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Abstract: Surface spectral reflectance is useful for color reproduction. In this study, the reconstruction
of spectral reflectance using a conventional camera was investigated. The spectrum reconstruction
error could be reduced by interpolating camera RGB signals, in contrast to methods based on basis
spectra, such as principal component analysis (PCA). The disadvantage of the interpolation method
is that it cannot interpolate samples outside the convex hull of reference samples in the RGB signal
space. An interpolation method utilizing auxiliary reference samples (ARSs) to extrapolate the
outside samples is proposed in this paper. The ARSs were created using reference samples and color
filters. The convex hull of the reference samples and ARSs was expanded to enclose outside samples
for extrapolation. A commercially available camera was taken as an example. The results show that
with the proposed method, the extrapolation error was smaller than that of the computationally
time-consuming weighted PCA method. A low cost and fast detection speed for spectral reflectance
recovery can be achieved using a conventional camera.

Keywords: spectrum reconstruction; spectral reflectance recovery; linear interpolation; principal
component analysis

1. Introduction

Surface spectral reflectance is useful for the color reproduction of industrial prod-
ucts and artwork [1–3]. It can be measured directly with an imaging spectrometer [4,5].
However, direct spectral measurements are expensive. Indirect measurements using the
spectrum reconstruction technique are of interest [6–14]. The spectrum of the image pixel is
reconstructed from the channel outputs of the image acquisition device. Since no diffractive
optical imaging system is required, the indirect method has the advantages of a low cost and
fast detection speed. Therefore, using a conventional camera makes more field applications
possible, e.g., smartphone cameras used as sensors to measure surface spectral reflectance.

Orthogonal projection [6], principal component analysis (PCA) [7,8], Gaussian mix-
ture [9], non-negative matrix transformation (NMT) [10,11] and interpolation [11–14] have
been proposed for spectrum reconstruction. Indirect methods that require training spectra
are also known as learning-based methods, such as orthogonal projection, PCA and NMT.
The training spectra are used to derive basis spectra. The reconstructed spectrum is a
linear combination of basis spectra. The coefficients of basis spectra can be solved from
simultaneous equations describing the channel outputs of the imaging device. The accuracy
of the reconstructed spectrum increases with the number of channels. For cases with a
conventional tricolor camera, where only three channels are available, the accuracy of the
reconstructed spectrum might not be high enough.

The interpolation method uses reference spectra to reconstruct a spectrum interpolated
from input values, e.g., XYZ tristimulus values [11–13] and RGB signal values [14]. Due
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to the use of a look-up table (LUT) to store the reference spectra, this method is often
referred to as the LUT method. The authors of [11–14] showed that the LUT method has
the advantage of being more accurate than the PCA method, where the reference spectra
for interpolation are the same as the training spectra for the PCA method. A spectrum
is interpolated from its neighboring reference samples using the LUT method, whereas
the basis spectra of the PCA method are derived from all training samples. The weighted
PCA (wPCA) method was proposed to enhance the contribution of neighboring training
samples in the CIELAB color space to the basis spectra [8,14]. Since basis spectra depend on
the sample to be reconstructed, the computation time of the wPCA method is significantly
increased compared to the conventional PCA method and the LUT method.

Learning-based methods require camera spectral sensitivities to formulate simultane-
ous equations describing the channel outputs. Camera spectral sensitivities can be directly
measured using a monochromator [15], but accurate measurement is expensive. Without
the use of a monochromator, the camera spectral sensitivities can be estimated by solving a
quadric minimization problem [15,16]. An alternative approach is to estimate the spectral
sensitivities including the camera and light source so that the reflectance spectrum can be
calculated from the camera signals [17–21]. The estimation errors of spectral sensitivities
cause additional errors in the reconstructed spectrum.

The LUT method does not require the spectral sensitivity functions because the re-
constructed spectrum is interpolated from the measured spectra of the reference samples.
However, if the sample lies outside the convex hull of the reference samples in the RGB
signal space, it cannot be interpolated. Such a sample can be called an outside sample to
distinguish it from the samples inside the convex hull. In the literature, modified PCA and
NMT methods have been used to extrapolate outside samples [11–14], although spectral
sensitivity functions are required. The authors of [11–13] considered interpolation in the
XYZ color space, where spectral sensitivity functions were equivalently assumed to be
the CIE color matching functions (CMFs). The authors of [14] considered interpolation
in the RGB signal space, where the camera was assumed to follow the sRGB standard so
that RGB signal values and XYZ tristimulus values can be converted to each other via the
well-known sRGB matrix. This hypothetical camera is called the sRGB camera, and its
spectral sensitivities are presented in [22].

The authors of [11,13] used 2D interpolation and 3D interpolation to extrapolate
outside samples from reference samples, respectively. It is not guaranteed that the 2D inter-
polation method will extrapolate all outside samples [11]. The authors of [14] extrapolated
outside samples from reference samples and additional reference samples; the latter are
called model-based metameric spectra of extreme points (MMSEPs). The extreme points
are the eight corners of the RGB signal cube. They are black, white, red, green, blue, yellow,
cyan and magenta, corresponding to the signal vectors [R, G, B]T = [0, 0, 0]T, [1, 1, 1]T,
[1, 0, 0]T, [0, 1, 0]T, [0, 0, 1]T, [1, 1, 0]T, [0, 1, 1]T and [1, 0, 1]T, respectively, where the
maximum values of the signals are normalized to 1.0; the subscript T denotes the transpose
operation. The metameric spectra are the reflection spectra from eight surfaces under D65
illumination. The spectral reflectance of the eight surfaces was constructed using the sRGB
camera. The MMSEPs were equivalently constructed using the spectral sensitivities of the
sRGB camera.

Inspired by [14], we propose the use of auxiliary reference samples (ARSs) for extrapo-
lating outside samples using the LUT method. ARSs are high-saturation samples. They
are created using appropriately chosen color filters and color chips. Color filters are in
turn mounted on the spectroradiometer to measure the spectrum of filtered reflection light
from a color chip. The RGB signal values corresponding to the filtered reflection light are
recorded by a camera mounted with the same color filter. Color filters and color chips are
chosen so that outside samples can be enclosed by reference samples and ARSs in the RGB
signal space for extrapolation. Numerical studies of the proposed method were carried
out. A comparison of the LUT method utilizing ARSs, the LUT method utilizing MMSEP
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samples, the wPCA method and other methods is presented. For ease of reference, Table 1
lists the abbreviations defined herein in alphabetical order.

Table 1. Abbreviation list.

