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Abstract: The focus of this work is the extension of nonlinear state estimation methods to gas-lifted
systems. The extended Kalman filter (EKF), unscented Kalman filter (UKF) and particle filter (PF)
were used to estimate the nonlinear states. Brief descriptions of the filters were first presented starting
from the linear Kalman filter. Hypothesis tests on the expectation of the residuals were performed
to show how close to optimal the estimation methods are and it showed the UKF estimates to be
slightly better than EKF while PF performs the worst. The PF has poor accuracy using residual
visualisation, hypothesis test and the root mean squared error (RMSE) values of the residuals. The
gas-lifted system exhibits casing heading instability where the states show oscillatory behaviour
depending on the value of the input but the results here do not change in a known way for each
filter as the input is changed from the non-oscillatory region to the oscillatory region. Therefore, for
this noise distribution and model assumption, either the EKF or UKF can be used for nonlinear state
estimation with UKF better preferred if computational cost is not considered when control solutions
are used in gas-lifted system.

Keywords: extended Kalman filter; gas lift; particle filter; unscented Kalman filter; sensor

1. Introduction

Gas-lifted systems are usually situated in harsh environments or deep below the
sea surface for sensors to produce reliable measurements. This is due to the difficulty
encountered when deploying the sensors in the location required to provide good measure-
ment, excess heat effect on the sensors, and reaction between the sensors and the harsh
environments among other reasons.

Most control solutions in gas-lifted systems rely on these sensor measurements, hence
the states or variables used in the controllers are unreliable. This is the case in [1,2] where a
control solution was used to remove casing heading instability assuming all measurements
were available and reliable. However, in [3-5] top-side measurements were used by the
observers and Kalman filters to estimate the states for the controller.

The performances of these filters on gas-lifted systems vary due to the dependence
of the model on the underlying assumptions used at the modelling stage, in addition
to the noise assumption. In the linear case, the Kalman filter is the optimal estimation
method used [6,7]. A gas-lifted system is inherently nonlinear, and if it is used in this form,
nonlinear filters such as the extended Kalman filter (EKF) [8], unscented Kalman filter
(UKF) [9,10] or particle filter (PF) [11] among other nonlinear state estimation methods
should be used. These nonlinear state estimation methods have been applied successfully in
many fields such as navigation [12], robot localisation [13] and fault detection in chemical
process [14], but they have not found much application in gas-lifted systems. A close
application to gas-lifted systems are the use of the EKF for leak detection in pipes (which
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may not necessarily be gas lift pipes) [15] and the UKF with linear model predictive control
(MPC) for optimisation of gas-lifted systems [16].

This limited application of nonlinear filters in gas-lifted systems is due to the fact
that linearising the system about an operating point and applying the linear Kalman filter
is usually sufficient in most control applications. However, as the demand for optimal
operation of gas-lifted systems is increasing, using the nonlinear filters makes it possible to
estimate the states at various points, hence making it easier to approach these demands
as much as possible. The choice of filter type to use in state estimation depends on the
accuracy requirements, the complexity of the filter, the computational demand, the speed
of convergence and the degree of linearity of the system among other factors.

A hybrid approach to optimisation of gas-lifted systems proposed in [17] reduces the
steady state wait-time associated with static real-time optimisation (RTO). This hybrid
approach uses model adaptation that involves parameter updates using dynamic models
while optimisation takes place using static nonlinear models. To meet up with the model
adaptation, speed of convergence is the most important consideration for filter selection.
Faster filters such as that proposed in [18] which uses a direct approach to parameter
estimation are used to decrease the convergence time of the parameter estimation. When
the sensor measurements are unreliable, this hybrid approach can be implemented at a
more optimal level using both state and parameter estimation approach like that presented
in [19].

In this article, we discuss and apply the EKF, UKF and PF to gas-lifted systems and
examine the performances of these filters on the system. We compare the performances of
the filters on the system by examining the residuals and performing hypothesis tests on
the residuals. This research provides a basis to select a nonlinear filter based on estimation
accuracy and computational demand when the gas-lifted system is to be operated with
nonlinear models. The outputs from these nonlinear filters in gas-lifted systems are useful
for decision making in areas of control application such as fault detection and diagnosis,
casing heading instability removal and general optimal operation of the system.

This paper is organized as follows: Section 1 introduces the paper. Section 2 discusses
the state estimation methods considering the linear Kalman filter before discussing the main
nonlinear filters of EKF, UKF and PF. Section 3 discusses gas-lifted systems and presents the
differential algebraic equations (DAEs) that describe them. Section 4 presents the results
and discussion which is the filter performances and Section 5 concludes the paper.

2. Materials and Methods—State Estimation

We present key features of various estimation techniques before comparing their
performances. We first present the linear Kalman filter upon which the nonlinear filters
that we want to apply are built. In all the filter types presented, the estimation processes
follow the same pattern of prediction and update. What differentiates the estimation
processes is the method of prediction and update. Additionally, within the same filter type,
these procedures can differ depending on the computational demand, accuracy or other
considerations.

