
Citation: Chang, R.-I.; Tsai, J.-H.;

Wang, C.-H. Edge Computing of

Online Bounded-Error Query for

Energy-Efficient IoT Sensors. Sensors

2022, 22, 4799. https://doi.org/

10.3390/s22134799

Academic Editor: James (Jong

Hyuk) Park

Received: 1 May 2022

Accepted: 22 June 2022

Published: 24 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Edge Computing of Online Bounded-Error Query for
Energy-Efficient IoT Sensors
Ray-I Chang 1 , Jui-Hua Tsai 1 and Chia-Hui Wang 2,*

1 Department of Engineering Science and Ocean Engineering, National Taiwan University, No. 1, Sec. 4,
Roosevelt Road, Taipei 10617, Taiwan; rayichang@ntu.edu.tw (R.-I.C.); r02525059@ntu.edu.tw (J.-H.T.)

2 Department of Computer Science and Information Engineering, Ming Chuan University, No. 5 Der-Ming Rd.,
Gwei Shan District, Taoyuan City 333, Taiwan

* Correspondence: wangch@mail.mcu.edu.tw

Abstract: Since the power of transmitting one-bit data is higher than that of computing one thousand
lines of code in IoT (Internet of Things) applications, it is very important to reduce communication
costs to save battery power and prolong system lifetime. In IoT sensors, the transformation of
physical phenomena to data is usually with distortion (bounded-error tolerance). It introduces
bounded-error data in IoT applications according to their required QoS2 (quality-of-sensor service)
or QoD (quality-of-decision making). In our previous work, we proposed a bounded-error data
compression scheme called BESDC (Bounded-Error-pruned Sensor Data Compression) to reduce
the point-to-point communication cost of WSNs (wireless sensor networks). Based on BESDC, this
paper proposes an online bounded-error query (OBEQ) scheme with edge computing to handle
the entire online query process. We propose a query filter scheme to reduce the query commands,
which will inform WSN to return unnecessary queried data. It not only satisfies the QoS2/QoD
requirements, but also reduces the communication cost to request sensing data. Our experiments use
real data of WSN to demonstrate the query performance. Results show that an OBEQ with a query
filter can reduce up to 88% of the communication cost when compared with the traditional online
query process.

Keywords: internet of things; wireless sensor networks; bounded-error; query processing; online
query; energy efficient; edge computing

1. Introduction

The sensors of IoT (Internet of Things) applications sense, collect, and transmit im-
portant data from their surroundings. The large amount of information among billions of
sensors creates massive energy consumption. Visionary green IoT [1] reduces the energy
consumption of sensors and makes the environment safer. The latest hardware advances
such as [2–5] in the unprecedented development for IoT and AI (artificial intelligence)
have led to smart edge devices, such as smartphones, smartwatches, and smart glasses,
which can sense and think. Due to the hardware breakthroughs in new materials and nano-
devices, in-memory computing and sensing clearly resolve the energy and time bottlenecks
incurred from the sequential digitization of analog sensory signals.

However, IoT wireless sensors might spend up to 90% of their power on communi-
cation [6]. Hence, reducing communication costs is crucial for saving battery power and
prolonging the system lifetime. In IoT sensors, the transformation of physical phenomena
to data is usually with distortion (bounded-error tolerance). For instance, data distortion
is caused by hardware [7] and ADC (Analog-to-Digital converters) transformation [8].
Hence, data distortion is usually set within an acceptable range in a system design. For
example, the National Taiwan Central Weather Bureau accepts a 0.1 ◦C bounded-error in
temperature [9,10]. It introduces bounded-error data in IoT applications according to their
required QoS2 (quality-of-sensor service) or QoD (quality-of-decision making).

Sensors 2022, 22, 4799. https://doi.org/10.3390/s22134799 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22134799
https://doi.org/10.3390/s22134799
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-8737-7227
https://doi.org/10.3390/s22134799
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22134799?type=check_update&version=2

Sensors 2022, 22, 4799 2 of 20

In bottom-up WSN (wireless sensor network) architecture, our previous work [11]
proposed a bounded-error data compression scheme called BESDC (Bounded-Error-pruned
Sensor Data Compression) to reduce the communication cost dramatically. In this paper,
we couple edge computing and bounded-error sensor data compression to propose an
online bounded-error query (OBEQ), which can further reduce communication costs. We
use the bounded-error as an artifice for reducing the communication cost of top-down
query processes in WSN, without affecting the demanding qualities of sensor service and
decision making (respectively known as QoS2 and QoD) in IoT applications.

