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Abstract: Unmanned aerial vehicles (UAVs) equipped with visible light communication (VLC)
technology can simultaneously offer flexible communications and illumination to service ground
users. Since a poor UAV working environment increases interference sent to the VLC link, there is a
pressing need to further ensure reliable data communications. Run-length limited (RLL) codes are
commonly utilized to ensure reliable data transmission and flicker-free perception in VLC technology.
Conventional RLL decoding methods depend upon look-up tables, which can be prone to erroneous
transmissions. This paper proposes a novel recurrent neural network (RNN)-based decoder for RLL
codes that uses sequence to sequence (seq2seq) models. With a well-trained model, the decoder has a
significant performance advantage over the look-up table method, and it can approach the bit error
rate of maximum a posteriori (MAP) criterion-based decoding. Moreover, the decoder is use to deal
with multiple frames simultaneously, such that the totality of RLL-coded frames can be decoded by
only one-shot decoding within one time slot, which is able to enhance the system throughput. This
shows our decoder’s great potential for practical UAV applications with VLC technology.

Keywords: run-length limited codes; seq2seq model; RNN-based decoding; unmanned aerial
vehicles; visible light communication

1. Introduction

Visible light communication (VLC) [1–3], a typical short-range optical wireless com-
munication using 380 to 780 nm in the visible light spectrum, has recently aroused much
interest. In VLC, data transmissions are dependent on light sources with nanosecond
switching times, such as light emitting diodes (LEDs) [4], which makes it highly suit-
able for search and rescue scenarios that require both illumination and communication.
Reference [5] proposed the concept of “Twinkle”, which is based on the idea of using
unmanned aerial vehicles (UAVs) equipped with LEDs for lighting applications such as
urban security and disaster recovery. However, the severe communication environment of
the UAVs, such as additional ambient illumination, may not ensure reliable data transmis-
sion [6]. To tackle this issue, error correction codes (ECCs) and RLL codes are considered.
Additionally, RLL codes can achieve 50% dimming and flicker-free perception by guar-
anteeing equal numbers of 1 s and 0 s in RLL-coded sequences. Thus, RLL codes feature
prominently in UAV communication systems equipped with VLC capabilities.

Deep learning (DL) techniques have achieved great success and have been employed
in many areas of communication recently [7,8]. However, the key challenge for DL-aided
channel decoding is the explosive number of training sets, as the length of the source word
grows. For instance, with a BCH (63, 45) code, the training set contains up to 245 different
codewords, which is unpractical for training and establishing a DL-aided decoder to learn to
recover transmitted information from a variety of noisy received signals [8–10]. Therefore,
many papers have emerged to address the issue. One study [8] found that compared
with random codes, structured codes, such as polar codes, are indeed easier to learn the
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codewords from that have never been seen during training. Another study [10] exploited
DL techniques to optimize well-known decoding schemes and proposed a DL-aided belief
propagation (BP) decoder. They employed non-fully connected neural networks to simulate
the regular BP decoding. Since the performance of the BP algorithm is independent of the
transmitted codewords, only a single codeword (e.g., the all-zero codeword) needs to be
used for training. Realizing that BP decoding contains many multiplications, reference [11]
improved the neural network (NN) architecture and achieved similar performance to [10]
with lower complexity based on offset min-sum algorithm. As we will show in the rest
of our paper, since the used RLL source words are normally fairly short, probably a few
tens of bits at most [1,12,13], DL techniques fit well with RLL decoding, naturally avoiding
the explosive numbers of training set data and weights that occur in ECC decoding. Thus,
there is a pressing need to exploit DL techniques for RLL decoding in UAVs with VLC.

Recurrent neural networks (RNNs) are suitable for processing one-dimensional sig-
nals, especially sequence-based tasks with time dependence. Thus, this paper proposes
an RNN-based decoder to improve the performance of RLL codes. We use a sequence
to sequence (seq2seq) model with multiple-to-multiple configure (multiple inputs and
multiple outputs) to learn the mappings between RLL source words and noisy received
signals. We systematically analyze and demonstrate the effectiveness of our proposed
decoder for RLL decoding. Uur contributions are as follows:

• We exploited RNN technology for RLL decoding based on seq2seq models and found
that a well-trained seq2seq model can achieve MAP-based decoding performance,
thereby improving the reliability of VLC.

