; Bellalta, B.; Zubow, A.; Dressler, F. WiFi Meets ML: A Survey on Improving
IEEE 802.11 Performance with Machine Learning. arXiv 2021, arXiv:2109.04786.

24. Pahlavan, K.; Krishnamurthy, P. Evolution and impact of Wi-Fi technology and applications: a historical perspective. Int. J. Wirel.
Inf. Networks 2021, 28, 3–19. [CrossRef]

25. Poole, I. Wi-Fi/WLAN Channels, Frequencies, Bands & Bandwidths. Adrio Communications Ltd. 2016. Available online: https:
//www.radioelectronics.com/info/wireless/wi-fi/80211-channels-number-frequencies-bandwidth.php (accessed on 15 February 2022).

26. IEEE Std 802.11 ; IEEE Standard for Information Technology-Telecommunications and Information Exchange between Systems-
Local and Metropolitan Area Networks-Specific Requirements Part 11: Wireless LAN Medium Access Control (MAC) and
Physical Layer (PHY) Specifications. IEEE Computer Society LAN/MAN Standards Committee: New York, NY, USA, 2007 .

27. Mitchell, B. 802.11 Standards Explained: 802.11 ax, 802.11 ac, 802.11 b/g/n, 802.11 a; Lifewire: New York, NY, USA, 2020.
28. Freudiger, J. How talkative is your mobile device? An experimental study of Wi-Fi probe requests. In Proceedings of the 8th

ACM Conference on Security & Privacy in Wireless and Mobile Networks, New York, NY, USA, 22–26 June 2015; pp. 1–6.
29. IEEE Standards Association. Guidelines for Use of Extended Unique Identifier (EUI), Organizationally Unique Identifier (OUI), and

Company ID (CID); IEEE: Piscataway, NJ, USA, 2018.
30. Vattapparamban, E.; Çiftler, B.S.; Güvenç, I.; Akkaya, K.; Kadri, A. Indoor occupancy tracking in smart buildings using passive

sniffing of probe requests. In Proceedings of the 2016 IEEE International Conference on Communications Workshops (ICC),
Kuala Lumpur, Malaysia, 23–27 May 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 38–44.

31. Song, X.; Zhou, Y.; Qi, H.; Qiu, W.; Xue, Y. DuLoc: Dual-Channel Convolutional Neural Network Based on Channel State
Information for Indoor Localization. IEEE Sensors J. 2022, 22, 8738–8748. [CrossRef]

32. Hao, Z.; Duan, Y.; Dang, X.; Liu, Y.; Zhang, D. Wi-SL: contactless fine-grained gesture recognition uses channel state information.
Sensors 2020, 20, 4025. [CrossRef]

33. Wang, Z.; Dou, W.; Ma, M.; Feng, X.; Huang, Z.; Zhang, C.; Guo, Y.; Chen, D. A Survey of User Authentication Based on Channel
State Information. Wirel. Commun. Mob. Comput. 2021, 2021, 6636665. [CrossRef]

34. Jordan, M.I.; Mitchell, T.M. Machine learning: Trends, perspectives, and prospects. Science 2015, 349, 255–260. [CrossRef]
[PubMed]

35. Cunningham, P.; Cord, M.; Delany, S.J. Supervised learning. In Machine Learning Techniques for Multimedia; Springer:
Berlin/Heidelberg, Germany, 2008; pp. 21–49.

36. Zhang, Z.; Sabuncu, M. Generalized cross entropy loss for training deep neural networks with noisy labels. Adv. Neural Inf.
Process. Syst. 2018, 31, 1–11.

37. Ghahramani, Z. Unsupervised learning. In Proceedings of the Summer School on Machine Learning, Tubingen, Germany,
2–14 February 2003; Springer: Berlin/Heidelberg, Germany, 2003; pp. 72–112.

38. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 2018.

http://dx.doi.org/10.1007/s12559-020-09799-1
http://dx.doi.org/10.1007/s10846-021-01327-z
http://dx.doi.org/10.1109/ACCESS.2020.3039271
http://dx.doi.org/10.1109/MCOM.2017.1700082
http://dx.doi.org/10.1109/ACCESS.2021.3111083
http://dx.doi.org/10.1111/coin.12441
http://dx.doi.org/10.1002/widm.1254
http://dx.doi.org/10.1109/ACCESS.2018.2812887
http://dx.doi.org/10.1007/s10115-018-1186-x
http://dx.doi.org/10.3390/s19235170
http://dx.doi.org/10.1007/s10776-020-00501-8
https://www.radioelectronics.com/info/wireless/wi-fi/80211-channels-number-frequencies-bandwidth.php
https://www.radioelectronics.com/info/wireless/wi-fi/80211-channels-number-frequencies-bandwidth.php
http://dx.doi.org/10.1109/JSEN.2022.3160700
http://dx.doi.org/10.3390/s20144025
http://dx.doi.org/10.1155/2021/6636665
http://dx.doi.org/10.1126/science.aaa8415
http://www.ncbi.nlm.nih.gov/pubmed/26185243


Sensors 2022, 22, 4925 21 of 23

39. Pinaya, W.H.L.; Vieira, S.; Garcia-Dias, R.; Mechelli, A. Autoencoders. In Machine Learning; Elsevier: Amsterdam, The Netherlands,
2020; pp. 193–208.

40. Kingma, D.P.; Welling, M. Auto-Encoding Variational Bayes. arXiv 2013, arXiv:1312.6114.
41. McCulloch, W.S.; Pitts, W. A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 1943, 5, 115–133.

[CrossRef]
42. Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 323, 533–536.

[CrossRef]
43. Elman, J.L. Finding structure in time. Cogn. Sci. 1990, 14, 179–211. [CrossRef]
44. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
45. Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv

2014, arXiv:1412.3555.
46. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need.

Adv. Neural Inf. Process. Syst. 2017, 30, 1–11.
47. Altman, N.S. An introduction to kernel and nearest-neighbor nonparametric regression. Am. Stat. 1992, 46, 175–185.
48. Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [CrossRef]
49. Quinlan, J.R. Induction of decision trees. Mach. Learn. 1986, 1, 81–106. [CrossRef]
50. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
51. Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.;

Brennan, S.E.; et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Int. J. Surg. 2021,
88, 105906. [CrossRef]

52. Burnham, J.F. Scopus database: A review. Biomed. Digit. Libr. 2006, 3, 1–8. [CrossRef]
53. Web of Science. Available online: https://www.webofscience.com/wos/woscc/basic-search (accessed on 20 March 2022).
54. IEEE Xplore Digital Library. Available online: https://ieeexplore.ieee.org/Xplore/home.jsp (accessed on 20 March 2022).
55. Andrews, J.G.; Claussen, H.; Dohler, M.; Rangan, S.; Reed, M.C. Femtocells: Past, present, and future. IEEE J. Sel. Areas Commun.

2012, 30, 497–508. [CrossRef]
56. Wang, X.; Gao, L.; Mao, S.; Pandey, S. CSI-based fingerprinting for indoor localization: A deep learning approach. IEEE Trans.

Veh. Technol. 2016, 66, 763–776. [CrossRef]
57. Ferris, B.; Fox, D.; Lawrence, N.D. Wifi-slam using gaussian process latent variable models. In Proceedings of the IJCAI,

Hyderabad, India, 6–12 January 2007; Volume 7, pp. 2480–2485.
58. Pan, S.J.; Kwok, J.T.; Yang, Q.; et al. Transfer learning via dimensionality reduction. In Proceedings of the AAAI, Stanford, CA,

USA, 22–24 October 2008; Volume 8, pp. 677–682.
59. Dimatteo, S.; Hui, P.; Han, B.; Li, V.O. Cellular traffic offloading through WiFi networks. In Proceedings of the 2011 IEEE 8th

International Conference on Mobile ad hoc and Sensor Systems, Washington, DC, USA, 17–22 October 2011; IEEE: Piscataway, NJ,
USA, 2011; pp. 192–201.

60. Kolias, C.; Kambourakis, G.; Stavrou, A.; Gritzalis, S. Intrusion detection in 802.11 networks: empirical evaluation of threats and
a public dataset. IEEE Commun. Surv. Tutorials 2015, 18, 184–208. [CrossRef]

61. Zhao, M.; Li, T.; Abu Alsheikh, M.; Tian, Y.; Zhao, H.; Torralba, A.; Katabi, D. Through-wall human pose estimation using
radio signals. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA,
18–22 June 2018; pp. 7356–7365.