2.1. Kalman Filter (KF)

The Kalman filter (KF), introduced in 1960, estimates states of linear system whose
model is not exactly known and the inaccuracy represented by the model noise is given
in (1), with the noise itself as given in (2) [20]:

X = Axp_1 + Buy + wy, (1a)
Yr = Cxy + vy (1b)

w ~ N(0,R),v ~ N(0,Q) )
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where w and v are the state and output noise respectively which are assumed to be white,
uncorrelated and follow gaussian distribution of zero mean and non-zero covariance. A, B
and C are state transition matrix, input matrix and output matrix respectively.

The Kalman filter is an optimal estimator for a linear system even if w and v are
still not Gaussian. The Kalman filter combines information from system prediction and
measurement to obtain the best estimates of the system by multiplying their probability
density functions (PDFs). The gain is selected based on which provides more reliable
information between the state estimates up to a given time instant and the measurement
at the given time instant which are indicated by the covariance. This is done through an
iterative process that involves the prediction stage and correction stage as described below:

Prediction:
£, = A%y_1 + Buy, (3a)
P, = AP AT +Q (3b)

Correction:
Ky =P CT(cP CT +R)7}, (4a)
25 =2+ Ki(yx — C%), (4b)
P} = (I - K«C)Pg (4c)

P, Q and R are the state error covariance, state noise covariance and measurement noise
covariance respectively while K is the Kalman gain. The initial values for the estimated
state and error covariance are [21]:

3?0+ = E(xo),

Q)

Py =E|(x0— %5 )(xo — %)

where E implies expectation.

At the prediction stage, the states are predicted based on the system model in (1a).
Then the state error covariance matrix is obtained according to (3b), giving £, (a priori
state) and P_ (a priori state error covariance) respectively. These are used to compute
the Kalman gain (K) at the correction stage. The estimated state is obtained based on the
available measurements and the state prediction. The error covariance of the state estimates
is then calculated from the estimated states giving £;" and P,” which are the posterior states
and error covariances respectively.

2.2. Nonlinear Filters

The nonlinear filters are built on the ideas of the Kalman filter. The extended Kalman
filter (EKF) is used for low nonlinear systems with Gaussian noise distribution. It computes
the Jacobian matrices of the state transition function in (6a) with respect to the state and
the state noise at previous state estimates to obtain A and W respectively. Similarly, it
computes the Jacobian matrices of the output function in (6b) with respect to states and the
output noise to obtain matrices C and V respectively.

Xk = fr—1(Xk—1, Ug—1, Wx), (6a)
Yk = 8k(Xk, vx) (6b)

The prediction and update procedure for the EKF is then given in (7) and (8) respec-
tively [21].
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Prediction:

2 = o1 (2, m1,0), (7a)

PI: = AkflpkflA]zll + kaleflwkal (7b)
Correction:

Ky = P CL(CP CF + ViR V) 7, (8a)

2 = % + Ke(yx — 8k (%,0), (8b)

P = (I-KC)Pg (8¢)

Other variants of the EKF exist that minimise the linearisation error inherent in the
EKF. These variants are called higher order EKF as they consider higher order terms in the
Taylor series linearisation [22].

For highly nonlinear systems with Gaussian noise distribution, the unscented Kalman
filter (UKF) is a better estimator than the extended Kalman filter (UKF). The UKF represents
the system state space by a few carefully selected sigma points and uses the unscented
transform (UT) to obtain the statistics of the estimated states. The prediction stage in UKF
is a three-step process that involves forming the matrix of sigma points, propagating the
sigma points through the nonlinear model and obtaining the estimates for the mean and
covariance through a third order linearisation of the nonlinear system. While the correction
step involves transforming the sigma points into measurement space using (6b) to obtain
y+ and computing the transformed mean and covariance of the estimated states.The use of
three terms in the linearisation improves the accuracy, hence minimises the linearisation
error in the UKF.

When the system is nonlinear and the state distribution is non-Gaussian, the UKF
becomes insufficient for the state estimation hence particle filter is used. The PF represents
the system states with particles similar to sigma points in UKF although the particles are
randomly selected not using the algorithm as in UKF. The estimate is determined by the
probability that the state takes a certain value hence the state transition function, the state
estimates and other variables are expressed as PDF. The final estimate is then obtained from
the PDF using any method that is desired such as mean, expectation, states with maximum
weight, etc. The PF has prediction, correction and re-sampling stages. At the prediction
stage, state hypotheses or particles are generated from the initial states of the system and
propagated through the state transition function. At the correction stage, conditional PDF
of the measurement, p(zx|xx) is computed based on the measurement function in (6b) and
the knowledge of the PDF of the noise (v;). The PDF of the estimated states is thereafter
obtained. At the resampling state, new particles are selected again based on the weights.
The weights are used to compute a value that shows if the current particles still represent
the state distribution accurately enough. This value, called effective number of particles
and denoted as N, is given in (9) as:

1
Neff = ———— 9
N W ¥
Since the weight w is normalised to sum to 1, the more particles that still contribute to
the distribution (particles with reasonable weights), the more the value of N,¢¢. Hence a
threshold is set which when N, falls below, resampling takes place. Resampling can also
take place at a fixed time interval or using a threshold defined based on the inverse of the
particle weights. In [23], however, it is shown that using the N, fF reduces the number of
resampling steps compared to the other methods described above.
Table 1 presents a summary of the major estimation types discussed briefly. It is
seen there that the complexity of the estimation type varies from the very simple linear
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Kalman filter to the very complicated particle filter which also shows the variation of the

performance.