Abbreviation Definition

ARS Auxiliary Reference Sample
BSLB Blue-Shift Lower Bound
CMF Color Matching Function

FWHM Full Width at Half Maximum
GFC Goodness-of-Fit Coefficient
LUT Look-Up Table
MAX Maximum
MIN Minimum

MMSEP Model-based Metameric Spectra of Extreme Point
NMT Non-negative Matrix Transformation
NTCC Nearest Tetrahedron based on Circumcenter
NTCE Nearest Tetrahedron based on Centroid
NTIC Nearest Tetrahedron based on In-Center
PC50 50th Percentile
PC98 98th Percentile
PCA Principal Component Analysis

RGF99 Ratio of Good Fit. (The ratio of samples with GFC > 0.99.)
RMS Root Mean Square

RPRM Root Polynomial Regression Model
SCI Spectral Comparison Index

wPCA Weighted Principal Component Analysis

2. Materials and Assessment Metrics

A Nikon D5100 camera was taken as an example. Its spectral sensitivities of the red,
green and blue signal channels measured by a monochromator are shown in Figure 1a [16].
The average wavelengths of the spectral sensitivities of the red, green and blue chan-
nels are denoted as λCamR, λCamG and λCamB, respectively, which are called the channel
wavelengths for simplicity. The full width at half maximum (FWHM) of the spectral sen-
sitivities of the red, green and blue channels is denoted as ∆λCamR, ∆λCamG and ∆λCamB,
respectively. The spectral specifications of the camera are shown in Table 2.

Figure 1. Spectral sensitivities of (a) the Nikon D5100 and (b) the CMF camera. Spectral sensitivities
of the red, green and blue signal channels are denoted as SR, SG and SB, respectively.
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Table 2. Spectral specifications of the Nikon D5100 and CMF cameras.

Specification Channel Wavelength (nm) FWHM Spectral Width (nm)

Channel B (λCamB) G (λCamG) R (λCamR) B (∆λCamB) G (∆λCamG) R (∆λCamR)

D5100 466.7 530.7 603.4 80.1 88.3 55.8
CMF 452.2 559.2 588.1 55.2 100.4 79.4

The reflectance spectra of matt Munsell color chips measured by a Perkin-Elmer
lambda 9 spectroradiometer were adopted for preparing reference samples and test sam-
ples [23]. The available measurement data in [23] comprise 1269 records, but 2 of them are
duplicates, namely, record 1242 (annotation 10RP 7/2) and record 1249 (annotation 10RP
7/4). Therefore, 1268 reflectance spectra were used in this paper. The light source was
assumed to be illuminant D65. A total of 202 color chips were selected for the preparation
of the reference samples.

A spectrum can be represented by the vector S = [S(λ1), S(λ2), . . . , S(λMw) ]T, where
S(λj) is the spectral amplitude at wavelength λj, λj = λ1 + (j − 1)∆λ is the j-th sampling
wavelength, j = 1, 2, . . . , Mw, and ∆λ is the wavelength sampling interval; Mw is the
number of sampling wavelengths. In this paper, spectra were sampled from 400 nm to
700 nm in steps of 10 nm, i.e., λ1 = 400 nm, ∆λ = 10 nm and Mw = 31. The spectrum vector
of the light reflected from a color chip is SReflection = SRef ◦ SD65, where SRef and SD65 are
the spectral reflectance vector of the color chip and the spectrum vector of the illuminant
D65, respectively; the operator ◦ is the Hadamard product, also known as the element-wise
product. Figure 2a shows the color points of the reflection light from the 1268 Munsell color
chips in the CIELAB color space, where the 202 reference samples and 1066 test samples
are shown as red and blue dots, respectively. Figure 2b–d are the same as Figure 2a, but
with different viewing angles. The CIE 1931 CMFs were adopted in this paper.

Figure 2. (a) Color points of the reflection light from Munsell color chips in CIELAB. (b–d) show the
color points projected on the a*b* plane, a*L* plane and b*L* plane, respectively. Reference samples
and test samples are shown as red and blue dots, respectively. The illuminant is D65.
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The measured signal of a color channel is UMeas = SReflection
TSU, where U = R, G and

B for the red, green and blue channels, respectively; SReflection is the reflection spectrum
vector; SU is the spectral sensitivity of the channel. For the white balance condition, the
channel signals are normalized to U = UMeas/UMeasD65, where U = R, G and B; UMeasD65
is the measured signal when SReflection = SWhite ◦ SD65; SWhite is the spectral reflectance of
a white card. The white side of a Kodak gray card was taken as the white card, where
its spectral reflectance is approximately 0.9 in the visible wavelength range. The vector
representing the camera signals is designated as C = [R, G, B]T. Figure 3a shows the color
points of the reflection spectra from the Munsell color chips in the RGB signal space using
the Nikon D5100, where the 202 reference samples and 1066 test samples are shown as red
and blue dots, respectively. There are 62 samples in the convex hull of the 202 reference
samples. Figure 3b shows the convex hull.

Figure 3. (a) Color points of the reflection light from Munsell color chips in the RGB signal space
using the Nikon D5100, where reference samples and test samples are shown as red and blue dots,
respectively. The illuminant is D65. (b) Convex hull of reference samples HR.

For a given test signal vector, the LUT method to reconstruct the reflection light
spectrum is shown in Section 3.1. The reconstructed spectrum vector is designated as
SRec. The reconstructed spectral reflectance vector SRefRec was calculated as the reflection
spectrum vector SRec divided by the D65 spectrum vector SD65 element by element.

The reconstructed spectral reflectance vector SRefRec was assessed by the root mean
square (RMS) error ERef = (|SRefRec − SRef|2/Mw)1/2 and the goodness-of-fit coefficient
GFC = |SRefRec

TSRef|/|SRefRec| |SRef|, where |·| stands for the norm operation. The
color difference between SRec and SReflection was assessed using CIEDE2000 ∆E00. The
spectral comparison index (SCI) was also used to assess the reconstructed results [24,25].
The parameter k in the formula for calculating SCI shown in [24] was set to 1.0. For the
values of ERef, ∆E00 and SCI, the smaller, the better. The statistics of the three metrics were
calculated, which are the mean µ, standard deviation σ, 50th percentile PC50, 98th percentile
PC98 and maximum MAX. For the value of GFC, the larger, the better. The statistics of
GFC were calculated, which are the mean µ, standard deviation σ, 50th percentile PC50
and minimum MIN. The fit of the spectral curve shape is good if GFC > 0.99 [14,26]. The
ratio of samples with GFC > 0.99 was calculated, which is called the ratio of good fit and
designated as RGF99.
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3. Spectrum Reconstruction Method
3.1. Reflection Spectrum Reconstruction

This subsection describes the LUT method to reconstruct the reflection spectrum vector
SRec from the test signal vector C [12]. The color points of the reference samples in the RGB
signal space were not regularly distributed as shown in Figure 3a. Therefore, the use of
the scattered data interpolation method was required. Several interpolation methods were
surveyed in [27]. Among these methods, linear tetrahedral interpolation was adopted due
to its simplicity and computational time savings [11–13]. A tetrahedral mesh in the RGB
signal space was generated from the reference signal vectors. Note that the tetrahedrization
is not unique, and the interpolation result depends on the tetrahedrization [12,27]. All
programs in this paper were implemented in MATLAB (version R2021a, MathWorks).
The tetrahedral mesh used for interpolation was generated by the MATLAB function
“delaunay” [11,13,14]. There were three steps to interpolate the test sample.

STEP 1: Locate the tetrahedron.