62. Landauer, T.K.; Foltz, P.W.; Laham, D. An introduction to latent semantic analysis. Discourse Process. 1998, 25, 259–284. [CrossRef]
63. Blei, D.M.; Ng, A.Y.; Jordan, M.I. Latent dirichlet allocation. J. Mach. Learn. Res. 2003, 3, 993–1022.
64. Grootendorst, M. BERTopic: Neural topic modeling with a class-based TF-IDF procedure. arXiv 2022, arXiv:2203.05794.
65. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding.

arXiv 2018, arXiv:1810.04805.
66. Hotelling, H. Analysis of a complex of statistical variables into principal components. J. Educ. Psychol. 1933, 24, 417. [CrossRef]
67. Van der Maaten, L.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605.
68. McInnes, L.; Healy, J.; Melville, J. UMAP: Uniform Manifold Approximation and Projection. arXiv 2018, arXiv:1802.03426.
69. McInnes, L.; Healy, J.; Astels, S. hdbscan: Hierarchical density based clustering. J. Open Source Softw. 2017, 2, 205. [CrossRef]
70. Jian, Y.; Tai, C.L.; Venkateswaran, S.K.; Agarwal, M.; Liu, Y.; Blough, D.M.; Sivakumar, R. Algorithms for addressing line-of-sight

issues in mmWave WiFi networks using access point mobility. J. Parallel Distrib. Comput. 2022, 160, 65–78. [CrossRef]
71. Seeram, S.S.S.G.; Reddy, A.Y.; Basil, N.; Suman, A.V.S.; Anuraj, K.; Poorna, S. Performance Comparison of Machine Learning Algo-

rithms in Symbol Detection Using OFDM. In Inventive Communication and Computational Technologies; Springer: Berlin/Heidelberg,
Germany, 2022; pp. 455–466.

72. Kunarak, S.; Duangchan, T. Vertical Handover Decision based on Hybrid Artificial Neural Networks in HetNets of 5G. In
Proceedings of the 2021 IEEE Region 10 Symposium (TENSYMP), Jeju, Korea, 23–25 August 2021; IEEE: Piscataway, NJ, USA,
2021; pp. 1–6.

73. Urban, R.; Drexler, P. Intelligent Channel Assignment for WI-FI System Based on Reinforcement Learning. In Proceedings of the
PIERS Proceedings, Guangzhou, China, 25-28 August 2014.

http://dx.doi.org/10.1007/BF02478259
http://dx.doi.org/10.1038/323533a0
http://dx.doi.org/10.1207/s15516709cog1402_1
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1007/BF00994018
http://dx.doi.org/10.1007/BF00116251
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1016/j.ijsu.2021.105906
http://dx.doi.org/10.1186/1742-5581-3-1
https://www.webofscience.com/wos/woscc/basic-search
https://ieeexplore.ieee.org/Xplore/home.jsp
http://dx.doi.org/10.1109/JSAC.2012.120401
http://dx.doi.org/10.1109/TVT.2016.2545523
http://dx.doi.org/10.1109/COMST.2015.2402161
http://dx.doi.org/10.1080/01638539809545028
http://dx.doi.org/10.1037/h0071325
http://dx.doi.org/10.21105/joss.00205
http://dx.doi.org/10.1016/j.jpdc.2021.10.008


Sensors 2022, 22, 4925 22 of 23

74. Huang, Y.F.; Chen, H.H. Applications of Intelligent Radio Technologies in Unlicensed Cellular Networks-A Survey. KSII Trans.
Internet Inf. Syst. TIIS 2021, 15, 2668–2717.

75. Ma, J.; Wang, H.; Zhang, D.; Wang, Y.; Wang, Y. A survey on wi-fi based contactless activity recognition. In Proceed-
ings of the 2016 International IEEE Conferences on Ubiquitous Intelligence & Computing, Advanced and Trusted Com-
puting, Scalable Computing and Communications, Cloud and Big Data Computing, Internet of People, and Smart World
Congress (UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld), Toulouse, France, 18–21 July 2016; IEEE: Piscataway, NJ, USA, 2016;
pp. 1086–1091.