Table 1. Summary of the

main estimation methods.

Estimator Type System Type Key Method Used Complexity

Kalman Filter Linear with Gaussiannoise ~ Multiplication of the covariances Very simple

Extended Kalman filter Nonlinear with Gaussian Linearisation/Kalman filter or partial derivative with ~ Simple
noise nonlinear state transition function

Unscented Kalman Filter Highly nonlinear with Selection of sigma points and utilisation of UT Complex

Particle Filter

Gaussian noise
Highly nonlinear with non-
Gaussian noise

Propagation of randomly selected particles from the

Very complex

initial states/use Bayesian approach for state estimates

3. The Gas-Lifted System

The gas-lifted system is one of the artificial lift methods employed when the natural
energy for lifting hydrocarbons from the reservoir into the production platforms becomes
insufficient. Figure 1 is a schematic of a gas-lifted system. The states are the mass of gas
in the annulus, the mass of gas in tubing and the mass of oil in tubing indicated as x1, x
and x3 respectively. A gas-lifted system sometimes goes to a depth of several hundreds of
metres below sea level making it difficult for sensors to provide accurate measurements of
the states.

The key features of the system are the two volumes which are the annulus (that holds
x1) and tubing (that holds x; and x3). The reservoir pressure (P;) provides the natural
energy for lifting the crude up to the storage tank. Lift gas enters through the gas lift valve
and out through the production choke while the injection valve connects the annulus and
the tubing. All variables in gas-lifted system are positive, hence a gas-lifted system is a
positive system.

production choke

——> produced liquid

Wpc PS
gas lift valve - p
P .
Iiftgasin—»:[SQj:[ .
Wy, , “
°l)
'
l annulus
0 <«
0
X . l
(]
s |
Xp—————»t
[} .
tubin
[} l 9
o injection valve| [y P
| packin
2 kwrz 9 PaH
—:/;. Wvoir
__/mr\'\

Figure 1. A single well gas-lifted system showing the states in red. These states are difficult for the
sensors to measure accurately hence must be estimated by filters using the information from the
sensors before being used for any control solution.
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3.1. Gas-Lifted System Models

Gas-lifted system models represented by partial differential equations like those
in [24,25] more accurately describe the system but are more complex. As noted in the
introduction Section 1, the models of gas-lifted systems depend on the underlying assump-
tion made. The more complex models are, the more difficult to use, hence trade-offs are
usually made between model accuracy and ease of use for control application. For our
estimation problem here, we use a slight modification of the models presented in [26]
which were verified in OLGA software to be very close to the real system. These models
are presented below:

The mass (differential equations):

T — vy~ wi (10)
T iy + g — wpg an
% = Wro — Wpo (12)
The flowrate:
Wiy = Ciy \/max(O, 04(Pa — Py)) (13)
We = Cpey/max(0, pr(Puy — P.)) f (1) (14)
wro = Cip \/max(O, 00(Pr — Pyp,)) (15)
Wpg = (x2fx3>wpc (16)
wrg = GORwyo (18)
The pressure:
P, = (Vjﬁw + g‘Z’)xl (19)
P = 1o <Vf;3) 20)
Py = Py + (x2 + x3)A% (21)
Py, = Poy + pog Hp, (22)
The density:
Pa = f & e (23)
pu= 252 (24)
f(u) = 50" (25)

The mass equations give the differential equations while the pressure, flow rate and density
give the algebraic equations, hence system model is a differential algebraic equation (DAE)
of the form (26).
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x = f(x,z,u), (26a)
0=g(x,zu) (26b)

Table 2 lists the symbols, definitions and units of the variables used in the models while
Table 3 lists the constants, definitions, units and values used in this article. Equation (25)
shows how the input u, which is the percentage valve opening is applied to the flow rate
through the production choke to prevent zero flow rate in this case. The max in the flow
rate equations ensures that the upstream pressure is bigger than the downstream pressure
else a flowrate of zero is produced to ensure a non-negative flowrate. V, and V; are annulus
and tubing volumes respectively and are calculated from their respective areas and lengths.

Table 2. Lists of symbols, definitions and units of the variables used in the models.

Variable Definition Unit
Wy Gas flowrate into the annulus kgs™!
Wiy Gas flowrate from annulus into tubing kgs!
Wrq Gas flowrate from reservoir into tubing kgs!
Wpg Gas flowrate through the choke kgs™!
Wro Oil flowrate from reservoir into tubing kg s!
Wpo Oil flowrate through the choke kgs™!
Wpe Mixture flowrate through the choke kg g1

P, Annulus pressure N m~2
Pyn Wellhead pressure N m—2
Py Tubing pressure N m~2
Py, Bottomhole pressure N m—2
Oa Annulus gas density kg m~3
ot Tubing mixture density kgm™3

Table 3. List of the constants, definitions, units and values used in this article.

Parameter  Definition Unit Value
H, Height of annulus m 1500

D, Diameter of annulus m 0.189

H; Height of tubing m 1500

Dy Diameter of tubing m 0.121
Hyy, Height of bottomhole m 500

Dy Diameter of bottomhole m 0.121

C, Reservoir valve coefficient m3h~! 2.6 x 1074
Ciy Injection valve coefficient m3h~! 104

Cpe Choke valve coefficient m3h! 2x10°3
00 Reservoir oil density kg m~3 1000
GOR Gas/oil ratio - 0.01

P, Reservoir pressure Nm 2 15 x 10°
P Separator pressure Nm2 2 x 10°
T, Annulus temperature K 301

Tw Tubing temperature K 305

My Molar mass of gas kg 0.028

R Gas constant JKIMm!