• We show that the proposed decoder has sufficient capacity to handle multiple RLL-
coded frames and implement multi-frame parallel decoding with only one-shot de-
coding, which largely improves the system throughput and reduces parallel decoding
complexity.

• We found that the number of frames for parallel decoding impacts the fitting of the
decoder due to its restricted learning abilities, and further analyzed the saturation
frame of the decoder based on our proposed criterion.

The remainder of the paper proceeds as follows. Section 2 reviews the model of VLC
and the RLL codes. Section 3 proposes the seq2seq decoder, including its design and
the network training approach. Section 4 presents our simulation results, and Section 5
concludes the paper.

2. Related Background
2.1. The Commucation System Model of UAVs with VLC

UAVs with VLC technology are used in a wide range of applications, such as indoor
positioning and rescue scenarios [14]. To achieve positioning or distance measurement,
UAVs exploit flashing LEDs to send useful information, such as their own coordinates,
to the receiver, which can be any physical device with a photo diode, such as another UAV.
After receiving the information, the receiver will perform further inference work [15]. Such
a communication system can be abstracted as shown in Figure 1 [13,16,17]. Transmitted
binary data u are encoded by the ECC encoder and RLL encoder to generate the encoded
frames x and v, respectively. Later, the encoded frames are modulated by an OOK mod-
ulator into the electrical signal r, which is employed to drive the LEDs for lighting and
transmission. After that, the modulated sequences are transmitted over an additive white
Gaussian noise (AWGN) channel; hence, the received signal y is denoted by

y = r + n, (1)

where n follows N
(
0, σ2). The receiver consists of a detector, an RLL decoder, and an ECC

decoder. The detector outputs the hard estimates by photo diodes (PDs), which are decoded
by the RLL decoder and ECC decoder successively to obtain the transmitted data estimates.
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Figure 1. The communication system model of UAVs with VLC.

2.2. RLL Codes

Since a poor UAV working environment, such as one with strong ambient illumina-
tion [6], increases the interference in the VLC link, there is a pressing need to ensure reliable
data communications. In UAVs with VLC systems, RLL codes are usually used to ensure
reliable data transmission and flicker-free perception. RLL encoder receives random binary
data and divides them into length-K frames, and then maps each frame into length-N
frames. Additionally, RLL codes can guarantee equal numbers of 1 s and 0 s in every
RLL-coded frame for dimming adjustments and flicker-free perception. Conventional
RLL decoder relies on table look-up decoding. It maps the hard decision bits v̂ into a
source word to recover the transmitted data. If the RLL decoder is not able to find the
corresponding codeword in the codebook due to erroneous detection, the decoder will
select the codeword with the minimum Hamming distance to v̂. Three main types of RLL
codes, namely, Manchester codes, 4B6B codes, and 8B10B codes, are commonly adopted
in VLC systems. In 4B6B codes, there are 16 codewords, and each length-4 source word is
mapped to a length-6 codeword, which is shown in Table 1 [4].

This paper establishes an RNN-based decoder to replace the “detector” and the “RLL
decoder” in Figure 1, so that x̂ is as close as possible to x. In our work, we ignore the effect
of ECCs and consider 4B6B codes as an example. It should be emphasized that our work is
also applicable to other RLL codes.

Table 1. The 4B6B codebook in VLC.

Source Word Codeword Source Word Codeword

0000 001110 1000 011001
0001 001101 1001 011010
0010 010011 1010 011100
0011 010110 1011 110001
0100 010101 1100 110010
0101 100011 1101 101001
0110 100110 1110 101010
0111 100101 1111 101100

3. Learning to RLL Decode
3.1. Problem Formulation

We will consider the decoding of RLL codes as a DL problem. The inputs to the NN
are the received signals y = {y1, y2, . . . , yN}, where yi is the i-th symbol of the received
signal and N is the codeword length. The outputs are a group of soft estimates x̃ =
{x̃1, x̃2, . . . , x̃K}, corresponding to the transmitted data x, where K is the length of source
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word. Thereafter, we can obtain the final decoding results x̂ = {x̂1, x̂2, . . . , x̂K} based on
the soft estimates x̃ by the corresponding hard-decision rule:{

x̂i = 1, if x̃i > 0.5
x̂i = 0, if x̃i ≤ 0.5

. (2)