The tetrahedron that encloses the color point Q of the vector C in the RGB signal space
was located. Figure 4 shows the tetrahedron, with vertices Q1, Q2, Q3 and Q4 enclosing the
color point Q. A database or look-up table storing the tetrahedral mesh can be used to save
processing time in locating the tetrahedron [13]. This paper used the MATLAB function
“pointLocation” to locate the tetrahedron, which is a related function of “delaunay”.

Figure 4. Schematic diagram showing a color point Q enclosed by a tetrahedron with vertices Q1, Q2,
Q3 and Q4 in the RGB signal space.

STEP 2: Calculate interpolation coefficients.

The reference signal vectors of Q1, Q2, Q3 and Q4 were assumed to be C1, C2, C3
and C4, respectively. It is required that C is the linear combination of the reference signal
vectors, and

C = α1C1 + α2C2 + α3C3 + α4C4, (1a)

1 = α1 + α2 + α3 + α4, (1b)

where the coefficients α1, α2, α3 and α4 are weighting factors. Equation (1a) comprises
three scalar equations because tristimulus vectors are 3D. Equation (1b) guarantees that
Q is inside the tetrahedron if 0 < α1, α2, α3, α4 < 1. The four coefficients in Equation (1a,b)
were solved.

STEP 3: Calculate the reconstructed reflection spectrum.

The reconstructed reflection spectrum vector is

SRec = α1S1 + α2S2 + α3S3 + α4S4, (2)

where Sj is the reference spectrum vector corresponding to the vertex Qj for j = 1, 2, 3 and 4.
If the reconstructed spectrum has negative values, the value is set to zero.

If both sides of Equation (2) are multiplied by the spectral sensitivity function of a
signal channel and integrated over the wavelength, we obtain Equation (1a) corresponding
to the signal channel. However, the interpolation is an inverse problem. The reconstructed
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spectrum vector SRec is one of numerous metameric spectrum vectors corresponding to
the test signal vector C. Equation (1a,b) are the four constraints for finding a metameric
spectrum vector. The difference between the target spectral reflectance vector SRef and the
reconstructed spectral reflectance vector SRefRec calculated from the metameric spectrum
vector SRec was assessed using the metrics defined in Section 2.

3.2. Spectral Reflectance Reconstruction Workflow

Figure 5 shows a flow chart for reconstructing the spectral reflectance vector SRefRec
from the test signal vector C. The convex hull of the tetrahedral mesh of the reference signal
vectors is denoted as HR. An example of HR is shown in Figure 3b. The convex hull of the
tetrahedral mesh of the reference signal vectors and ARS vectors is denoted as HRA. The
method for creating ARSs is shown in Section 4.

Figure 5. Flow chart for reconstructing the spectral reflectance vector SRefRec from the signal vector C.
Refer to Section 3.2 for details.

If the test signal vector is inside HR, its reflection spectrum vector SRec is interpolated
from the reference samples using the three-step procedure in Section 3.1. If the test signal
vector is outside HR and inside HRA, its reflection spectrum vector SRec is extrapolated
from the expanded reference sample set including the reference samples and ARSs using
the three-step procedure in Section 3.1. If the test signal vector is outside HRA, its reflection
spectrum vector must be extrapolated using the other method. Therefore, ARSs must be
chosen to guarantee that the test signal vectors of interest are inside HRA.
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4. Auxiliary Reference Samples
4.1. ARS Creation

The ARSs were described in the last paragraph of Section 1. Figure 6 shows a five-step
flow chart for creating a set of ARSs. The description below uses the Nikon D5100 as an
example. The example color filters were optimized for the Nikon D5100.

Figure 6. Flow chart for creating auxiliary reference samples (ARSs). Refer to Section 4.1 for details.

STEP 1: Select reflective surfaces.

The Munsell color chips in the convex hull in CIELAB and the white card were used as
reflective surfaces to create ARSs. The number of color chips in the convex hull in Figure 2a
is N = 62. The reference samples in the convex hull in Figure 3b are the reflection samples
from the same 62 color chips. Samples of the white point and black point are default ARSs.
The white ARS is the white point sample, whose signal vector is [1, 1, 1]T. The illuminant is
D65. The spectrum of the black ARS is zero, and its signal vector is [0, 0, 0]T.

STEP 2: Select color filters.

Appropriate cyan, yellow and magenta filters were selected. They were used to filter
reflection light to increase color saturation. Figure 7a shows the spectral transmittance of
an example filter set. Given a reference sample of a signal vector [R, G, B]T, its signal vector
becomes [Rf, Gf, Bf]T after filtering. If the filter is cyan, the ratios Bf/Rf and Gf/Rf will
be larger than B/R and G/R, respectively, and a more saturated sample is created. If the
reference sample is magenta (G << B, R), a highly saturated blue sample is created. The
issue of color filter selection is discussed further in Section 4.2.
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Figure 7. Spectral transmittance of the color filters optimized for (a) the Nikon D5100 and (b) the
CMF camera. The spectral transmittance of the cyan, yellow and magenta filters is denoted as f C, f Y

and f M, respectively.

STEP 3: Measure raw ARSs.

The color filters selected in STEP 2 were sequentially mounted on the camera and
the spectroradiometer for measurement. For each color filter, the RGB signal values
and spectrum of the reflection light from the reflective surfaces selected in STEP 1 were
measured. There were 3N + 3 = 189 measured samples using the color filters, called the
raw ARSs. In this paper, the RGB signal values and spectra were calculated according to
Section 2 for numerical study. Figure 8a shows an example of the raw ARSs in the RGB
signal space, where the color filters in Figure 7a are used. In Figure 8a, the raw ARSs from
the color chips and the white card are shown as red dots and crosses, respectively.

Figure 8. (a) Color points of raw ARSs and amplified raw ARSs shown as red and blue dots,
respectively, in the RGB signal space. The raw ARSs from the white card are shown as red crosses.
The white and black ARSs are shown as green crosses. Color filters optimized for the Nikon D5100
are used. (b) The convex hull HA of the ARSs and the convex hull HR of the reference samples are
shown as blue and red meshes, respectively. Figure 3b shows the same HR.

STEP 4: Create amplified raw ARSs.

From Figures 3a and 8a, we can see that the 3N raw ARSs from the color chips cannot
properly enclose the test samples due to attenuation of the reflection light passing through
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the filter. The spectra and RGB signal vectors of these raw ARSs were multiplied by
an amplification factor γ greater than 1.0. If an RGB signal vector is multiplied by an
amplification factor, its color point in the RGB signal space moves away from the black
point in the direction from the black point to its original color point. The value of γ could
be sample-dependent to reduce extrapolation error. For simplicity, γ = 1.5 was empirically
set for all these samples except for the samples corresponding to the color chips of L* = 90
in Figure 2a–d, which have a value of 9 in the Munsell annotation. The exception samples
were multiplied by a smaller amplification factor so that they remained within the RGB
signal cube, where γ = 1.185. All amplified raw ARSs are shown as blue dots in Figure 8a.

STEP 5: Select the ARSs.