3.2. Gas-Lifted Input and Measurements

The input here is the percentage valve opening that controls the flow rate of produced
fluid through the production choke. In other cases, the flow rate of lift gas into the annulus is
also considered as input but we fix it here with a regulatory controller. The measurements
are annulus pressure (P;), wellhead pressure (P,;) and mixture density (p;) which are
readily available from the sensors and are reliable [6]. The states as stated earlier are the
masses presented in Equations (10)—(12).
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4. Results and Discussion—TFilters Performances on Gas-Lifted Systems

In this section, we compare the performances of the three nonlinear filters on the
gas-lifted system. The assumed distribution is Gaussian for all three filters. The initial
condition, x¢ = [2300 750 5800] kg is the same for all three filters and the input is fixed at
u = 0.6 throughout for all three filters. The state covariance, Py = diag([100 10 1000]), the
state noise, Q = diag([100 16 160]) and the measurement noise, R = diag([1000 1000 40])
are the same for all three filters. The sampling time is 60 s (1 min) for all three filters and
the system is simulated over 150 samples (2.5 h). For the UKF, a = 1073, 8 = 2 and x = 0.
The PF uses maximum weight to obtain the state estimates from the posterior distribution
since the weight reflects the probability that the true state is the given particle (i.e., the
states with higher weight have a higher chance of being the true state of the system). The
threshold for triggering resampling is set to 0.8 to quickly remove particles that are not
contributing significantly to the distribution while the sampling method is residual. All the
simulations were done in MATLAB version R2021a [27]. Euler and ODE15S were used to
solve state trajectories of the differential algebraic equation (DAE).

4.1. States and Residuals Visualisation

Figure 2, Figure 3 and Figure 4 show the true and estimated states for the EKF, UKF
and PF respectively. In Figure 2 the estimated states (red dash, dotted) converge to the
actual states (blue solid) in under 10 min for all three states. The estimated states converge
to the true states in Figure 3 too but at different times with x, fastest whereas x3 being the
slowest. Figure 4 shows that estimated states track the actual states poorly.

(a) mass of gas in annulus
T T

J/
D 2400 |- .
\v true states
————— estimated states
2300 | | 1 | | I T
0 20 40 60 80 100 120 140 160
time (min)
b) mass of gas in tubin
750 T T ( ) T |g T g T T
700 _
<
QN 650 _
>
600 1 1 1 1 7
0 20 40 60 80 100 120 140 160
time (min)
(c) mass of oil in tubing
T T T T T T T
5500 .
®
>
5000 L
0 20 40 60 80 100 120 140 160
time (min)

Figure 2. True and estimated states of gas-lifted systems using the extended Kalman filter (EKF). All
three states estimates (red dash-dotted lines) converge to the true states (blue solid line) about the
same time. These states are the mass of gas in annulus, the mass of gas in tubing and the mass of oil
in tubing respectively.
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(a) mass of gas in annulus
T T

true states
=== estimated states

L

50 100 150
time (min)
{b) mass of gas in tubing

0 50 100 180
time (min)

{c}) mass of oil in tubing
T T

0 50 100 150
time (min)

Figure 3. True and estimated states of gas-lifted systems using the unscented Kalman filter (UKF).
The estimated states converge at different times with x, being the fastest and x3 slowest.

X —true states
(a) rlnass of glzls inannulus | ... astimatod states

160
time(min)
(b) mass of gas in tubin
'B':}{:' T T T Iga T g T T
160
time(min)
(c) mass of oil in tubi
E‘{:‘{}:} T T T T II-.g T T
=
=,
o
E
q{}{}:} 1 1 1 1 1 1 1
0 20 40 60 BOD 100 120 140 160

time(min)

Figure 4. True and estimated states of gas-lifted system using a particle filter (PF). The estimated
states do not converge to the true states exactly due to the particle sampling techniques used by PF.

The effect of random sampling of the states into particles and obtaining the state
estimates from the posterior distribution is seen in the poor tracking performance of the
PF. While the UKF also samples the states before using the unscented transformation to
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obtain the anterior state statistics, the sampling here is carefully and deterministically done
hence the UKF tracks better than PE. Unlike in the case of EKF and UKF where each state
is propagated through the state transition function and is estimated individually, the PF
propagates states hypotheses. The consequence of this is that the actual state is not being
properly tracked like that of the EKF and UKF. The result is not better when the state
estimate is obtained from the posterior distribution by using the mean of the particles
despite that the true state is believed to be around the mean of the 3000 particles.

From Figures 2 and 3, the UKF tracks better than EKF due to the use of three term
approximation of the Taylor series of the nonlinear system by the UKF while EKF uses two
terms. Hence based on the visualisation of the true and estimated states, the UKF performs
better whereas the PF performs least. This result is different from the one performed on
mechanical system in [12] where the EKF performed poorest while the performances of the
UKEF and PF were similar. This justifies the extension of these methods to gas-lifted systems
as the performance of the filters depends also on the system whose states are estimated in
addition to the noise distribution.

