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Abstract: We investigate a power control problem for overlay device-to-device (D2D) communi-
cation networks relying on a deep deterministic policy gradient (DDPG), which is a model-free
off-policy algorithm for learning continuous actions such as transmitting power levels. We propose a
DDPG-based self-regulating power control scheme whereby each D2D transmitter can autonomously
determine its transmission power level with only local channel gains that can be measured from
the sounding symbols transmitted by D2D receivers. The performance of the proposed scheme is
analyzed in terms of average sum-rate and energy efficiency and compared to several conventional
schemes. Our numerical results show that the proposed scheme increases the average sum-rate com-
pared to the conventional schemes, even with severe interference caused by increasing the number of
D2D pairs or high transmission power, and the proposed scheme has the highest energy efficiency.

Keywords: device to device (D2D); deep deterministic policy gradient (DDPG); deep reinforcement
learning (DRL); power control

1. Introduction

Device-to-device (D2D) communication has become an attractive solution as one of
many promising technologies for next-generation mobile communication networks, as it can
significantly increase spectral efficiency and also enables direct communication of mobile
devices when the mobile communication signal is unavailable or base stations (BSs) are not
accessible in disaster situations [1,2]. In addition, it can provide various direct connectivities
for sensor devices without cellular infrastructure [3]. In D2D communication networks, the
simultaneous transmission of multiple transmitters can cause serious interference, which
is one of the challenging problems that hinder the prevalence of D2D communication
networks. Therefore, there is inevitably a need to reduce inter-link interference by power
control. Many power-control algorithms have been proposed that rely on conventional
mathematical approaches [4–10]. Despite intensive investigations on the power control
problem in D2D communication networks, the closed-form solutions of general power
control problems to maximize the sum-rate of D2D communication networks in which
multiple D2D links share the same radio resource are not available, as they are typically
NP-hard. As an alternative, new power-control schemes have prepared to overcome the
limitations of conventional schemes using deep learning have been proposed [11–16].
However, they unfortunately do not allow each D2D user to autonomously determine its
transmission power level because cellular base stations (BSs) play a key role in coordinating
the transmission power levels of cellular and D2D users or each D2D pair needs to collect
not only local information that can be obtained directly by the transmitter or receiver of a
D2D pair but also non-local information that can be obtained from neighboring D2D pairs,
thereby causing extra signaling overhead.

In this paper, we also investigate an overlay D2D communication network and propose
a fully distributed power control algorithm based on deep learning, with which each D2D
transmitter can determine its transmission power by using local interference information
directly obtained by measuring sounding signals from D2D receivers. The proposed scheme
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uses a deep deterministic policy gradient (DDPG) that supports continuous action spaces
such as transmission power levels. The performance of the proposed scheme is analyzed
in terms of average sum-rates and energy efficiency and is compared to that of reference
schemes including FPLinQ. FPLinQ can be a good comparison target as in other studies
because it is difficult to reproduce DRL-based simulations in previous studies due to the
lack of detailed information on simulation environments such as the structure of deep
learning networks and many hyper-parameters. Furthermore, FPLinQ has been shown to
outperform many DRL-based power control schemes through its iterative optimization.
Our numerical results show that the average sum-rate of the proposed scheme is always
comparable or superior to the highest one obtained by the best-performing reference
scheme. In addition, the average sum-rate of the proposed scheme improves as the number
of D2D pairs increases, while the average sum-rate of all reference schemes deteriorates.
It is also shown that the proposed scheme has the highest energy efficiency compared
to all reference schemes. More specifically, the proposed scheme can achieve 168∼506%
of average energy efficiency obtained by the best performing reference scheme when the
number of D2D pairs is 50. The rest of this paper is organized as follows. We investigate
related works in Section 2. In Section 3, a D2D communication network and channel model
examined in this paper are described. A distributed power control scheme using DDPG
is proposed in Section 4. Section 5 presents the numerical results used to analyze the
performance of the proposed scheme. Finally, the conclusions of this paper are drawn in
Section 6.