We note that an input–output mapping of the NN is a chain function given by

x̃ = W(y; θ) = W(L−1)
(

W(L−2)
(

. . .
(

W(0)(y)
)))

, (3)

where L is the number of the NN layers and θ represents the network parameters. The NN
will be trained to search the optimal θ∗ by minimizing a properly defined the loss function
L, given by

θ∗ = arg min
θ
L(x, x̃), (4)

where L(x, x̃) calculates the loss between x̃ and x. Our goal is to train the NN to find an
optimal mapping function W∗ : y→ x which satisfies the MAP criterion:

W∗(y; θ∗) = arg max
x

P(x | y). (5)

Note that the training process is to be carried out offline. After the training and
validation, the NN with the optimal θ∗ and W∗ can then be embedded into UAVs to decode
RLL codes.

3.2. Seq2seq Decoder

Analysis illustrates that the RLL decoding problem is the mapping of a received
signal sequence to another bit sequence. It is available to be converted into a sequence-
to-sequence problem with a many-input many-output structure. RNN has memories to
process a sequence of inputs, and hence has strong capabilities for the time series tasks.
A typical RNN-based model, namely, the seq2seq model, is suited to dealing with the
sequence-based “N inputs and K outputs” tasks (N 6= K) and learn mappings between
unequal sequences due to its specific architecture [18,19]. Thus, we adopted the seq2seq
model to perform our RLL decoding task. Figure 2 shows the model, which includes two
RNN structures, i.e., RNN-encoder and RNN-decoder, respectively.

(1) Training Phase: In this phase, by training the adopted seq2seq decoder, we aim to
make the output of the decoder close to the real decoded sequence. In the following, we
introduce the input and output of the decoder, the loss function, and the training procedure.

• Encoder-Input: Denote (y, x) as a training sample of dataset (y, x), with y being the
the received signal and x being the corresponding label. Thus, the y = {y1, y2, . . . , yN}
are fed into RNN-encoder as the inputs. The labels of the inputs y can be given by
x = {x1, x2, . . . , xK}, where xk ∈ {0, 1}. Here, the labels x are the encoded sequences
corresponding to the inputs y.

• Encoder-Hidden States: The encoder has two hidden layers of size 5N. In the hidden

layers, the hidden state is computed as h(1)
j = g(h(1)

j−1, yj), where g(·) is a Relu acti-

vation function and h(1)
j is the j-th hidden unit of the first hidden layer. Then, h(1)

j

is used to compute the second hidden layer, given by h(2)
j = g(h(1)

j , h(2)
j−1). For the

RNN cell, long short-term memory (LSTM) cell and gated recurrent unit (GRU) cell
are widely used to avoid gradient vanishing as the network deepens. Moreover, GRU
has less training parameters than LSTM [20]. Thus, we employ GRU cell in our work.

• Encoder-Output: The encoder has an output layer of size 1, which only outputs the
result c of the final hidden state in the second hidden layer. To realize the single output
of RNN-encoder, we set return_sequences = False in Keras. Note that the final output
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c contains all information of the received signal y so that the RNN-decoder can catch
the information for further training.

• Decoder-Input: K repeated c are fed into RNN-decoder as its inputs, which are given
by c = {c1, c2, . . . , cK}. Here, the ci(i = 1, 2, . . . , K) are the same.

• Decoder-Hidden States: The decoder has two hidden layers of size 5K. The working
steps and its configure are the same as encoder-hidden states.

• Decoder-Output: The output layer is a fully-connected layer with the sigmoid ac-
tivation function, given by σsigmoid (z) = 1/(1 + e−z), with z being the input of the
sigmoid function and σsigmoid (z) ∈ [0, 1]. Thus, the decoder outputs the final K soft
estimates x̃ = {x̃1, x̃2, . . . , x̃K} of transmitted data x. Here, x̃k ∈ (0, 1), which indicates
the probabilities of the RLL-decoded bit x̂i being a “0” or a “1”. Therefore, we can
output the final decoded sequence based on the rule (2).