The initial slow convergence of the states means that the residuals have a higher
magnitude for the first few state estimates. We remove this transient part and show in
Figure 5, the residuals. In all three measurements, the residuals from the PF is larger than
the EKF and the UKF reaching a value of 2.1 x 10°, —1.8 x 10° and 1.8 x 10" for P, P,,, and
p: respectively. The UKF has a smaller residual than the EKF for P, and P, but bigger for p;
indicating that the UKEF still has the best estimation performance by residual visualisation.

EKF
a annulus pressure residuals
T T T

0 20 40 60 80 100 120 140

time (min)
b wellhead pressure residuals
T e i . o7 T T

0 20 40 60 80 100 120 140
time (min)

Figure 5. Estimated states full residuals of gas-lifted system using EKF, UKF and PF. The residuals
from estimating using PF is the poorest for the three measurements.

We examine the residuals further by first considering the normalised residuals. The
normalised residuals are obtained by dividing the residuals by the steady state values of
the actual measurements given as Y1, = [Ps Pypn o] =[9,930,500 N m2 4,678,800 N m 2
71.9316 kg m3]. Figure 6 shows the normalised residual plots. For each output, the
residuals resulting from the EKF (blue solid line), UKF (red dash-dotted line) and PF (blue
dotted line) are compared.
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EKF
a annulus pressure residuals |7 "T"~ UKF
0.02F " T O T T T T . PF
E 0.01 B ° --. ° -.-. senet e .. * . -.-' * "0. 3 -.. - .“0.
Z o eomactloc il o e S s ~
© Seee ‘. .
o -0.01} . . i
1 1 1 1 1 1 s
0 20 40 60 80 100 120 140
time (min)
b wellhead pressure residuals
T P . - T T T T
c _
=
-~ _
E Ry
0 0.04 b= . s ! . s ! .
0 20 40 60 80 100 120 140
time (min)

c mixture density residuals
T T

py (Kgm'3)

time (min)

Figure 6. Estimated states normalised residuals of gas-lifted systems using EKF, UKF and PF. The
normalised residuals are obtained from the residuals by dividing each residual by the corresponding
steady state value.

We observe from Figure 6 that normalised residual has a very low value, especially for
the EKF and the UKF. On zooming in on Figure 6 at steady state, these values are of the
order of 1 x 1073 for UKF and 3 x 10~ for the EKF but about 0.2 and —0.2 for PF when
the residual is the mixture density. This shows that the estimates are better in the EKF
and UKF than in PF with the UKEF still the best. Additionally, for the three measurements,
the distribution of the residuals around the zero line is poor for the PF except in the case
of p; in Figure 6¢. Furthermore, the distribution of the residual for the EKF and UKF are
however even around the zero line including in Figure 6¢ where the residual for the UKF is
large. The more even the distribution of the residuals around the zero line, the better the
estimated states.

The above estimation was performed at a fixed value of u = 0.6 which is in the stable
region. The performance of the filters depends on the degree of linearity of the system
and the noise distribution. The gas lift system is seen to exhibit different behaviour as
input increases from 0 to 1. We therefore, perform statistical tests on the residuals. The
first check is to see if the residuals of the filter outputs follow the Gaussian distribution of
zero mean and non-zero variance. This we obtain from the expectation test on the residual.
Next, we examine the RMSE for the residuals of gas lift system at three different inputs:
u = 0.60, u = 0.75 and u = 0.90. These inputs correspond to the system in the stable region,
the system sliding into the unstable region and the system fully into the casing heading
instability region respectively.

4.2. Statistical Tests

Two tests were performed on the residual here: the expected value test to examine the
shape of the residual distribution and the root mean square error to show how close the
estimates are to the true states.

4.2.1. Expected Value Test

Since it is impossible to perform an infinite number of experiments to determine if the
mean of the residual is close to zero, we use the expected value test to infer the centre of the
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residual distributions and with hypothesis tests, we check the mean of the entire residual
distribution. The residual (innovation since it is stochastic) is obtained as the difference
between the actual measurements from sensors and the outputs computed using the output
function in (6b) with the states being the estimated states. The residual that is more evenly
distributed around zero produces a distribution that is close to normal and increases the
accuracy of estimation. Non-normality of residual does not exactly translate into poor
estimation, especially in the case of nonlinear states with many samples, however, it helps
to compare the performance of the estimation methods. A total of 151 samples were used
for each filter simulation and the mean value for the residuals is computed using (27).

1 N
k) = < Y ri(h) @7)
i=1

where 7 is the residual k is the measurement index corresponding to P,, P, and p;, N is
the number of samples which is 151 here and 7 is the mean of the residuals.

The hypothesis test is conducted on the computed mean of the residuals for the three
measurements and Table 4 shows the results for the nine residuals. A checkmark “v"”
represents the true hypothesis which is that the residual comes from a normal distribution
while an “X” represents an alternative hypothesis which is that the residual does not
come from a distribution that is normal. The corresponding p-values are also provided
in the table.

Table 4. Hypothesis test for the residuals for estimates with the EKF, UKF and PF. v'indicates
true hypothesis (which indicates the mean of the residual is zero) while X indicates the alternative
hypothesis (which is that the mean of the residual is not zero). The p-values are also indicated.