2. Related Works

Many power control algorithms based on conventional numerical or heuristic ap-
proaches have been proposed to resolve the interference problem in D2D networks [4–10].
A power control scheme for full-duplex D2D communications underlying cellular networks
was proposed based on a high signal-to-interference-noise ratio (SINR) approximation [4].
Another power control scheme was also proposed for cellular multiple antenna networks
based on an iterative approach [5], which has been widely applied to D2D communication
networks due to the similarity between the two networks. Binary power control schemes
were proposed to reduce the computational complexity, preserving the performance [6,7].
In the FlashLinQ, each D2D communication link is activated for data transmission only
when the link generates interference lower than a predetermined threshold to keep the
total amount of interference below a certain level, and the threshold should be optimized
for a given environment, which is the critical drawback of FlashLinQ [6]. The binary link
activation problem was reformulated into a fractional programming form in [7] and a new
optimization strategy called fractional-programming-based link scheduling (FPLinQ) was
created. Compared to FlashLinQ, FPLinQ does not require the optimization of threshold
values and thereby shows a significant performance improvement. However, FPLinQ
requires a central node to collect all channel gains and to coordinate link-activation deci-
sions in an iterative approach, which necessarily causes a heavy signaling overhead and
computational complexity. A power control problem for D2D communication networks
using a two-way amplify-and-forward (AF) relay was investigated in [8], where the power
control problem was formulated as an optimization problem and solved using an iterative
approach. A joint problem of resource allocation and power control for cellular assisted
D2D networks was investigated, and an efficient framework was proposed to maximize the
number of supported links [9]. D2D transmission power control schemes were proposed to
maximize the D2D rate while maintaining the performance of cellular networks, and an
asymptotic upper bound on the D2D rates of the proposed schemes was provided [10].

On the other hand, new power-control schemes based on deep learning for D2D
networks have been proposed to overcome the limitations of the conventional schemes
such as optimization of threshold values, computational complexity, or signaling over-
head [11–16]. Deep reinforcement learning (DRL)-based power control schemes for D2D
communications underlying cellular networks were investigated [11–13]. A joint scheme
for resource block scheduling and power control to improve the sum-rate of D2D underlay
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communication networks was proposed based on a deep Q-network considering users’
fairness [11]. However, this proposed scheme requires coordination by cellular base sta-
tions. A deep-learning-based transmission power allocation method was proposed to
automatically determine the optimal transmission powers for D2D networks underlying
full duplex cellular networks [12]. It was shown that the performance of the proposed
scheme is comparable with that of the traditional iterative algorithms, but the intervention
of cellular base stations is also required. A centralized DRL algorithm to solve the power
allocation problem of D2D communications in time-varying environments was proposed
in [13]. The proposed algorithm considers a D2D network as a multi-agent system and
represents a wireless channel as a Finite-State Markov Channel (FSMC).

Although underlay D2D communications can significantly enhance overall spectral
efficiency, the quality of cellular communications cannot be tightly guaranteed because of
the cross-interference caused by D2D communications. Thus, deep-learning-based power
control schemes for overlay D2D communication systems were proposed in [14–16]. Cellu-
lar and D2D users utilize different radio resources that are orthogonal to each other in order
to guarantee the quality of cellular communications by avoiding the cross-interference. A
joint channel selection and power -control optimization problem was investigated with
the aim of maximizing the weighted sum-rate of D2D networks and a distributed deep-
reinforcement-learning-based scheme exploiting local information and outdated nonlocal
information was proposed [14]. However, this proposed scheme does not outperform the
conventional algorithm based on fractional programming, and it requires global channel
state information, although it is outdated [14]. A deep-learning-based power control scheme
using partial and outdated channel state information was proposed in [15]. This proposed
scheme achieved better spectral efficiency and energy efficiency with reduced complexity
and latency compared to the iterative conventional power allocation scheme. However,
cellular BSs are also required to collect channel state information for D2D links, compute
transmission power allocation levels, and inform the power allocation information of D2D
transmitters. Another distributed deep learning method for power control in overlay D2D
networks was proposed in [16]. This scheme predicts the real-time interference pattern
from the outdated interference information and makes a decision for power allocation by
using a recurrent neural network (RNN). This scheme also requires each D2D pair to collect
non-local information from all the D2D pairs to determine its transmission power, as in the
scheme proposed in [14]. Even though the performance was analyzed in highly correlated
channel environments where the prediction of interference pattern is relatively accurate,
the performance was still lower than that of FPLinQ using real-time information.