• Loss and Update: Here, the mean square error (MSE) loss function is utilized to
measure the uncertainty between the actual outputs x̃ and the desired outputs x,
such that

L(x, x̃) =
1
K

K

∑
i=1

(xi − x̃i)
2, (6)

where x̃i is the i-th output of decoder.
• Training procedure: To obtain the optimal parameter θ∗ of the seq2seq decoder,

a batch of the training dataset (i.e., a mini-batch) is randomly selected and fed into the
decoder. As such, the loss function is computed using the outputs of decoder and the
labels corresponding to the inputs. Later, the adaptive moment estimation (Adam)
algorithm is executed to optimize the parameters of the NN. After repeated iterations
with mini-batches, the parameters of NN converge and approach optimum values.

GRU Cell GRU Cell GRU Cell

GRU Cell GRU Cell GRU Cell
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Sigmoid
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Figure 2. The seq2seq model for RLL decoding.
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(2) Testing Phase: In this phase, the received signal y is first input to the seq2seq decoder.
Then, the decoder outputs the soft estimates x̃ of transmitted data x. Finally, obtain the
final RLL decoded sequence based on rule (2).

As a final reminder, since the NN can efficiently execute in parallel and be implemented
with low-precision data types on a graphical processing unit (GPU), field programmable
gate array (FPGA), or application-specific integrated circuit (ASIC) [9], the well-trained
decoder can be integrated into UAVs to decode RLL codes. A more detailed framework
diagram of the proposed seq2seq-based decoding scheme is presented in Figure 3.

Offline 

Training 

Dataset

Offline Training Process

Seq2seq 

decoder

Training soft estimates: Loss 

Function

Backpropogation and Adam The optimal parameters 

 Embedded with 

seq2seq decoder

Online Testing 

Samples

The well-trained model Seq2seq-based RLL decoding

Online Testing Process

Figure 3. Offline training process and online decoding process of the proposed seq2seq-based
decoding scheme.

3.3. Dataset and Training Details

(1) Data set: To train the decoder, by transmitting the RLL-coded frames over the VLC
model in Section 2.1 on different SNRs, we can generate a sufficient number of samples of
received signals y and corresponding transmitted data (labels) x as the training and testing
datasets. Further, the proposed seq2seq model can be trained over the whole codebook
of RLL codes under various SNRs, since the codebook only contains up to dozens of
codewords. This makes it easier to train a superior decoder.

(2) Training SNR: Note that the SNR is unknown and time-varying during the actual
decoding phrase (testing phrase); hence, we trained an RLL decoder with generalization
capability. That is, we trained the decoder at a particular SNR, and tested it on different
SNRs. Naturally, the performance of the seq2seq decoder depends heavily on the SNR
of the training samples. Next, section discusses the optimal training SNR for the seq2seq
decoder. Our work employed the proposed method in [8] to obtain the optimal training
SNR, and we define a new performance criterion, which is called the mean error to MAP
(MEMAP) as follows:

MEMAP(strain) =
1
T ∑

stest∈T
|BERs2s(strain, stest)− BERMAP(stest)|, (7)

where strain and stest represent the SNRs (defined by Eb/N0) of training and testing sets,
respectively. BERs2s(strain, stest) is the BER achieved by the seq2seq decoder trained at SNR
strain and tested at SNR stest. BERMAP(stest) is the BER of MAP decoding of RLL codes on
SNR stest and T denotes a set of different SNRs. The proposed criterion is able to evaluate
how good a seq2seq decoder is and help us search the optimal training SNR, the details
of which will be presented in the next section. Obviously, with MEMAP = 0, the decoder
achieves MAP decoding.

(3) Network configuration: Two RLL look-up tables are allowed to be employed simulta-
neously in the VLC standard to enhance the system throughput, and it is worth noting that
our proposed seq2seq decoder is also adaptable to this task. If considering frame-by-frame
transmission, i.e., the 4B6B codewords are transmitted and decoded one by one, the N of
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the decoder is set to 6 and K is set to 4. If we consider multi-frame transmission in one
time slot, the N is set to a multiple of 6 and K is set to a multiple of 4, e.g., N = 12, 18, and
K = 8, 12. For the setting of other hyperparameters in seq2seq decoder, we performed
a lot of trials and determined relatively reasonable parameters that are summarized in
Table 2. The performance of the decoder with this set parameters will be presented in the
next section.