The ARSs are the samples in the convex hull of the amplified raw ARSs, the three raw
ARSs from the white card, the white ARS and the black ARS. The latter two are shown
as green crosses in Figure 8a. The convex hull is denoted as HA and is shown as a blue
mesh in Figure 8b. The total number of ARSs in HA is 53. The convex hull of the reference
samples HR defined in Section 3.2 is also shown as a red mesh in Figure 8b for comparison.
From Figure 8b, HR is completely inside HA. In this case, HA and HRA are the same because
the color points of the reference samples are well enclosed by HA. It seems unnecessary
to measure 189 samples in STEP 3 as there are only 53 samples in HA. However, before
building HA, we do not know which samples will be in HA.

4.2. Color Filter Design Method

Only cyan, yellow and magenta filters were selected in STEP 2 and used in STEP 3.
Extrapolation error can be further reduced by using more color filters, e.g., using additional
red, green and blue filters. This paper limited the number of color filters to three because
(1) the use of cyan, yellow and magenta color filters enables all outside samples to be
extrapolated for the cases under consideration, and (2) the cost of creating ARSs increases
with the number of color filters. The spectral transmittance functions of the considered
cyan, yellow and magenta filters are based on a super-Gaussian function. Such color filters
can be absorption filters or interference filters [28]. There are stock color filters in various
specifications on the market.

The cyan filter is a short-pass optical filter whose spectral transmittance is assumed
to be

fC(λ) = fC0 exp
[
−
(

λ − λS
σC

)aC
]

(3)

where fC0 is the maximum transmittance; λS = 400 nm; σC and aC are parameters determined
by the filter edge wavelength λC and edge width ∆λC. Figure 9a shows the definitions of λC
and ∆λC. The edge wavelength λC is the wavelength of the half-maximum transmittance,
i.e., f C(λC) = 0.5 fC0. The edge width ∆λC is the wavelength interval from 0.1 fY0 to
0.9 fY0. From Equation (3) and the definitions of λC and ∆λC, the following equation can
be derived. [

(ln 10)
1

aC − (− ln 0.9)
1

aC

]
(λC − λS) = (ln 2)

1
aC ∆λC, (4)

Given the values of λC and ∆λC, the value of aC can be solved from Equation (4) using
the MATLAB function “fzero”. After the value of aC is solved, the parameter σC can be
easily calculated by

σC = (ln 2)−
1

aC (λC − λS) (5)

The yellow filter is a long-pass color filter whose spectral transmittance is assumed
to be

fY(λ) = fY0 exp
[
−
(

λL − λ

σY

)aY
]

(6)

where fY0 is the maximum transmittance; λL = 700 nm; σY and aY are parameters de-
termined by the filter edge wavelength λY and edge width ∆λY. Figure 9a also shows
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the definitions of λY and ∆λY, which are similar to those of λC and ∆λC. The param-
eters σY and aY can be solved from the same equations as Equations (4) and (5), ex-
cept that aC, (λC − λS) and ∆λC in Equation (4) are replaced by aY, (λL − λY) and
∆λY, respectively, and σC, aC and (λC − λS) in Equation (5) are replaced by σY, aY and
(λL − λY), respectively.

Figure 9. Schematic diagrams showing the specification definitions of the (a) cyan and yellow color
filters, and (b) magenta filter. Refer to Section 4.2 for details.

The magenta filter is a notch optical filter whose spectral transmittance is assumed
to be

fM(λ) = fM0

(
1 − exp

[
−
∣∣∣∣λ − λM

σM

∣∣∣∣aM
])

(7)

where fM0 is the maximum transmittance; λM is the central wavelength; σM and aM are
parameters determined by the wavelength separation ∆λSep and edge width ∆λM. Figure 9b
shows the definitions of ∆λSep and ∆λM. The wavelength separation ∆λSep = λML − λMS,
where λML and λMS are the edge wavelengths at the long-wavelength side and the short-
wavelength side of the filter spectral transmittance, respectively. The central wavelength
λM = (λMS + λML)/2. The definition of the edge width ∆λM is similar to ∆λC. From
Equation (7) and the definitions of ∆λSep and ∆λM, the following equation can be derived:[

(ln 10)
1

aM − (− ln 0.9)
1

aM

]
∆λSep = 2(ln 2)

1
aM ∆λM. (8)

Given the values of ∆λSep and ∆λM, the value of aM can be solved from Equation (8).
After the value of aM is solved, the parameter σM can be easily calculated by

σM = 2(ln 2)−
1

aM ∆λSep (9)

The wavelengths λMS and λML were taken as the specifications of the magenta filter,
where λMS = λM − ∆λSep/2 and λML = λM + ∆λSep/2.

For simplicity, the maximum transmittance of the filters was set to 0.96, i.e., fY0 = fC0 =
fM0 = 0.96; all edge widths for the three filters were set to 30 nm, i.e., ∆λY = ∆λC = ∆λM =
30 nm. The four edge wavelengths λC, λY, λMS and λML were optimized for the minimum
mean ERef of the outside samples under the constraints

λCamG ≤ λC ≤ λCamR + ∆λCamR/2, (10a)

λCamB ≤ λY ≤ λCamG + ∆λCamG/2, (10b)

λCamB ≤ λMS ≤ λCamG, (10c)
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λCamG ≤ λML ≤ λCamR + ∆λCamR/2. (10d)

The constraints are empirical, but reasonable. For example, from Equation (10a), the
edge wavelength λC of the cyan filter should lie between the wavelengths of the green and
red camera channels so that the spectrum amplitudes at short and medium wavelengths
are less attenuated. Half the bandwidth of the spectral sensitivity was used as the tolerance
for the upper bound in Equation (10a,b,d).

The optimization process consisted of two steps. The first step was to optimize the
four edge wavelengths using the Bayesian optimization function “bayesopt” implemented
in MATLAB. The objective function is the mean ERef of outside samples. Since Bayesian
optimization does not use the derivative of the objective function to find the minimum
objective value [29], the second step used the MATLAB optimization function “lsqnonlin”
to further optimize the four edge wavelengths, where the result of the first step was taken
as the initial trial solution. The function “lsqnonlin” was used because the optimization
problem is nonlinear. The optimized edge wavelengths λC, λY, λMS and λML are denoted
as λCopt, λYopt, λMSopt and λMLopt, respectively.

The edge wavelengths of the optimized filters for the Nikon D5100 are shown in
Table 3. The spectral transmittance of the optimized color filters is shown in Figure 7a.
The convex hulls HA and HRA using the optimized filters are shown as blue meshes in
Figures 8b and 10, respectively, though they are the same for the case considered.

Table 3. Edge wavelengths of the optimized color filters for the Nikon D5100 and CMF cameras.

λCopt (nm) λYopt (nm) λMSopt (nm) λMLopt (nm)

D5100 618.9 510.8 499.7 608.1
CMF 596.7 520.5 504.0 585.4

Figure 10. (a) The convex hull HRA of the reference samples and ARSs and the convex hull of the
MMSEP samples are shown as blue and red meshes, respectively. The ARSs are the same as in
Figure 3b, where optimized color filters are used. The convex hull HRA is the same as the convex
hull HA in Figure 8b, but the viewing angle is different. (b) is the same as (a), except it rotates 90◦

clockwise along the G axis.