In Section 2, recent bounded-error-related methods and our unique bounded-error
definition are introduced. In addition, the online query mechanism in wireless network
techniques is discussed. In Section 3, an OBEQ is proposed and depicted in detail. In
Section 4, OBEQ evaluations are presented. The last section summarizes the proposed
OBEQ solution and future work.

2. Related Works

In WSNs, a query process for sensor data can be an offline query or an online query [12].
An offline query is a gather-then-query method and an online query is a query-then-gather
method for the user. In online query processes, a user can query current sensor data by
sending a query to a local database on the network edge of a WSN, and then the edge-
computing database will inform the WSN to return queried data. In a WSN, each wireless
sensor executes a query for raw sensor data and returns the query results. In most cases for
IoT applications, sensor errors are considered as noise. However, allowing error bounds in
WSN sensor data can be a valuable artifice to solve certain problems. For example, in 2003,
a TiNa scheme [13] used the error bound between former sensed data and current sensed
data to decide the transmission of current data, and thus reduce the communication cost of
wireless nodes.

In 2012 and 2020, refs. [11,14] applied bounded error techniques, respectively, to
improve data compression ratios by applying error bound on raw sensor data during
different compressions. The sensors’ power consumption in data communication could be
reduced, thus prolonging the IoT’s system lifetime. In 1997 and 2013, both [15,16] also used
bounded error to reduce the response time of aggregation functions in query language
for a large database. These bounded-error compression techniques can be cost-effectively
applied in offline queries to reduce the data communication cost to the local database for
gather-then-query. However, since IoT sensor networks have grown much bigger than
ever, offline queries are not suitable for large-scale networks without sufficient storage in
local databases. Previous online query methods usually ignore the error of data and cannot
manage bounded-error data accurately. Currently, there is no query engine available for
bounded-error requirements of data engineering.

The most important mechanism in online query is the query processor in wireless
sensors. Query processors need to translate queries into execution plans and eventually
carry out the execution plans and generate query results [17–19]. In 2002, COUGAR was
one of the first systems that supported the WSN online query [20]. A query layer was
added to wireless sensors to answer simple SQL queries. The prototype of the online query
in COUGAR can be traced back to the architecture in their previous work [21]. At almost
the same time, another WSN DB called TinyDB [22] was proposed. TinyDB provides a
simple SQL query interface and has a distributed query processor running at each node in
the WSN. Users can submit queries in a base station and then the query will be optimized
and sent to the WSN [23]. However, none of the above WSN query techniques consider the
bounded-error feature of raw sensor data.

As shown in Figure 1, SQL is parsed into a syntactic tree at the beginning of the
database query. Then, the syntactic tree is compiled into execution plans, which contain
deeper information on databases, tables, and other metadata. After execution plans are
generated, the optimizer arranges the tree to optimize the performance. In the final step,
execution plans are carried out and generate a query result. SQL includes data definition

Sensors 2022, 22, 4799 3 of 20

language (DDL) and data manipulation language (DML) [19]. DDL describes the record,
fields, and sets of the user data model. It connects the conceptual level and internal level.
CREATE, ALTER, and DROP are the three main syntaxes of DDL. In IoT, each wireless
sensor can function as a distributed micro database [24]. Micro databases not only store
data at the internal level, but they are also strictly connected to a sensor module. DDL
is extended to influence the sensor module. This enables users to control sensor module
flexibly and manage the hardware resources. The DML allows users to query the database
and SELECT-FROM-WHERE-GROUPBY is the main structure of DML [19].