Residual EKF UKF PF
P, X X X

19 x 104 43 %1073 3.8 x 10736
Pun X X X

15 %1073 32 x 10712 22x 1078
Ot v v X

7.1x 1071 6.6 x 1071 3.9 x 1073

Optimal estimation is associated with a linear Kalman filter where the state and the
measurement functions are linear and the noise is Gaussian. The effect of this is that when
the state with Gaussian distribution is estimated, the residual (innovation) is Gaussian.
This is not the case with other filters whose models are nonlinear. We therefore use the
hypothesis test on the residual to see how close the nonlinear filter residuals are to being
Gaussian. As seen in Table 4, the entries for most of the hypothesis tests indicate that the
residuals do not come from a distribution that is Gaussian except for the residual p; for
both EKF and UKF. The acceptance of the true hypothesis in these two isolated cases is not
enough to draw the conclusion that the residual of the mixture density is normal when
estimated with EKF and UKF as this might have happened by chance.

The p-values that indicate the chance that the true hypothesis holds are also provided
and they indicate that the EKF and UKF have a higher chance of having residuals that are
normal since they have higher p-values than the PF. The p-values of the UKF are better
(bigger) than that of EKF except for P,;,. The PF has the worst performance as the p-values
are smaller than those of EKF and UKEF. Both residual visualisation and the expected
value test indicate that UKF is slightly more accurate than EKF with PF having the lowest
estimation accuracy of the three filters for this system.

4.2.2. Root Mean Square Error

The RMSE for the residual is the most common error metric for testing the accuracy
of the filters [8,12,28]. We examine the RMSE for the filters under three different input
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conditions to see if the accuracy of the filter depends noticeably on the effect of the casing
heading instability. Casing heading instability results from the oscillatory behaviour of
system depending on the input value. These inputs are u = 0.6, u = 0.75 and u = 0.9
which correspond to the stable region, the region going into casing heading instability and
the region inside casing heading instability respectively. Table 5 shows the hypothesis test
and the RMSE for the three filters for u = 0.6, u = 7.5 and u = 0.9 respectively.

Table 5. RMSE for estimates with the EKE, UKF and PF with casing heading instability. Hypothesis test
on the residual is provided where v indicates true hypothesis while X indicates the alternative hypothesis.

u Residual EKF UKF PF
0.60 P, X X X
9.1 x 10° 23 6.4 x 10
P X X X
7.8 x 103 1.1 x 10? 5.0 x 10%
Ot v v X
0.52 6.4 6.2
0.75 P, X X X
1.4 x 10* 23 7.1 x 104
P X X X
7.9 x 103 1.4 x 102 3.7 x 10%
Ot v v X
0.97 6.6 6.3
0.90 P, X v X
2.6 x 10* 25 3.0 x 10°
P X X X
7.6 x 103 1.2 x 102 1.4 x 10°
Ot v v X
21 6.4 6.0

It can be observed from Table 5 for all the three input values, the hypotheses tests
are the same except for the P;, which changed to true hypothesis when 0.9 while it is the
alternative hypothesis for u = 0.60 and u = 0.75. Again this might have happened by
chance. While the RMSE of P, residuals resulting from estimating with EKF increases
from 9.1 x 103 to 14 x 10% and 26 x 103, for the same EKF, the P, residual increases from
7.8 x 10° to 7.9 x 10° and then decreased to 7.6 x 103 for u = 0.6, u = 0.75 and u = 0.9
respectively. The RMSE of the p; residual for estimation using EKF increased from 0.52 to
0.97 to 2.1. The RMSE for estimates using the UKF does not show much variation in values
as u is changed into the unstable region. The estimation using the PF behaves similar to the
UKEF as the RMSE for P; increases from 6.4 x 10* to 7.1 x 10* to 30 x 10%.

This shows that there is no defined behaviour of the estimation accuracy of the non-
linear filters as input changes from the non-oscillatory region to the oscillatory region.
However, using UKEF still shows better prospects as it appears to have the least of the
change in RMSE when a gas-lifted system is operated within these input ranges. Addi-
tionally, note that the best indicator of the accuracy of the measurement is the value of the
RMSE of the residuals and residual visualisation. The statistical test does not significantly
affect the acceptance of the estimation accuracy considering that the states are nonlinear.
This will be different if the states are linear and the noise distribution is Gaussian where
having a normally distributed residual gives us confidence in the degree of accuracy of our
estimation. Additionally, care should be taken to interpret X in Tables 4 and 5 as a failure of
the null hypothesis test and not as products (multiplication).

The estimation accuracy depends on the proper selection of the matrices P, Q and R
as described in [8]. We examine how the change in R affects the filter performance using
the EKF on x; (mass of gas in annulus). Figure 7 shows the true and estimated states for
R =110 10 4], [100 100 40] and [1000 1000 400] respectively. Figure 7 shows that there is no
significant difference in the estimates for these different values of R. A minor difference
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exists during the transient state and during a major change in the direction of the graph.
Similar results were obtained when the different filters were used with other states. This
result indicates that for the gas-lifted system where we selected P, Q and R arbitrarily, the
previous results were not affected significantly by these choices.

true and estimated mga for various R

2420 ; : :
- = —R=[10104)
|| ===-==R =[100 100 40] |
2400 R = [1000 1000 400]
2380 | .
— Wi
o |
= [
@ 2360 I
£ \
L
2340 | |
2320 1
2300 : : : : : : :
0 20 40 60 80 100 120 140 160

time (min)

Figure 7. Estimated states and actual states for various values of R. The estimates did not change
significantly with the values of R.