5. Results and Discussion

In this section, in addition to the Nikon D5100, an artificial camera is used as a second
camera for comparison. The spectral sensitivities of the artificial camera were assumed to
be the CIE 1931 CMFs as shown in Figure 1b. It is called the CMF camera, whose spectral
specifications are shown in Table 2. The camera used in the numerical results below is the
Nikon D5100 unless otherwise specified.
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5.1. Interpolation

Table 4 shows the assessment metric statistics for the test samples using the LUT
method, where the Nikon D5100 and CMF cameras were used. As can be seen from Table 4,
out of the 1066 test samples, about 860 samples were inside samples that can be interpolated.
The table also shows the extrapolation results for about 200 outside samples, which are
discussed in the next subsection. The assessment metric statistics for the inside samples
using the two cameras were about the same except for the color difference ∆E00. If the
spectral sensitivities of a camera are different from the CMFs, the color difference ∆E00 will
be a non-zero value from Equations (1a) and (2). While not zero, most of the inside samples
using the Nikon D5100 showed little color difference.

Table 4. Assessment metric statistics for test samples using the LUT method and optimized color
filters. The Nikon D5100 and CMF cameras were used.

Metric

Camera Nikon D5100 CMF

Sample All Inside Outside All Inside Outside

No. 1066 864 202 1066 863 203

ERef

mean µ 0.0129 0.0120 0.0171 0.0132 0.0123 0.0169
std σ 0.0118 0.0107 0.0150 0.0116 0.0103 0.0152
PC50 0.0091 0.0087 0.0132 0.0099 0.0094 0.0132
PC98 0.0509 0.0485 0.0599 0.0494 0.0444 0.0650
MAX 0.1078 0.0859 0.1078 0.1111 0.0816 0.1111

GFC

mean µ 0.9972 0.9974 0.9962 0.9972 0.9974 0.9960
std σ 0.0074 0.0071 0.0084 0.0063 0.0054 0.0090
PC50 0.9993 0.9994 0.9986 0.9993 0.9994 0.9986
MIN 0.9000 0.9000 0.9193 0.9161 0.9457 0.9161

RGF99 0.9353 0.9375 0.9257 0.9203 0.9212 0.9163

∆E00

mean µ 0.4244 0.4239 0.4262 0.0000 0.0000 0.0000
std σ 0.4115 0.4182 0.3827 0.0000 0.0000 0.0000
PC50 0.2823 0.2795 0.3015 0.0000 0.0000 0.0000
PC98 1.6842 1.6900 1.6402 0.0000 0.0000 0.0000
MAX 2.5918 2.5918 1.8962 0.0000 0.0000 0.0000

SCI

mean µ 4.1102 3.7503 5.6495 4.1869 3.8632 5.5631
std σ 3.1802 2.9266 3.7252 3.0695 2.8885 3.4233
PC50 3.1484 2.9310 4.6951 3.3348 3.1732 4.8976
PC98 13.4611 12.1239 15.0412 12.4129 11.7579 14.3999
MAX 25.2299 25.2299 21.9370 23.8934 23.8934 15.7186

The spectrum reconstructions of the test samples using the PCA and wPCA meth-
ods are considered for comparison. In the wPCA method, the i-th training sample was
multiplied by a weighting factor 1/(∆Ei + s), where ∆Ei is the color difference between
the test sample and the i-th training sample in CIELAB; s is a small-valued constant to
avoid division by zero [8]. Weighted training samples were used to derive basis spectra. A
camera device model was used to convert RGB signal values into tristimulus values for
calculating ∆Ei. A third-order root polynomial regression model (RPRM) was employed
and trained using the reference samples [30]. The accuracy of the RPRM was slightly higher
than that of the polynomial regression model in this case.

The PCA and wPCA methods were used to reconstruct all test samples using the
spectral sensitivities of the Nikon D5100 in Figure 1a. Table 5 shows the assessment
metric statistics for the test samples using the PCA and wPCA methods, where the inside
samples and outside samples were the same as those using the LUT method. The spectrum
reconstruction error using the wPCA method was apparently smaller than that using the
PCA method, as expected. Comparing Table 4 with Table 5, we can see that the LUT
method outperformed the wPCA method except for GFC. Figure 11a,b show the ERef and
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GFC histograms for the 864 inside samples, respectively, where the cases using the LUT,
PCA and wPCA methods are shown.

Table 5. Assessment metric statistics for test samples using the PCA and wPCA methods. The camera
is the Nikon D5100.

Metric

Method PCA wPCA

Sample All Inside Outside All Inside Outside

No. 1066 864 202 1066 864 202

ERef

mean µ 0.0221 0.0193 0.0341 0.0147 0.0131 0.0213
std σ 0.0168 0.0128 0.0247 0.0122 0.0092 0.0194
PC50 0.0173 0.0160 0.0276 0.0121 0.0114 0.0155
PC98 0.0817 0.0515 0.1152 0.0565 0.0402 0.0774
MAX 0.1442 0.1180 0.1442 0.1255 0.0894 0.1255

GFC

mean µ 0.9940 0.9958 0.9860 0.9972 0.9982 0.9931
std σ 0.0101 0.0072 0.0155 0.0062 0.0031 0.0118
PC50 0.9974 0.9977 0.9892 0.9990 0.9990 0.9976
MIN 0.8858 0.8982 0.8858 0.8921 0.9444 0.8921

RGF99 0.8349 0.9178 0.4802 0.9418 0.9803 0.7772

∆E00

mean µ 0.8261 0.6970 1.3780 0.5017 0.4318 0.8011
std σ 0.6202 0.4163 0.9572 0.4650 0.3099 0.7887
PC50 0.7003 0.6488 1.1215 0.3793 0.3600 0.5094
PC98 2.8667 1.7963 3.6855 2.2116 1.2505 3.0850
MAX 4.3546 3.0765 4.3546 3.3029 2.3674 3.3029

SCI

mean µ 7.8531 6.3217 14.4032 4.7942 3.9033 8.6050
std σ 6.5329 4.2839 9.7024 4.3745 2.7381 7.1555
PC50 5.8291 5.0862 12.0428 3.4185 3.1503 6.3268
PC98 27.2764 19.6718 38.8951 19.1506 11.8655 31.3431
MAX 55.4331 27.4239 55.4331 35.2093 26.8467 35.2093

Figure 11. (a) ERef and (b) GFC histograms for the 864 inside samples of the cases using the LUT,
PCA and wPCA methods. The camera is the Nikon D5100. The insets show enlarged parts. In (b), all
the counts in the “<0.99” slot have GFC < 0.99.

The computation time required for the LUT method is at least two orders of magnitude
faster than that required for reconstruction methods using basis spectra that emphasize
the relationship between the test and training samples [13]. In this work, the ratio of the
computation time required to use the LUT method and wPCA method was 1:80.2, where
samples were reconstructed from their signal vector C to the spectral reflectance vector
SRefRec using MATLAB on the Windows 10 platform.
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5.2. Extrapolation Using the LUT Method Utilizing Optimized ARSs

The color filters optimized as in Section 4.2 were used to create the ARSs in this
subsection. The edge wavelengths of the optimized color filters for the Nikon D5100 and
CMF cameras are shown in Table 3. The filter spectral transmittance for the Nikon D5100
and CMF cameras is shown in Figure 7a,b, respectively. From Table 4, there were 202 and
203 outside samples for the Nikon D5100 and CMF cameras, respectively. The assessment
metric statistics for the outside samples are shown in Table 4. As expected, the mean
assessment metrics for the outside samples were worse than those for the inside samples.
The assessment metric statistics for the two cameras were about the same except for the
color difference ∆E00. The assessment metric statistics for all samples are also shown in
Table 4.