76. Basri, C.; El Khadimi, A. Survey on indoor localization system and recent advances of WIFI fingerprinting technique. In
Proceedings of the 2016 5th International Conference on Multimedia Computing and Systems (ICMCS), Marrakech, Morocco,
29 September–1 October 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 253–259.

77. Liu, F.; Liu, J.; Yin, Y.; Wang, W.; Hu, D.; Chen, P.; Niu, Q. Survey on WiFi-based indoor positioning techniques. IET Commun.
2020, 14, 1372–1383. [CrossRef]

78. Ahmed, H.F.T.; Ahmad, H.; Aravind, C. Device free human gesture recognition using Wi-Fi CSI: A survey. Eng. Appl. Artif. Intell.
2020, 87, 103281. [CrossRef]

79. Xu, Z.; Mei, L.; Choo, K.K.R.; Lv, Z.; Hu, C.; Luo, X.; Liu, Y. Mobile crowd sensing of human-like intelligence using social sensors:
A survey. Neurocomputing 2018, 279, 3–10. [CrossRef]

80. Khan, U.M.; Kabir, Z.; Hassan, S.A. Wireless health monitoring using passive WiFi sensing. In Proceedings of the 2017 13th
International Wireless Communications and Mobile Computing Conference (IWCMC), Valencia, Spain, 26–30 June 2017; IEEE:
Piscataway, NJ, USA, 2017; pp. 1771–1776.

81. Mauldin, T.R.; Canby, M.E.; Metsis, V.; Ngu, A.H.; Rivera, C.C. SmartFall: A smartwatch-based fall detection system using deep
learning. Sensors 2018, 18, 3363. [CrossRef] [PubMed]

82. Garcia-Ceja, E.; Riegler, M.; Nordgreen, T.; Jakobsen, P.; Oedegaard, K.J.; Tørresen, J. Mental health monitoring with multimodal
sensing and machine learning: A survey. Pervasive Mob. Comput. 2018, 51, 1–26. [CrossRef]

83. Merenda, M.; Porcaro, C.; Iero, D. Edge machine learning for ai-enabled iot devices: A review. Sensors 2020, 20, 2533. [CrossRef]
84. Yang, J.; Chen, Y.; Trappe, W.; Cheng, J. Detection and localization of multiple spoofing attackers in wireless networks. IEEE

Trans. Parallel Distrib. Syst. 2012, 24, 44–58. [CrossRef]
85. Hsu, F.H.; Wang, C.S.; Hsu, Y.L.; Cheng, Y.P.; Hsneh, Y.H. A client-side detection mechanism for evil twins. Comput. Electr. Eng.

2017, 59, 76–85. [CrossRef]
86. Liu, H.; Lang, B. Machine learning and deep learning methods for intrusion detection systems: A survey. Appl. Sci. 2019, 9, 4396.

[CrossRef]
87. Conti, M.; Mancini, L.V.; Spolaor, R.; Verde, N.V. Analyzing android encrypted network traffic to identify user actions. IEEE

Trans. Inf. Forensics Secur. 2015, 11, 114–125. [CrossRef]
88. Shi, C.; Liu, J.; Liu, H.; Chen, Y. Smart user authentication through actuation of daily activities leveraging WiFi-enabled IoT.

In Proceedings of the 18th ACM International Symposium on Mobile Ad Hoc Networking and Computing, Chennai, India,
10–14 July 2017; pp. 1–10.

89. Fang, Y.; Deng, Z.; Xue, C.; Jiao, J.; Zeng, H.; Zheng, R.; Lu, S. Application of an improved K nearest neighbor algorithm in WiFi
indoor positioning. In Proceedings of the China Satellite Navigation Conference (CSNC) 2015 Proceedings: Volume III, Xi’an,
China, 13–15 May 2015; Springer: Berlin/Heidelberg, Germany, 2015; pp. 517–524.

90. Li, D.; Zhang, B.; Li, C. A feature-scaling-based k-nearest neighbor algorithm for indoor positioning systems. IEEE Internet Things
J. 2015, 3, 590–597. [CrossRef]
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