Sensors 2022, 22, x FOR PEER REVIEW 3 of 20

generated, the optimizer arranges the tree to optimize the performance. In the final step,
execution plans are carried out and generate a query result. SQL includes data definition
language (DDL) and data manipulation language (DML) [19]. DDL describes the record,
fields, and sets of the user data model. It connects the conceptual level and internal level.
CREATE, ALTER, and DROP are the three main syntaxes of DDL. In IoT, each wireless
sensor can function as a distributed micro database [24]. Micro databases not only store
data at the internal level, but they are also strictly connected to a sensor module. DDL is
extended to influence the sensor module. This enables users to control sensor module
flexibly and manage the hardware resources. The DML allows users to query the database
and SELECT-FROM-WHERE-GROUPBY is the main structure of DML [19].

Figure 1. The flowchart of an SQL query process.

3. Online Bounded-Error Query (OBEQ)
In this paper, an SQL-like language [25,26] is used to depict the required data for the

bounded-error query and our BESDC [11] is applied for returning the query results from
each sensor to reduce the communication cost to prolong the WSN’s system lifetime. An
OBEQ is designed to prune the sensor data with bounded-error to further maximize the
compression ratio for the system lifetime extension. In addition, an OBEQ applies BESDC
to further reduce the bottom-up communication cost from sensors to the local edge-com-
puting database, after the top-down query was issued from the user to the sensors. Since
users can specify a bounded-error range on each query, the worst case of data distortion
is evaluated to be controlled. We can guarantee that the error would not exceed the user-
specified bounded-error. Assume that the user-specified bounded-error is larger than the
WSN’s system error; if this system error is bigger than the user’s requirement of QoS2 and
QoD, then the deployed WSN system is obviously not qualified for the user’s task.

Our OBEQ system consists of a local database and a WSN. This WSN is composed of
numerous end devices (ED)s deployed in surroundings to gather data periodically. The
system architecture of an edge-computing OBEQ is illustrated as shown in Figure 2. It is
deployed in a three-layer architecture. The first layer of the edge-tier consists of sink
nodes, which have stable power and communication resources for Internet connections.
Sinks are responsible for communicating between other layers of WSN and local data-
bases. The second layer of the aggregation-tier consists of super nodes (SN). SNs are re-
sponsible for transmitting information between the sink and their dominated EDs. SNs
are also capable of aggregating, merging, and compressing query results. The third layer
of the sensor layer consists of EDs, which are responsible for converting the status of the
physical world to digital data periodically. EDs and SNs are also capable of executing
bounded-error query processes and compression.

Figure 1. The flowchart of an SQL query process.

3. Online Bounded-Error Query (OBEQ)

In this paper, an SQL-like language [25,26] is used to depict the required data for the
bounded-error query and our BESDC [11] is applied for returning the query results from
each sensor to reduce the communication cost to prolong the WSN’s system lifetime. An
OBEQ is designed to prune the sensor data with bounded-error to further maximize the
compression ratio for the system lifetime extension. In addition, an OBEQ applies BESDC to
further reduce the bottom-up communication cost from sensors to the local edge-computing
database, after the top-down query was issued from the user to the sensors. Since users can
specify a bounded-error range on each query, the worst case of data distortion is evaluated
to be controlled. We can guarantee that the error would not exceed the user-specified
bounded-error. Assume that the user-specified bounded-error is larger than the WSN’s
system error; if this system error is bigger than the user’s requirement of QoS2 and QoD,
then the deployed WSN system is obviously not qualified for the user’s task.

Our OBEQ system consists of a local database and a WSN. This WSN is composed of
numerous end devices (ED)s deployed in surroundings to gather data periodically. The
system architecture of an edge-computing OBEQ is illustrated as shown in Figure 2. It is
deployed in a three-layer architecture. The first layer of the edge-tier consists of sink nodes,
which have stable power and communication resources for Internet connections. Sinks
are responsible for communicating between other layers of WSN and local databases. The
second layer of the aggregation-tier consists of super nodes (SN). SNs are responsible for
transmitting information between the sink and their dominated EDs. SNs are also capable
of aggregating, merging, and compressing query results. The third layer of the sensor layer
consists of EDs, which are responsible for converting the status of the physical world to
digital data periodically. EDs and SNs are also capable of executing bounded-error query
processes and compression.