Table 2. The settings of seq2seq decoder.

Parameters
Seq2seq Decoder

RNN-Encoder RNN-Decoder

Input Neurons N K

Hidden Layer Units [5N, 5N] [5N, 5N]

Output Neurons 1 K

Training sets 4× 104 N

Batch size 100

Training epochs 40

Optimizer Adam (with learning rate = 0.01)

Initializer Xavier uniform

Loss Function MSE

4. Results and Analysis

Extensive simulations were carried out to assess the performance of the seq2seq
decoder. The VLC model described in Section 2.1 is the focus, and the SNR of the received
signal is denoted as Eb/N0, with Eb being the energy per transmitted bit and N0 being the
variance of the Gaussian noise. For the performance comparison with seq2seq decoder,
the look-up table and MAP decoding were adopted as the benchmark, which are the
decoding methods used in the VLC standard and the ideal optimal decoding method,
respectively.

4.1. Simulation Setup

For the two benchmark methods, we implemented them on Matlab R2019a. For the
seq2seq decoder, it was built on Python with Keras libraries [21], and NVIDIA GTX 1070
Ti has been used to train the model. Further, the VLC model and corresponding dataset
were generated on Python, and the testing data size was set to 104N bits per SNR for all
subsequent simulations.

4.2. Optimal Training SNR

Optimal training SNR was a prerequisite for our subsequent simulations; hence, this
part discusses our results for searching for optimal training. Consider the frame-by-frame
transmission case, i.e., N = 6 and K = 4, and we trained the seq2seq decoder with datasets
of different training SNRs to observe the generated MEMAPs (proposed in Section 3.3).
In our cases, we defined T in (6) as a set of 21 equally spaced SNRs points from −4 dB to
6 dB. It can be seen in Figure 4a that a training Eb/N0 of 1 dB leads to the lowest MEMAP,
with MEMAP = 0.0016. Hence, we set our training Eb/N0 to 1 dB for our subsequent
simulations. To illustrate the learning process at training Eb/N0 = 1 dB, we also plotted in
Figure 4b the BER variations of the seq2seq decoder for each epoch during the training. We
observe that the training BER of the decoder decreased as the epochs increased, and after
several epochs, the BER converged and achieved the MAP-based decoding performance.
This indicates that the proposed decoder can learn the MAP-decoding capability very well.
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Figure 4. (a) MEMAP versus training Eb/N0 over 4B6B RLL codes for a seq2seq decoder trained with
40 training epochs. (b) BERs of the seq2seq detector for each epoch during the training process at
training Eb/N0 = 1 dB.

4.3. The BERs of the Seq2seq Decoder

To evaluate the performance of seq2seq decoder, we compare it with the traditional
table look-up method. We also plotted the MAP decoding of 4B6B codes as the benchmark.
That is, the received noisy signal y is decoded to the codeword c that minimizes the squared
Euclidean distance d2

E(y, c) and naturally obtain the corresponding source word in terms
of the 4B6B codebook.

(1) Frame-by-frame transmission: Figure 5a shows the performance of the seq2seq
decoder under the frame-by-frame transmission case. We can observe that the table look-up
decoding method leads to the worst BERs performance, since it is a hard decision-based
decoding method and is not able to make full use of channel information. Moreover,
the seq2seq decoder had a notable performance gain of up to ∼2.5 dB at BER = 10−2

compared to the conventional table look-up decoding. In addition, our seq2seq decoder
can achieve a low BER performance that satisfies the MAP criterion.

(2) Multi-frame transmission: Figure 5b demonstrates the BERs of the seq2seq decoder
under the case of processing multiple RLL-coded frames, where N is a multiple of six. It
can be seen that the proposed decoder is fully capable of more than one frame of parallel
decoding, and can reach eight frames of simultaneous decoding. The BERs almost achieved
MAP-based decoding performance, which is able to largely enhance the throughput of
the VLC systems. Note that such multi-frame decoding is achieved by a single decoding
operation due to the parallel computing capability of the NN, whereas look-up table
decoding requires multiple decoding operations to achieve multi-frame decoding. This, in a
way, shows our method’s superiority over the traditional table look-up decoding method.
However, with a further increase in the number of parallel frames, the performance of the
seq2seq decoder is degraded. Therefore, we suggest that the number of frames for parallel
decoding needs to be set in terms of the BER tolerance of the actual VLC application.
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Figure 5. The BER performance of seq2seq decoder over 4B6B RLL codes. (a) Frame by frame
transmission case; (b) multi-frame transmission case.