3. A D2D Communication Network and Channel Model

Figure 1 illustrates an overlay D2D communication network in which D2D communi-
cations use extra radio resources orthogonal to those used by cellular communications. We
have N D2D pairs, and each D2D transmitter transmits data to its corresponding receiver by
sharing the same radio resource. Let hij denote the channel coefficient between transmitter
j and receiver i. If i = j, hij denotes the coefficient of the desired signal that transmitter i
transmits to its paired receiver i. Otherwise, hij denotes the coefficient of the interfering
signal that transmitter j generates to the receiver i. We consider a semi-static block fading
channel model in which all channel coefficients are static during the data transmission
intervals and randomly vary during every data transmission interval. Rayleigh channel
fading is considered, and all channel coefficients follow a complex Gaussian distribution
∼CN (0, 1). In addition, we assume that all channel coefficients are independent and identi-
cally distributed. D2D communications use time-division duplex (TDD) as a duplex scheme.
It is also assumed that hij = hji ∀i, j because of the channel reciprocity of TDD without
loss of generality. All D2D transmitters have a peak transmission power constraint P, and
pi(0 ≤ pi ≤ P ∀i) denotes an instantaneous transmission power level of D2D transmitter i.
The signal-to-interference-and-noise ratio (SINR) perceived at the D2D receiver i can be
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calculated as
(

1 + pi |hii |2
∑N

j=1,j 6=i pj |hij |2+N0

)
. Then, the sum-rate of the D2D network shown in

Figure 1 can be given by

r =
N

∑
i=1

log2

(
1 +

pi|hii|2
∑N

j=1,j 6=i pj|hij|2 + N0

)
, (1)

where N0 denotes the thermal noise power. Our goal is to achieve self-regulation of the
transmission power pi in a distributed manner for each D2D transmitter i in order to
maximize the sum-rate r.

Interference

Tx 1

Tx j

Tx N

Rx 1

Rx i

Rx N

Desired Signal

hij

Tx i hii

h11

hNN

hiN

hi1

Figure 1. An example of an overlay D2D communication network with N D2D pairs.

4. Proposed Power Control Scheme

Figure 2 shows the architecture for training the DDPG-based DRL network in the
proposed power control scheme, which consists of the Actor network µ with parameters θ
and Critic network Q with parameters ψ. H is the matrix of channel gains. The (i, j) entry
of H is|hij|2 and H ∈ RN×N . The state generator builds N × N matrix s, described by

s =



s1
...
si
...

sN

 =



|h11|2 |h21|2 · · · |hN1|2
...

|hii|2 |h2i|2 · · · |hNi|2
...

|hNN |2 |h2N |2 · · · |h(N−1)N |2

. (2)

s consists of N row vectors, s1, · · · , si, · · · sN . The input state for the D2D transmitter i
denoted by si consists of the gain of the desired link and (N − 1) gains of interference links
that the transmitter i generates toward other receivers and is given by

si =
[
|hii|2 |h2i|2 · · · |hNi|2

]
. (3)

Contrary to the conventional DRL-based power control schemes, the proposed scheme
composes the si only of the local channel gains that each transmitter can obtain by mea-
suring sounding symbols transmitted by receivers without extra feedback from other
transmitters. In addition, the gain in the desired link is set in the first place regardless of
i, followed by the gains in interference links to preserve the context of si ∀i and to enable
distributed operation after the completion of training. In order to train the DDPG network,
the Actor µθ takes the input matrix s as the input and yields the output µθ(s), which is a
column vector with N elements and can be interpreted as actions of N transmitters. The
Actor consists of three fully connected layers with 128, 64, and 1 neuron(s), respectively.
The first two layers are activated by rectified linear unit (ReLU), and the last layer is ac-
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tivated by (tanh(·)+1)P
2 so that the final output µθ(s) satisfies 0 ≤ µθ(s) ≤ P. The random

noise is added to µθ(s) to make the DDPG policies explore better during training. We use
an Ornstein–Uhlenbeck process to generate the random noise, as in the original DDPG
paper [17], where random noise N is sampled from a correlated normal distribution. The
final actions of N transmitters are determined by a = [p1 · · · pN ]

T = µθ(s) +N , which are
the transmission power levels of N transmitters.