For the Nikon D5100, there were 98, 79, 22 and 3 outside samples that referenced
1, 2, 3 and 4 ARSs, respectively. Figure 12a–f show the reconstructed spectra SRec using
the LUT method for the 2.5G 7/6, 10P 7/8, 2.5R 4/12, 2.5Y 9/4, 10BG 4/8 and 5PB 4/12
color chips, respectively, where their target spectrum SReflection and neighboring reference
spectra are also shown. The case in Figure 12a is an interpolation example for comparison.
The cases in Figure 12b–f are extrapolation examples. For the cases in Figure 12b–f, the
numbers of referenced ARSs are 1, 2, 2, 3 and 4, respectively. The ARS neighborhoods
are indicated in the figures. Neighborhood 3 is the black ARS for the case in Figure 12e.
The spectrum was well recovered for the case in Figure 12f, although four ARSs were
referenced. The reconstructed spectral reflectance SRefRec for the cases in Figure 12a–f is
shown in Figure 13a–f, respectively. RMS errors ERef = 0.004, 0.0223, 0.014, 0.0165, 0.0159
and 0.0149 for the cases in Figure 13a–f, respectively.

Figure 12. Target spectrum SReflection, reconstructed spectra SRec and neighboring reference spectra
using the LUT method and optimized color filters. Munsell annotations of the color chips are (a) 2.5G
7/6, (b) 10P 7/8, (c) 2.5R 4/12, (d) 2.5Y 9/4, (e) 10BG 4/8 and (f) 5PB 4/12.
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Figure 13. (a–f) show the target spectral reflectance SRef and reconstructed spectral reflectance SRefRec

for the cases in Figure 12a–f, respectively. The results using the other reconstruction methods are also
shown. Refer to Sections 5.1–5.4 for details.

5.3. Comparison of Extrapolations using Different Methods
5.3.1. PCA and wPCA Methods

Table 5 shows the assessment metric statistics for the 202 outside samples of the Nikon
D5100 using the PCA and wPCA methods. As expected, the spectrum reconstruction
error using the wPCA method was apparently smaller than that using the PCA method.
Comparing Table 4 with Table 5, we can see that the extrapolation using the LUT method
utilizing optimized ARSs outperformed the wPCA method. Note that the ratio of good fit
RGF99 was reduced from 0.9803 for the inside samples to 0.7772 for the outside samples
when using the wPCA method, i.e., 22.28% of the outside samples had a GFC of less than
0.99. When using the LUT method utilizing optimized ARSs, RGF99 was slightly reduced
from 0.9375 for the inside samples to 0.9257 for the outside samples. It was found that
when ARSs were included in the training samples of the wPCA method, the extrapolation
error did not decrease, but increased further.

Figure 13a–f also show the reconstructed spectral reflectance using the PCA and wPCA
methods. The RMS errors ERef = 0.0135, 0.0246, 0.1142, 0.0352, 0.0393 and 0.0366 for the cases
using the PCA method in Figure 13a–f, respectively. The RMS errors ERef = 0.0095, 0.0221, 0.0794,
0.03, 0.0297 and 0.0392 for the cases using the wPCA method in Figure 13a–f, respectively.

5.3.2. Nearest Tetrahedron 3D Extrapolation Method

By definition, an outside sample cannot be enclosed by any tetrahedron in the tetrahe-
dral mesh of reference samples in the RGB signal space. However, it can be extrapolated
from the nearest tetrahedron [13]. The reference samples of the tetrahedron vertices are
used to extrapolate the outside sample, using the same method as interpolation, except
that the coefficients in Equation (1a,b) are not restricted to be between 0 and 1. The nearest
tetrahedron can be located according to its circumcenter, in-center or centroid. For example,
if the locating rule is based on the circumcenter, the nearest tetrahedron is the tetrahedron
with the shortest Euclidian distance between its circumcenter and the outside sample.
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Table 6 shows the assessment metric statistics for the 202 outside samples of the Nikon
D5100 using the nearest tetrahedron 3D extrapolation method. The methods in the table
using the locating rules based on the circumcenter, in-center and centroid are designated
as NTCC, NTIC and NTCE, respectively. The results using the LUT method utilizing
optimized ARSs and the wPCA method shown in Tables 4 and 5 are also shown in Table 6
for comparison. As can be seen from Table 6, the mean extrapolation error using the NTCC
method was much less than that of the NTIC and NTCE methods but was larger than that
of the LUT method utilizing optimized ARSs.

Table 6. Assessment metric statistics for the 202 outside samples of the Nikon D5100 using the NTCC
method, NTIC method, NTCE method, LUT method utilizing MMSEP samples and LUT method
utilizing ARSs in the BSLB case (ARS(BSLB)). Also shown are the cases using the LUT method
utilizing optimized ARSs (ARS(Opt)) and the wPCA method for comparison.

Metric Statistics NTCC NTIC NTCE MMSEP ARS (BSLB) ARS (Opt) wPCA

ERef

mean µ 0.0258 0.0393 0.0470 0.0212 0.0190 0.0171 0.0213
std σ 0.0225 0.0600 0.0712 0.0201 0.0164 0.0150 0.0194
PC50 0.0196 0.0173 0.0193 0.0164 0.0154 0.0132 0.0155
PC98 0.0967 0.2493 0.3295 0.0819 0.0728 0.0599 0.0774
MAX 0.1279 0.4292 0.4292 0.1531 0.1003 0.1078 0.1255

GFC

mean µ 0.9856 0.9703 0.9617 0.9951 0.9948 0.9962 0.9931
std σ 0.0313 0.0878 0.0981 0.0090 0.0093 0.0084 0.0118
PC50 0.9971 0.9965 0.9961 0.9981 0.9982 0.9986 0.9976
MIN 0.8355 0.3718 0.3718 0.9356 0.9376 0.9193 0.8921

RGF99 0.7475 0.6931 0.6485 0.8812 0.8416 0.9257 0.7772

∆E00

mean µ 0.7198 1.0659 1.7758 0.5900 0.6847 0.4262 0.8011
std σ 0.6564 1.6787 4.3453 0.5657 0.6437 0.3827 0.7887
PC50 0.5217 0.5207 0.5629 0.3419 0.4782 0.3015 0.5094
PC98 2.8621 6.8300 21.3735 2.1651 2.5164 1.6402 3.0850
MAX 3.4551 15.3924 32.8994 2.8408 3.2615 1.8962 3.3029

SCI

mean µ 8.7137 12.5158 16.5762 6.9223 7.3756 5.6495 8.6050
std σ 6.0169 16.4821 26.2679 5.5522 5.7411 3.7252 7.1555
PC50 7.5725 7.1176 7.6722 5.7158 5.4641 4.6951 6.3268
PC98 25.7363 61.6082 130.5460 23.4707 22.2341 15.0412 31.3431
MAX 30.4515 135.4394 157.6624 38.2342 32.9033 21.9370 35.2093

5.3.3. LUT Method Utilizing MMSEP Samples

The extrapolation using the LUT method utilizing MMSEP samples is considered. As
described in Section 1, eight spectral reflectance functions were constructed so that their
color points under D65 illumination were as close as possible to the corners of the RGB
signal cube. The eight MMSEP samples were included in the reference sample dataset for
extrapolation. The white MMSEP sample and black MMSEP sample are the same as the
white ARS and black ARS, respectively. The spectral reflectance functions of the other six
MMSEPs are based on the sigmoid function with parameters optimized for the minimum
objective function defined in [14].