In an OBEQ, bounded-error parameters are added to SQL, which allows users to set
up a bounded-error range for a query result. For each query instruction, the change in
bounded-error in each step in an OBEQ is examined. Figure 3 shows the flowchart of
OBEQ’s bounded-error query process. The query result shown in the lower flowchart is the
result generated by a single wireless sensor. It is not the final query result since the “Local
Bounded-Error Query Result” is different to the final result of “Bounded-Error Result”
in the upper flowchart. The complete query result is not finalized until all the EDs send
their query results to the local database of the SNs to merge all sensor data. In our system,
users query information through the local database. The local database analyzes the query
instruction and propagates a query into the WSN. The instruction is sent through the sink

Sensors 2022, 22, 4799 4 of 20

and SNs before reaching the EDs. The EDs process the query and generate local query
results. During the bounded-error query process, our system maximizes the compression
error tolerated to achieve a better compression ratio. In the end, the compressed local query
results are sent back through SNs, sinks, and the local database.

Sensors 2022, 22, x FOR PEER REVIEW 4 of 20

Figure 2. System architecture of an edge-computing OBEQ for IoT (S1, S2 are SNs, E1–E3 are EDs).

In an OBEQ, bounded-error parameters are added to SQL, which allows users to set
up a bounded-error range for a query result. For each query instruction, the change in
bounded-error in each step in an OBEQ is examined. Figure 3 shows the flowchart of
OBEQ’s bounded-error query process. The query result shown in the lower flowchart is
the result generated by a single wireless sensor. It is not the final query result since the
“Local Bounded-Error Query Result” is different to the final result of “Bounded-Error Re-
sult” in the upper flowchart. The complete query result is not finalized until all the EDs
send their query results to the local database of the SNs to merge all sensor data. In our
system, users query information through the local database. The local database analyzes
the query instruction and propagates a query into the WSN. The instruction is sent
through the sink and SNs before reaching the EDs. The EDs process the query and gener-
ate local query results. During the bounded-error query process, our system maximizes
the compression error tolerated to achieve a better compression ratio. In the end, the com-
pressed local query results are sent back through SNs, sinks, and the local database.

Figure 3. The flowchart of the OBEQ system.

3.1. OBEQ Query Filter
The transmitting of data is extremely power consuming for wireless sensors. At the

beginning of the bounded-error query process, the local database uses sinks to propagate
query instruction to its WSN. However, for some queries, it is not necessary to access all
the SNs and EDs. A location-based query is one example. When we query only some data
from sensors in the “Taipei city” sink, the query should not be sent to sensors in the “New
Taipei city” sink. The query filter is proposed to avoid redundant data transmission by
analyzing the WHERE clause of the SQL query.

Since SN is responsible for transmitting query instructions to particular sets of EDs,
the EDs under one SN contain three situations to be judged by the relation between the
WHERE clause in the SQL query and the metadata of EDs.
1. All EDs under the SN violate the WHERE clause in a query instruction.

Figure 2. System architecture of an edge-computing OBEQ for IoT (S1, S2 are SNs, E1–E3 are EDs).

Sensors 2022, 22, x FOR PEER REVIEW 4 of 20

Figure 2. System architecture of an edge-computing OBEQ for IoT (S1, S2 are SNs, E1–E3 are EDs).

In an OBEQ, bounded-error parameters are added to SQL, which allows users to set
up a bounded-error range for a query result. For each query instruction, the change in
bounded-error in each step in an OBEQ is examined. Figure 3 shows the flowchart of
OBEQ’s bounded-error query process. The query result shown in the lower flowchart is
the result generated by a single wireless sensor. It is not the final query result since the
“Local Bounded-Error Query Result” is different to the final result of “Bounded-Error Re-
sult” in the upper flowchart. The complete query result is not finalized until all the EDs
send their query results to the local database of the SNs to merge all sensor data. In our
system, users query information through the local database. The local database analyzes
the query instruction and propagates a query into the WSN. The instruction is sent
through the sink and SNs before reaching the EDs. The EDs process the query and gener-
ate local query results. During the bounded-error query process, our system maximizes
the compression error tolerated to achieve a better compression ratio. In the end, the com-
pressed local query results are sent back through SNs, sinks, and the local database.