Actor 

µθ µθ(s)

N

a = µθ(s) +N

Critic 

Qψ
Qψ(H ,a)

∇aQψ(H ,a)∇θµθ(s)

Forward 

Backward 

State

Generator H s

Figure 2. Architecture for training DDPG in the proposed power control scheme.

For training Critic Qψ, actions a and channel matrix H are forwarded to Critic Qψ,
which consists of two fully connected layers of size 64 and 1 activated by ReLU, and the
final output Qψ(H, a) is calculated. The si consists only of the local channel gains to allow
a fully distributed operation according to the proposed scheme. The s is not sufficient to
exactly evaluate the value of rewards generated by transmitters’ actions. Thus, H is used
as the input of the Critic instead of s in order to evaluate exactly the transmitters’ actions.
However, it is notable that the Critic is only necessary during the training process. H is
unnecessary, and si is sufficient for transmitter i to determine its transmission power with
the trained Actor network in the execution process. The target value of the Critic network
can be calculated by

Q̂ = r + λQt
ψt(H′, µt

θt(s′)), (4)

where r, λ, Qt
ψt , µt

θt , and s′ denote the sum-rate for given H and a, a discounting factor for
future rewards, target Critic network, target Actor network, and new state caused by a,
respectively. In this paper, s and a consist of channel gains and transmission power levels,
respectively, and s′ is independent of a. Thus, λ can be set to 0, and target networks are
unnecessary for our considerations. The update of parameters takes place in two stages.
The loss of the Critic network is defined by

LQ = EH

[(
Q̂−Qψ(H, a)

)2
]
. (5)

The parameters of the Critic can be easily updated to minimize the loss LQ because
the Actor network can be considered constant. Then, it is straightforward to calculate the
gradient of LQ with respect to ψ. The loss of the Actor network is defined by

Lµ = −EH
[
Qψ(H, µθ(s))

]
. (6)

We need to train the deterministic policy µθ(s) to generate actions that maximize
Qψ(H, µθ(s)), where µθ(s) is contained inside Qψ. Thus, the gradient of Lµ with respect to
θ can be calculated as

∇θ Lµ = EH
[
∇θµθ(s)×∇aQψ(H, a)|a = µθ(s)

]
(7)
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using the chain rule. The parameters of the Actor network are updated by a gradient
descent by treating the parameters of the Critic network as constants. When the parameters’
training is completed, each D2D transmitter is only equipped with the Actor without a Critic
and will be provided with the trained parameters for the Actor network. In addition, the
Actor’s parameters can be periodically updated by over-the-air (OTA) or a firmware update.
Moreover, each D2D transmitter can easily build its input states by measuring sounding
symbols from surrounding D2D receivers. The overall procedures of the proposed power
control scheme using DDPG is summarized in Algorithm 1. In addition, after the training
is complete, each D2D transmitter only executes the lines 4∼6, 8, and 9, which are in italics.

Algorithm 1 Proposed power control algorithm using DDPG

1: Initialize all parameters

2: Generate Actor and Critic networks

3: while episode < MAX_EPISODES do

4: Generate channel gains H for the D2D network shown in Figure 1

5: Build the input state s using (2)

6: Calculate µθ(s) using Actor network

7: Generate random noise N for exploration

8: Determine the final action

9: D2D transmitters transmit data with the power levels set by the determined final actions

10: Calculate the reward using (1)

11: Calculate Qψ(H, a) using Critic network

12: Calculate the losses of Critic and Actor networks using (5) and (6)