Table 7 shows the optimized RGB signal values of the MMSEP samples for the Nikon
D5100. The RGB signal values were not close to their target values, except for the white
and black MMSEP samples. Taking the green MMSEP sample as an example, if the value
of its G signal is close to 1.0, its R and B signals will not be small in value because the
spectral sensitivities overlap, as shown in Figure 1a. The convex hull of the eight MMSEP
samples is shown as a red mesh in Figure 10a,b. The convex hull HAR is smaller in size
than the MMSEP convex hull but extends more in the yellow and purple regions. The
convex hull HAR can be expanded further if red, green and blue filters are used. The LUT
method utilizing MMSEP samples is equivalent to the LUT method utilizing only eight
ARSs, where six color filters are used and the white card is the only reflective surface.
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Table 7. Target and optimized RGB signal values of MMSEP samples for the Nikon D5100.

Target Optimized

Signal R G B R G B

Red 1 0 0 0.8174 0.1221 0.008
Green 0 1 0 0.1874 0.6941 0.19
Blue 0 0 1 0.0736 0.2255 0.8014
Cyan 0 1 1 0.1771 0.8719 0.9863

Magenta 1 0 1 0.8506 0.3245 0.8051
Yellow 1 1 0 0.9261 0.7720 0.1972
White 1 1 1 1 1 1
Black 0 0 0 0 0 0

The assessment metric statistics for the 202 outside samples of the Nikon D5100 using
the LUT method utilizing MMSEP samples are shown in Table 6. There were 148, 46 and
8 outside samples that referenced 1, 2 and 3 MMSEP samples, respectively. As can be
seen from Table 6, using the optimized ARSs improved the assessment metrics compared
to using MMSEP samples. Figure 13b–f also show the reconstructed spectral reflectance
using the LUT method utilizing MMSEP samples, where the RMS errors ERef = 0.0198,
0.0846, 0.0331, 0.0148 and 0.038, respectively. For the cases in Figure 13b–f, the numbers of
referenced MMSEP samples are 1, 3, 1, 2 and 1, respectively.

Figure 14a,b show the ERef and GFC histograms for the 202 outside samples, respec-
tively, where the cases using the LUT method utilizing optimized ARSs, the wPCA method
and the LUT method utilizing MMSEP samples are shown. For extrapolation, the LUT
method utilizing optimized ARSs outperformed the wPCA method and the LUT method
utilizing MMSEP samples.

Figure 14. (a) ERef and (b) GFC histograms for the 202 outside samples of the cases using the LUT
and wPCA methods. The results of the cases using the LUT method utilizing optimized ARSs and
the LUT method utilizing MMSEP samples are shown. In (a), the inset shows an enlarged part. In (b),
all the counts in the “<0.99” slot have GFC < 0.99.

5.4. Effect of Filter Edge Wavelengths

The spectral sensitivities of a camera can be measured or estimated as described in
Section 1. If the measurements or estimates are accurate, the color filters can be optimized
using the same method as in Section 4.2. On the other hand, estimates of sensitivity spectral
shapes may not be very accurate, but estimates of channel wavelengths may be accurate
enough for color filter design. It is found that the specifications of optimized color filters
are related to the channel wavelengths. For the Nikon D5100, from Tables 2 and 3, the
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optimized edge wavelengths λCopt, λYopt, λMSopt and λMLopt are about λCamR +∆λCamR/4,
(λCamC + λCamG)/2, λCamC and λCamR, respectively, where λCamC is an average
wavelength and

λCamC = (λCamB + λCamG)/2, (11)

These approximate relationships are roughly valid for the CMF camera. Since the
channel wavelength is the average wavelength of the spectral sensitivity, the specifica-
tions of appropriate color filters could be estimated from less accurate estimates of the
spectral sensitivities.

In this subsection, the use of color filters that are not optimized is studied. Deviations
of filter specifications from their optimized values are expressed as δλC = λC − λCopt,
δλY = λY − λYopt, δλMS = λMS − λMSopt and δλML = λML − λMLopt. It is found that the
appropriate range of edge wavelengths can be roughly estimated as

λCamY ≤ λC ≤ λCopt, (12a)

λCamC ≤ λY ≤ λYopt, (12b)

λCamB ≤ λMS ≤ λMSopt, (12c)

λCamY ≤ λML ≤ λMLopt, (12d)

where λCamY is an average wavelength and

λCamY = (λCamG + λCamR)/2. (13)

For the Nikon D5100, λCamC = 498.7 nm and λCamY = 567 nm. The empirical estimates
shown in Equation (12a–d) are based on the comparison of Figure 7a,b with Figure 1a,b,
respectively, and the tolerance analysis shown below.

The deviation of the edge wavelength from the optimized value results in a change
in the convex hull HRA. Since λCopt > λCamR, increasing positive δλC will result in an
increase in the R signal with little change in the B and G signals, which will cause the
ratios B/R and G/R to decrease. The decrease in the signal saturation results in a smaller
convex hull HRA in the cyan region, and some outside samples may not be extrapolated.
Therefore, the upper bound in Equation (12a) is set to the optimized edge wavelength of the
cyan filter. The upper bounds in Equation (12b–d) are changed for similar reasons. Since
λCamC < λYopt < λCamG, increasing positive δλY will result in a greater reduction in the G sig-
nal, which will cause the ratio G/B to decrease. Since λMSopt ≈ λCamC and λMLopt ≈ λCamR,
increasing positive δλMS and δλML will result in a greater increase in the G signal and a
greater reduction in the R signal, respectively, which will cause the ratios B/G and R/G
to decrease.

Figure 15a–i show the mean RMS error ERef of outside samples versus δλMS and
δλML, where the values of δλC and δλY are shown in the figures. The camera is the Nikon
D5100. In the figures, δλC = −51.9 nm and −15.5 nm correspond to λC = λCamY and λCamR,
respectively; δλY = −12.1 nm corresponds to λY = λCamC. The white symbols “+” and “x”
are the origin (δλMS = δλML = 0 nm) and the point of the minimum mean ERef in each figure,
respectively. The values of the mean ERef at the origin and at the point of the minimum
mean ERef are shown in Tables 8 and 9, respectively, for the cases in Figure 15a–i. In the
two tables, the corresponding filter edge wavelength deviations and the ratio RGF99 are
also shown.
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Figure 15. Mean ERef of 202 outside samples versus δλM and δλSep for the Nikon D5100, where the
values of δλC and δλY are shown in (a–i). The white symbols “+” and “×” are the origin and the
point of the minimum mean ERef in the figure, respectively. The red dotted line is the boundary where
at least one outside sample cannot be extrapolated. Beyond the boundary, the mean ERef of outside
samples that can be extrapolated is shown. The white dotted line is the contour of ERef = 0.0213.

