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Over the past four decades, near-infrared reflectance spectroscopy (NIRS) has become
one of the most attractive and used technique for analysis as it allows for fast and simulta-
neous qualitative and quantitative characterization of a wide variety of food samples [1].
NIR spectroscopy is also essential in various other fields, e.g., pharmaceuticals [2], petro-
chemicals [3], textiles [4], cosmetics [5], medical applications [6], and chemicals such as
polymers [7].

The high level of interest in NIR spectroscopy among scientific and professional
sectors demonstrates its relevance. We hope that this Special Issue’s scope facilitates the
interchange of ideas and thereby aids in expanding the frontiers of this field of knowledge.
Furthermore, we aim to provide readers with a comprehensive summary of present state-
of-the-art NIR spectroscopy, trends in development, and future possibilities. We believe
that by doing so, we will be able to provide a chance for all contributors to make their
results and methodologies more visible, as well as to highlight current achievements in
their respective fields made possible by the use of NIR spectroscopy.

This Special Issue has had a resoundingly enthusiastic response, with several submis-
sions from academics and professional spectroscopists, resulting in a collection of 13 papers,
including one exhaustive review paper [8–20]. The articles submitted represent the variety
of the discussed field well, covering a wide range of topics related to NIR spectroscopy.
The majority of the papers concentrate on applied qualitative and quantitative analysis in a
variety of fields.

New progress has been made in improving food quality thanks to the first investigation.
Accordingly, it was determined that the use of variable selection algorithms provided a
better performance in predicting the amount of organophosphorus pesticide residues in
tomatoes using NIRS than the use of all spectral data [8].

The feasibility of measuring physicochemical quality parameters of mangetout pods
by means of VIS-NIRS has also been demonstrated. The results revealed that the models
allow for an accurate quantification of protein and total polyphenol content and a rough
screening method of the samples for color parameters (c* and h*), firmness, ascorbic acid
content and pH [9].

In addition, despite the advantages of NIR nondestructive measurement, there is a
lack of basic studies comparatively evaluating various forms of sampling with and without
minimal processing. The analyses conducted in this Special Issue have showed that Vis-
NIR spectroscopy could be used as a quick method to assess the abundance of chemical
compounds (soluble solids content, saccharose (Pol), fiber, Pol of cane, and total recoverable
sugars) of sugarcane. Moreover, the performance of the models on defibrated cane and raw
juice samples were similar, but defibrated cane samples involve less preparation as they do
not require juice extraction [10].

For the first time, this research shows the applicability of NIR spectroscopy to assess
volatile phenol contents (guaiacol, 4-methyl-guaiacol, eugenol, syringol 4-methyl-syringol
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and 4-allyl-syringol) and confirms the ability of this technique to quantify compounds that
contribute to the sensory quality of aged wine spirits [11].

NIRS technology can be a powerful tool to ensure the quality of food products and
prevent fraud. From the results obtained, it can be concluded that NIRS together with
artificial neural networks allow for the accurate prediction of almost all sensory parameters
selected for an exhaustive characterization of dry-cured beef meat—cecina—quality. It
would be possible to substitute the sensory panel with a faster, reliable, nondestructive and
cheaper instrumental technique that may be implemented on site [12].

In addition, this Special Issue showed that NIRS is a feasible and useful tool for
screening purposes, and it has the potential to predict most of the fatty acids of freeze-dried
beef [13].

Moreover, a comprehensive review of the state of the art in research and the actual
potential of NIRS for the analysis of olive oil has been included. It can be concluded that
the four most common physicochemical parameters that define the quality of olive oils,
namely free acidity, peroxide value, K232, and K270, can be measured using NIRS with high
precision. In addition, NIRS is suitable for the nutritional labeling of olive oil because of its
great performance in predicting the total fat, total saturated fatty acid, monounsaturated
fatty acid, and polyunsaturated fatty acid contents in olive oils [14].

Likewise, the potential of hyperspectral imaging can be also recognized on the basis of
the articles collected in this Special Issue [15–17]. Hyperspectral imaging (his) emerges as a
non-destructive and rapid analytical tool for assessing food quality, safety, and authenticity.
This technology can not only identify the physical chemistry characteristics of a substance
through spectroscopic analysis, but also simultaneously obtains information about the
spatial distribution of certain components through image analysis [21]. In this Special Issue,
we present the possibility of rapidly inspecting and detecting Escherichia coli and Salmonella
typhimurium on the surface of food processing facilities, which is a major global public
health problem [22], via fluorescence hyperspectral imaging and various discriminant
analysis techniques [15].

This Special Issue aims to investigate the potential of combining the spectral and
spatial features of HSI data with the aid of deep-learning approaches for the pixel-wise
classification of food products (sweet products and salmon fillets). The results demonstrated
that spectral pre-processing techniques prior to convolutional neural network model’s
development can enhance the classification performance. This work will open the door for
more research in the area of practical applications in food industry [16].

Important information is generated for the agrifood industry thanks to the new data
provided in this Special Issue. Hyperspectral imaging technology has been used to develop
a method for diagnosing the soil plant analysis development (SPAD) value and mapping
the spatial distribution of chlorophyll in leaves located at different positions during the
growth season of pepper plants. The results show that hyperspectral imaging is a very
promising technology and has great potential for the intuitive monitoring of crop growth,
laying the foundation for the development of hyperspectral field dynamic monitoring
sensors [17].

The growing applicability and importance of portable NIR spectrometers is reflected
by several articles, opening a new window for the utilization of these types of instruments
in the analysis and monitoring of the composition of foods. In this context, the ability of a
micro-near-infrared portable instrument to predict vitamin C in both whole and pureed
Kakadu plum fruit samples was demonstrated [18].

In this regard, the use of MicroNIR as a tool for estimating dry matter and reducing
sugars of fresh potato in a warehouses by directly measuring the tubers without chemical
treatment and destruction of samples has been demonstrated. The efficiency of such
automation techniques optimizes the management of industrial processing, guaranteeing
the quality of the potato tubers during in-line processing [19].

In this work, we also focused on the development of a real-time and simple methodol-
ogy to quantify the macronutrients (fat, raw protein and carbohydrates) in breast milk using
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a portable NIRS instrument. Notably, the implementation of this procedure requires the
use of low-cost and handheld NIRS instruments where expert personnel are not required
for analyzing samples, facilitating the quality-control procedure in the feeding of newborns
in neonatology units [20].

It should be noted that these contributions accurately reflect the diversity and dy-
namism of current NIR spectroscopy development trends.

This Special Issue is accessible through the following link: https://www.mdpi.com/
journal/sensors/special_issues/NIR-Foods (accessed on 24 June 2022). We would like to
thank all of the authors and co-authors for their contributions, as well as all of the reviewers
for their time and effort in carefully analyzing the submissions. Last but not least, we
would like to express our gratitude to the editorial office of Sensors for their cooperation in
preparing this Special Issue.
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