13: Calculate the gradients of ∇ψLQ and ∇θ Lµ

14: Update the parameters of Critic and Actor networks using ∇ψLQ and ∇θ Lµ

15: episode += 1

16: end while

5. Numerical Results

We investigate the performance of the proposed power control scheme using DDPG
and compare it with the reference schemes in Figures 3 and 4 and Tables 1 and 2. The
reference schemes include weighted minimum mean square error (WMMSE), FPLinQ, and
FLashLinQ. WMMSE is typically used to tackle NP-hard power control problems in an
iterative manner due to its superiority [5]. The performance of all the schemes is analyzed
in terms of average sum-rate and energy efficiency for varying maximal peak transmission
power and the number of D2D pairs. For a mathematical simplification, the maximal peak
transmission power P is normalized with respect to the thermal noise power N0, and the
normalized maximal peak transmission power is defined by γ = P

N0
.

Figure 3a shows the average sum-rates for varying γ when N = 10. For a given γ,
FLashLinQ shows the different average sum-rates according to θ, which is a threshold
determining whether to transmit data. For γ > 15 dB, a high θ yields a high average sum-
rate, and a lower θ yields a high average sum-rate for γ < 15 dB. The average sum-rate
of WMMSE is higher than that of FLashLinQ for γ < 15 dB, and vice versa for γ ≥ 15 dB.
The proposed scheme outperforms WMMSE and FLashLinQ except for γ = 20 dB. Even
though FlashLinQ with θ = 10 dB outperforms the proposed scheme for γ = 20 dB, its
average sum rates is the lowest for γ < 15 dB among all the schemes. FPLinQ outperforms
all the other schemes regardless of γ, which shows that FPLinQ works well when N is
small. Figure 3b shows the average sum-rate for N = 20. Compared to N = 10, the average
sum-rates of WMMSE, FPLinQ, and FLashLinQ with θ = 5 dB all increase if γ ≤ 10 dB and
decrease for γ > 10 dB because they cannot cope well with the severe cross-interference
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caused by increasing N and γ. However, the average sum-rates of the proposed scheme and
FLashLinQ with θ = 10 dB continuously increase even if γ > 10 dB, thereby showing that
the both schemes are capable of coping well with severe cross-interference. Figure 3c shows
that the proposed scheme begins to outperform FPLinQ when N = 30 and is superior to
all the reference schemes except for FLashLinQ with θ = 10. FLashLinQ with θ = 10 dB
has the highest average sum-rate if γ > 10 dB because it is optimal for a single D2D pair
with the highest channel gain to transmit data in interference-limited environments [18].
FLashLinQ with a higher threshold θ reduces the number of D2D pairs to transmit data
simultaneously. However, its average sum-rate is seriously degraded if γ < 10 dB because
it is optimal for all D2D pairs to transmit data in power-limited environments, but D2D
pairs are suppressed from transmitting data because of the high threshold. Figure 3d shows
that the tendency shown in Figure 3c becomes more pronounced as N increases up to 50.
The average sum-rate of FPLinQ is seriously degraded, while the average sum-rate of the
proposed scheme is greatly enhanced. Table 1 shows the average sum-rate ratio of the
proposed scheme to the best performing reference scheme. The schemes in parentheses
denote the reference scheme with the highest average sum-rate for a given γ and N. The
best-performing reference scheme varies according to γ and N values, and the average
sum-rates of the proposed scheme improves as N increases. If 0 ≤ γ ≤ 5 and N = 50, the
proposed scheme outperforms the best-performing reference scheme by 2∼12%. Otherwise,
the average sum-rate of the proposed scheme is comparable to the highest average sum-rate
obtained by the best-performing reference scheme. It is also shown that the difference in
average sum-rate between the proposed scheme and the best-performing reference scheme
decreases as N increases or γ decreases. When N = 50, the proposed scheme can achieve
112% and 93% of the average sum-rate obtained by the best-performing reference scheme
for γ = 0 dB and γ = 20 dB, respectively.
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Figure 3. Average sum-rate for various γ and N values.
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Table 1. The average sum-rate ratio of the proposed scheme to the best-performing reference scheme.
The schemes in parentheses denote the reference scheme with the highest average sum-rate.