4.4. The BERs Comparison with Conventional RNN Decoder

To illustrate the necessity of RNN-decoder part in seq2seq decoder, we compare the
performance of the seq2seq decoder with that of the conventional RNN decoder. That
is, the decoder part of the seq2seq decoder was removed, we retained the encoder part
with the same configure as before and we replaced the last layer of encoder with a fully
connected layer of size K. We name this NN decoder the RNN decoder. Likewise, both
NN-based decoders are evaluated under frame-by-frame transmission and multi-frame
transmission cases.

Figure 6a,b shows the BER performances of two NN-based decoders under frame-
by-frame transmission and multi-frame transmission. We can observe that in the frame-
by-frame case, both decoders can approach the MAP decoding performance level and
outperform the table look-up method. However, in the multi-frame transmission case,
the performance of RNN decoder decreased as the number of transmitted frames increased
(when the number of transmitted frames was 1–4, the performances of the two decoders
were essentially the same, and therefore are not plotted in the figure). This indicates that
the seq2seq decoder has a greater ability to transmit multiple frames compared to the RNN
decoder, which enhances the throughput of the system, at the cost of having more training
parameters than the RNN decoder.
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Figure 6. The BER performance comparison of seq2seq decoder and RNN decoder. (a) Frame by
frame transmission case; (b) multi-frame transmission case.
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4.5. Scalability

This section discusses the scalability of our decoder using the MEMAP criterion.
Since our proposed criterion MEMAP can measure how good the seq2seq decoder is,
the scalability of our decoder is discussed in Figure 7, which illustrates the variation of
the MEMAP as the number of RLL-coded frames fed into the decoder increases. One
can see that the MEMAP increases exponentially as the number of input frames increases.
This is because, for a larger number of frames M, the decoder needs to distinguish more
classes (2M·k, where k is the length of information bits for original 4B6B RLL codes), thereby
degrading the generalization ability of the decoder due to the restricted learning abilities.
Therefore, the number of transmitted frames is crucial and there exists a saturation frame for
the RNN-based seq2seq decoder.

1 2 3 4 5 6 7 8 9 10 11 12 13

Number of frames M

0

5

10

15

20
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30

35

M
E

M
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-2

Figure 7. Scalability of seq2seq decoder indicated by MEMAP with different number of parallel
decoding frames.

In Figure 7, we can further observe that M = 8 is a point that requires our utmost
attention. If the number of parallel frames exceeds 8, the MEMAP value will rise sharply.
After a lot of trials, one fact that was proven is that our decoder was no longer capable of
decoding properly and was thoroughly underfitting with more than eight frames, which
indicates the saturation frame of our proposed decoder is frame 8 (assuming having a certain
tolerance of performance loss). Thus, our proposed decoder is suitable for other RLL
codes and shows strong prospects for practical applications of the VLC, and has ability to
distinguish 232 different codewords.

In addition, for a code with information bits k = 32, the regular table look-up method
with a codebook of 232 source word-to-codeword mappings has been considered imprac-
tical, whereas our decoder can easily handle this task. Thereafter, our design of seq2seq
decoder provides a reference to replace the look-up table decoding method for a code with
fewer information bits.

5. Conclusions

In this paper, we adopted RNN technology to deal with the RLL decoding task for
improving the reliability of the communication of UAVs embedded with VLC technology.
Specifically, we transformed the RLL decoding task into a sequence-based problem that is
suitable for the seq2seq model, and proposed a novel seq2seq decoder. Compared with the
table look-up method, the well-behaved seq2seq decoder can obtain a performance gain.
Meanwhile, it can achieve MAP bit-error-rate performance and enhance the throughput of
a VLC system by decoding multiple RLL-coded frames simultaneously. In addition, due to
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the restricted learning abilities of the decoder, we found there exists a saturation frame and
analyzed the upper limit of the scalability of our decoder, which provides a reference for
practical VLC applications to select the number of parallel decoding frames.
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