Table 8. Filter edge wavelength deviations and the mean RMS error ERef of outside samples at the
origin in Figure 15a–i. The ratio RGF99 of outside samples is also shown.

Figure 15 δλC (nm) δλY (nm) δλMS (nm) δλML (nm) Mean ERef RGF99

(a) −51.9 0 0 0 0.0181 0.8614
(b) −15.5 0 0 0 0.0182 0.8713
(c) 0 0 0 0 0.0171 0.9257
(d) −51.9 −6.05 0 0 0.0182 0.8564
(e) −15.5 −6.05 0 0 0.0183 0.8762
(f) 0 −6.05 0 0 0.0173 0.9208
(g) −51.9 −12.1 0 0 0.0187 0.8614
(h) −15.5 −12.1 0 0 0.0185 0.8812
(i) 0 −12.1 0 0 0.0176 0.9257
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Table 9. The minimum mean RMS error ERef of outside samples in Figure 15a–i and corresponding
filter edge wavelength deviations. The ratio RGF99 of outside samples is also shown.

Figure 15 δλC (nm) δλY (nm) δλMS (nm) δλML (nm) Mean ERef RGF99

(a) −51.9 0 −6 0 0.018 0.8614
(b) −15.5 0 −6 −12 0.0178 0.8911
(c) 0 0 0 0 0.0171 0.9257
(d) −51.9 −6.05 2 −28 0.0181 0.8713
(e) −15.5 −6.05 2 −28 0.0179 0.9109
(f) 0 −6.05 2 0 0.0173 0.9208
(g) −51.9 −12.1 8 −48 0.0178 0.8663
(h) −15.5 −12.1 16 −12 0.0177 0.9158
(i) 0 −12.1 2 −2 0.175 0.9307

At the origin in Figure 15a–i, all outside samples can be extrapolated. Away from
the origin, the red dotted line represents the boundary where at least one outside sample
cannot be extrapolated. Beyond the boundary, the mean ERef of outside samples that can
be extrapolated is shown. The white dotted line in the figure represents the contour of
the mean ERef = 0.0213, which is the value obtained using the wPCA method. Using color
filters that meet the specifications within both the red and white dotted lines, all outside
samples can be extrapolated while keeping the mean ERef < 0.0213. For the cases with
δλC = 0 in Figure 15c,f,i, the area enclosed by the red and white dotted lines is small
because some cyan outside samples cannot be extrapolated. They can be extrapolated by
using a blue-shift cyan filter, i.e., δλC < 0, but will increase the extrapolation error. When
δλC = −9.0 nm, the red dotted line is about the same as in the cases of δλC = −15.5 nm in
Figure 15b,e,h. Therefore, if a larger edge wavelength tolerance is required, a blue-shift
cyan filter is preferred. For such a requirement, the upper bound λCopt in Equation (12a)
can be replaced by λCamR.

The point of (δλML, δλMS) = (−41.1 nm, −33 nm) in Figure 15g is the lower bound
case in Equation (12a–d), where λC = λCamY, λY = λCamC, λMS = λCamB and λML = λCamY.
Since all filter edge wavelengths are blue-shifted, this case is called the blue-shift lower
bound (BSLB) case. In contrast, the upper bound case in Equation (12a–d) is the optimized
case at the origin in Figure 15c. The assessment metric statistics of the BSLB case are shown
in Table 6, where the mean ERef = 0.019 and RGF99 = 0.8416. As can be seen from Table 6,
the assessment metric statistics of the BSLB case were worse than those of the optimized
case, but better than those of the wPCA and NTCC methods. Figure 13b–f also show the
reconstructed spectral reflectance of the BSLB case, where the RMS errors ERef = 0.0187,
0.0469, 0.0203, 0.0274 and 0.0482, respectively.

Figure 16a,b show the ERef and GFC histograms, respectively, for the 202 outside
samples of the BSLB case. Also shown are the results of the cases using the LUT method uti-
lizing optimized ARSs and the LUT method utilizing MMSEP samples for comparison. As
can be seen from the two figures and Table 6, for the RMS error ERef, the unoptimized BSLB
case was slightly better than the case including MMSEP samples, but for the goodness-of-fit
coefficient GFC, the case including MMSEP samples was slightly better. The extrapolation
performance of the two cases is comparable. Note that it is easy to design better color filters
than the BSLB case for extrapolation.
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Figure 16. (a) ERef and (b) GFC histograms for the 202 outside samples of the BSLB case. Also shown
are the results of the cases using the LUT method utilizing optimized ARSs and the LUT method
utilizing MMSEP samples for comparison. In (a), the inset shows an enlarged part. In (b), all the
counts in the “<0.99” slot have GFC < 0.99.

6. Conclusions

The reconstruction of spectral reflectance using the LUT method to interpolate camera
RGB signals was investigated. Using the LUT method has the advantages of a high
accuracy, saving computation time and eliminating the need to use the camera spectral
sensitivity functions. The disadvantage of this method is that it cannot interpolate samples
outside the convex hull of the reference samples in the RGB signal space. The outside
samples can be extrapolated by using the method based on basis spectra, but it has two
disadvantages: (1) accurate camera spectral sensitivity functions are required; (2) the
calculation of the algorithm with a low spectrum reconstruction error is time-consuming.
This paper proposed the LUT method utilizing auxiliary reference samples for extrapolating
outside samples. The auxiliary reference samples were created by using reference samples
and color filters so that the convex hull of the reference samples and auxiliary reference
samples can enclose the outside samples in the RGB signal space. Therefore, outside
samples can be extrapolated by using the LUT method utilizing auxiliary reference samples.

The proposed method was tested with Munsell color chips as examples of reflective
surfaces. The Nikon D5100 camera was taken as an example camera. The method to create
auxiliary reference samples was described. Cyan, yellow and magenta filters were used
in this study. The optimized design of the three filters was presented. The results show
that the mean extrapolation error using the proposed method was smaller than that of the
weighted PCA method. The specifications for the optimized color filters mainly depend
on the average wavelengths of the camera spectral sensitivities. The appropriate range
of color filter edge wavelengths was shown. The design of color filters may not require
accurate measurement or estimation of the camera spectral sensitivities. Therefore, the
proposed method is feasible for overcoming the extrapolation problem. It was also shown
that the ratio of computation time required to use the LUT method and the wPCA method
was 1:80.2.

Since only one commercially available camera was considered, further studies are
required for cameras with other sensitivity characteristics. Further research should use more
than three color filters to expand the convex hull of the reference samples and auxiliary
reference samples, and further reduce the extrapolation error where possible. Studies
implementing the proposed method for field application will be published in the future.
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