γ [dB]
N

10 20 30 50

0 0.94 (FPLinQ) 0.99 (FPLinQ) 1.05 (FPLinQ) 1.12 (FPLinQ)

5 0.88 (FPLinQ) 0.93 (FPLinQ) 1.01 (FPLinQ) 1.02 (WMMSE)

10 0.84 (FPLinQ) 0.90 (FPLinQ) 1.00 (FPLinQ) 0.96 (FLashLinQ)

15 0.83 (FPLinQ) 0.92 (FPLinQ) 0.93 (FPLinQ) 0.92 (FLashLinQ)

20 0.85 (FPLinQ) 0.87 (FPLinQ) 0.90 (FLashLinQ) 0.93 (FLashLinQ)
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Figure 4. Average energy efficiency for various γ and N values.

On the other hand, energy efficiency is also one of import performance metrics for
communication networks, and instantaneous transmission power levels of all D2D trans-
mitters vary according to power control schemes. Accordingly, we also investigate the
energy efficiency of all schemes. We normalize the average sum-rate with respect to the
average power consumption to calculate the average sum-rate that can be obtained with
a transmission power level equal to N0. The results of energy efficiency are presented in
Figure 4a–d. Although FLashLinQ outperforms the proposed scheme in terms of average
sum-rate in interference-limited environments with high values of N and γ, its energy
efficiency is the lowest among all schemes. The energy efficiency of FPLinQ is similar to
that of WMMSE when N = 10 or 20, and it is also seriously degraded as N increases above
20 and becomes lower than that of WMMSE. As N increases, the energy efficiency of the
proposed scheme improves regardless of γ, while the energy efficiency of all the reference
schemes deteriorates. Table 2 shows the average energy-efficiency ratio of the proposed
scheme to the highest one obtained by the reference schemes. The schemes in parentheses
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also denote the reference scheme with the highest energy efficiency. If 10 ≤ γ ≤ 20 and
10 ≤ N ≤ 20, FPLinQ has the highest energy efficiency among the reference schemes.
Otherwise, WWMSE has the highest energy efficiency among the reference schemes. The
proposed scheme has the highest energy efficiency compared to all reference schemes. For
N = 50, the proposed scheme can achieve 168∼ 506% of average energy efficiency obtained
by the best-performing reference scheme.

Table 2. The average energy-efficiency ratio of the proposed scheme to the best performing reference
scheme. The schemes in parentheses also denote the reference scheme with the highest energy efficiency.

γ [dB]
N

10 20 30 50

0 1.16 (WMMSE) 1.51 (WMMSE) 1.37 (WMMSE) 1.68 (WMMSE)

5 1.33 (WMMSE) 1.57 (WMMSE) 1.73 (WMMSE) 2.12 (WMMSE)

10 1.44 (FPLinQ) 2.18 (FPLinQ) 2.21 (WMMSE) 2.74 (WMMSE)

15 1.54 (FPLinQ) 2.44 (FPLinQ) 2.99 (WMMSE) 3.43 (WMMSE)

20 2.09 (FPLinQ) 2.98 (FPLinQ) 3.32 (WMMSE) 5.06 (WMMSE)

6. Conclusions

In this paper, we propose a self-regulating power control scheme based on deep
reinforcement learning for D2D communication networks. The proposed scheme uses
DDPG to generate a continuous action, which corresponds to the transmission power level
of each D2D transmitter. The DDPG uses full channel gains as an input state to the Critic
network in order to evaluate the actions performed by each D2D transmitter during the
training phase, but it only uses local channel gains that each D2D transmitter can obtain by
measuring the uplink sounding symbols transmitted by surrounding D2D receivers as an
input state to the Actor network. Thus, each D2D transmitter can autonomously determine
its transmission power level upon training completion. The performance of the proposed
power control scheme is compared to the other reference schemes such as FLashLinQ,
FPLinQ, and WMMSE in terms of average sum-rate and energy efficiency. The average
sum-rate in the proposed scheme begins to be higher than in the reference schemes when
N increases beyond 20. Moreover, the presented scheme has the highest energy efficiency
in all situations. It can be concluded that the proposed scheme allows D2D pairs to deal
with severe interference in large-scaled D2D networks with a large number of D2D pairs
by self-regulating their transmission power levels while achieving high energy efficiency.
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