5. Conclusions

It is shown here that the gas lift system’s nonlinear states can be estimated directly
using the EKF, UKF or PF without the need to linearise the system and apply a linear
Kalman filter. Based on the noise assumption here, the UKF performs slightly better than
the EKF by examining the RMSE for the residuals, visualising the states and examining the
residual using the hypothesis test. This is because the UKF uses three term approximation
of the Taylor series while the EKF uses one term. The additional terms improve the accuracy
of the UKF over the EKF for the gas lift system. The performance of the PF is the worst.
However, with the computational advantage of the EKF, the states of the gas lift system can
be estimated using the EKF since there is just a small difference in performance between
using it and the UKFE. Hence for nonlinear control applications such as casing-heading
instability, fault detection and diagnosis and general optimal operation of gas lifted systems,
with Gaussian noise, the EKF can be used for state estimation.

The comparison here is based on the estimation error and does not consider explicitly
the speed of convergence of the estimates to the true states because sampling times are larger
in gas lift systems than in electrical and mechanical systems. Further works should consider
both estimation error and the speed of convergence considering the importance of speed of
convergence in parameter estimation for the hybrid optimisation in gas lift network.

Author Contributions: Conceptualization, O.A., D.O. and EK.J.; formal analysis, O.A., D.O. and
FK].; funding acquisition, EK].; investigation, O.A.; methodology, O.A. and FK.J.; software, O.A. and
AM.S,; supervision, EKJ.; validation, O.A., D.O. and A.M.S.; writing—original draft, O.A.; writing—
review and editing, O.A., AM.S. and FK.J. All authors have read and agreed to the published version
of the manuscript.



Sensors 2022, 22, 4875 15 of 16

Funding: This research was funded by THE PETROLEUM TECHNOLOGY DEVELOPMET FUND (PTDEF)
and the APC was funded by Conselho Nacional de Desenvolvimento Cientifico e Tecnolégico (CPNQ).

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Eikrem, G.O,; Foss, B.; Imsland, L.; Hu, B.; Golan, M. Stabilization of gas lifted wells. IFAC Proc. Vol. 2002, 35, 139-144. [CrossRef]

2. Rashid, K.; Demirel, S.; Couét, B. Gas-lift optimization with choke control using a mixed-integer nonlinear formulation. Ind. Eng.
Chem. Res. 2011, 50, 2971-2980. [CrossRef]

3.  Eikrem, G.O.; Imsland, L.; Foss, B. Stabilization of Gas Lifted Wells Based on State Estimation. IFAC Proc. Vol. 2004, 37, 323-328.
[CrossRef]

4. Eikrem, G.O.; Aamo, O.M.; Foss, B.A. On instability in gas lift wells and schemes for stabilization by automatic control. SPE Prod.
Oper. 2008, 23, 268-279. [CrossRef]

5. Aamo, O.M,; Eikrem, G.O.; Siahaan, H.B.; Foss, B.A. Observer design for multiphase flow in vertical pipes with gas-lift—Theory
and experiments. J. Process. Control. 2005, 15, 247-257. [CrossRef]

6.  Scibilia, E; Hovd, M.; Bitmead, R.R. Stabilization of Gas-Lift Oil Wells Using Topside Measurements; IFAC: New York, NY, USA, 2008;
Volume 41, pp. 13907-13912. [CrossRef]

7.  Krishnamoorthy, D.; Foss, B.; Skogestad, S. Real-time optimization under uncertainty applied to a gas lifted well network.
Processes 2016, 4, 52. [CrossRef]

8.  Schneider, R.; Georgakis, C. How to NOT make the extended kalman filter fail. Ind. Eng. Chem. Res. 2013, 52, 3354-3362.
[CrossRef]

9.  Wan, E.A,; Van Der Merwe, R. The unscented Kalman filter for nonlinear estimation. In Proceedings of the IEEE 2000 Adaptive
Systems for Signal Processing, Communications, and Control Symposium (Cat. No. 00EX373), Lake Louise, AB, Canada,
4 October 2000; pp. 153-158.

10. Bradford, E.; Imsland, L. Stochastic nonlinear model predictive control using Gaussian processes. In Proceedings of the 2018
European Control Conference (ECC), Limassol, Cyprus, 12-15 June 2018; pp. 1027-1034.

11.  Arulampalam, M.S.; Maskell, S.; Gordon, N.; Clapp, T. A Tutorial on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian
Tracking. IEEE Trans. Signal Process. 2002, 50, 174-188. [CrossRef]

12.  Konatowski, S.; Kaniewski, P.; Matuszewski, ]. Comparison of Estimation Accuracy of EKF, UKF and PF Filters. Annu. Navig.
2017, 23, 69-87. [CrossRef]

13.  Wilbers, D.; Merfels, C.; Stachniss, C. A comparison of particle filter and graph-based optimization for localization with landmarks
in automated vehicles. In Proceedings of the 2019 Third IEEE International Conference on Robotic Computing (IRC), Naples, Italy,
25-27 February 2019; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2019; pp. 220-225. [CrossRef]

14. Mahmut, P; Lin, J.; Fu, L. A Tutorial on Particle Filters for Fault Detection and Diagnosis of Hybrid Systems. Int. J. Control.
Autom. 2017, 10, 109-120. [CrossRef]

15. Torres, L.; Jiménez-Cabas, ].; Gonzalez, O.; Molina, L.; Lépez-Estrada, F.R. Kalman filters for leak diagnosis in pipelines: Brief
history and future research. J. Mar. Sci. Eng. 2020, 8, 173. [CrossRef]

16. Sharma, R.; Glemmestad, B. Optimal Distribution of Lift Gas in Gas Lifted Oil Field Using MPC and Unscented Kalman Filter.
Int. ]. Electr. Comput. Eng. 2012, 6, 1081-1092.

17.  Krishnamoorthy, D.; Foss, B.; Skogestad, S. Steady-state real-time optimization using transient measurements. Comput. Chem.
Eng. 2018, 115, 34-45. [CrossRef]

18. Zhang, X.; Ding, F.; Xu, L.; Yang, E. Highly computationally efficient state filter based on the delta operator. Int. J. Adapt. Control.
Signal Process. 2019, 33, 875-889. [CrossRef]

19. Zhang, X.; Ding, F. Hierarchical parameter and state estimation for bilinear systems. Int. J. Syst. Sci. 2020, 51, 275-290. [CrossRef]

20. Kalman, R.E. A New Approach to Linear Filtering and Prediction Problems. ]. Basic Eng. 1960, 82, 35-45. [CrossRef]

21. Simon, D. Optimal State Estimation: Kalman, H infinity, and Nonlinear Approaches; John Wiley & Sons: Hoboken, NJ, USA, 2006.

22. Einicke, G.A. Smoothing, Filtering and Prediction: Estimating the Past, Present and Future, 2nd ed.; Prime Publishing: Northbrook, IL,
USA, 2019.

23. Elfring, ].; Torta, E.; van de Molengraft, R. Particle filters: A hands-on tutorial. Sensors 2021, 21, 438. [CrossRef] [PubMed]

24. Aliev, FA.; Dzhamalbekov, M.A.; II'yasov, M.K. Mathematical simulation and control of gas lift. J. Comput. Syst. Sci. Int.
2011, 50, 805-814. [CrossRef]

25. Shi, J.; Al-Durra, A.; Errouissi, R.; Boiko, I. Stabilization of artificial gas-lift process using nonlinear predictive generalized
minimum variance control. J. Frankl. Inst. 2019, 356, 2031-2059. [CrossRef]

26. Jahanshahi, E. Control Solutions for Multiphase Flow: Linear and Nonlinear Approaches to Anti-Slug Control. Ph.D. Thesis,

Norges Teknisk-Naturvitenskapelige Universitet, Fakultet for Naturvitenskap, Trondheim, Norway, 2013.


http://doi.org/10.3182/20020721-6-ES-1901.01491
http://dx.doi.org/10.1021/ie101205x
http://dx.doi.org/10.1016/S1474-6670(17)38752-9
http://dx.doi.org/10.2118/101502-PA
http://dx.doi.org/10.1016/j.jprocont.2004.07.002
http://dx.doi.org/10.3182/20080706-5-kr-1001.02354
http://dx.doi.org/10.3390/pr4040052
http://dx.doi.org/10.1021/ie300415d
http://dx.doi.org/10.1109/78.978374
http://dx.doi.org/10.1515/aon-2016-0005
http://dx.doi.org/10.1109/IRC.2019.00040
http://dx.doi.org/10.14257/ijca.2017.10.4.10
http://dx.doi.org/10.3390/jmse8030173
http://dx.doi.org/10.1016/j.compchemeng.2018.03.021
http://dx.doi.org/10.1002/acs.2995
http://dx.doi.org/10.1080/00207721.2019.1704093
http://dx.doi.org/10.1115/1.3662552
http://dx.doi.org/10.3390/s21020438
http://www.ncbi.nlm.nih.gov/pubmed/33435468
http://dx.doi.org/10.1134/S1064230711030038
http://dx.doi.org/10.1016/j.jfranklin.2018.11.032

Sensors 2022, 22, 4875 16 of 16

27. The Mathworks, Inc. MATLAB, version 9.10.0.1613233 (R2021a); The Mathworks, Inc.: Natick, MA, USA, 2021.
28. Atkinson, T.; Richter, A.W.; Throckmorton, N.A. The Accuracy of Linear and Nonlinear Estimation in the Presence of the Zero
Lower Bound. Fed. Reserve Bank Dallas Work. Pap. 2018, 2018, 1-32. [CrossRef]


http://dx.doi.org/10.24149/wp1804

	Introduction
	Materials and Methods—State Estimation 
	Kalman Filter (KF)
	Nonlinear Filters

	 The Gas-Lifted System
	Gas-Lifted System Models
	Gas-Lifted Input and Measurements

	Results and Discussion—Filters Performances on Gas-Lifted Systems
	States and Residuals Visualisation
	Statistical Tests
	Expected Value Test
	Root Mean Square Error


	Conclusions
	References