Figure 3. The flowchart of the OBEQ system.

3.1. OBEQ Query Filter
The transmitting of data is extremely power consuming for wireless sensors. At the

beginning of the bounded-error query process, the local database uses sinks to propagate
query instruction to its WSN. However, for some queries, it is not necessary to access all
the SNs and EDs. A location-based query is one example. When we query only some data
from sensors in the “Taipei city” sink, the query should not be sent to sensors in the “New
Taipei city” sink. The query filter is proposed to avoid redundant data transmission by
analyzing the WHERE clause of the SQL query.

Since SN is responsible for transmitting query instructions to particular sets of EDs,
the EDs under one SN contain three situations to be judged by the relation between the
WHERE clause in the SQL query and the metadata of EDs.
1. All EDs under the SN violate the WHERE clause in a query instruction.

Figure 3. The flowchart of the OBEQ system.

3.1. OBEQ Query Filter

The transmitting of data is extremely power consuming for wireless sensors. At the
beginning of the bounded-error query process, the local database uses sinks to propagate
query instruction to its WSN. However, for some queries, it is not necessary to access all
the SNs and EDs. A location-based query is one example. When we query only some data
from sensors in the “Taipei city” sink, the query should not be sent to sensors in the “New
Taipei city” sink. The query filter is proposed to avoid redundant data transmission by
analyzing the WHERE clause of the SQL query.

Since SN is responsible for transmitting query instructions to particular sets of EDs,
the EDs under one SN contain three situations to be judged by the relation between the
WHERE clause in the SQL query and the metadata of EDs.

1. All EDs under the SN violate the WHERE clause in a query instruction.
2. Part of the EDs under the SN violate the WHERE clause in a query instruction.
3. All EDs under the SN are qualified by the WHERE clause in a query instruction.

Therefore, when an SN detects the first situation, the query instruction is discarded.
When an SN detects the second situation, the query instruction should be sent to confirm

Sensors 2022, 22, 4799 5 of 20

that the target sensors, which are specified in the WHERE clause, will receive the query. For
example, a query asks for water-meter data because the EDs under this SN are composed
of both watt-meters and water meters. When an SN detects the third situation, the WHERE
clause that all EDs are qualified to be acknowledged will be truncated because all EDs
should execute the query. For example, a worker of the Taiwan Power Company wants to
query all the power data of Taipei city. If all EDs under the SN are in Taipei city, then the
“WHERE city = Taipei” clause in the SQL instruction is removed by the SN, and the rest of
the query instruction is transmitted.

In the following equations, EDWHERE represents all the EDs that are qualified in the
constraint of the SQL WHERE clause, SNi represents SNi, EDSNi represents all the EDs
under SNi, QLrd is the bit length of the query instruction SNi received, and QLst represents
the bit length of the query instruction after SNi truncates the original query with the query
filter. When Equation (1) is true, SNi abandons the query instruction without forwarding
to its EDs. When Equation (2) is true, SNi truncates the constraints specified in the WHERE
clause to reduce the length of the query instruction forwarded to its EDs. Therefore, QLrd
is not smaller than QLst as shown in Equation (3).

EDSNi ∩ EDWHERE = ∅ (1)

EDSNi ⊆ EDWHERE (2)

In addition, Costno- f ilter is used to represent the energy cost of a cluster of EDs under
an SN without using a query filter, pw represents the power usage for sending a bit, and
Cost f ilter is the energy cost of using a query filter. The cost of sending a filter-processed
query packet and no-filter one can be deduced as follows.

QLrd ≥ QLst (3)

Costno- f ilter= QLrd × pw (4)

Cost f ilter = QLst × pw (5)

∴ Costno- f iler ≥ Cost f ilter (6)

Thus, certain metadata [27] should be collected to judge whether a node violates a
WHERE constraint or not. The metadata applied in our query filter with the ED_CLUSTER_
METADATA clause is shown in Table 1. To judge if EDs (usually, a cluster of EDs
under an SN) are in certain region, our query filter extracts the location from E the
D_CLUSTER_METADATA clause and then compares the location within the constrained
area specified in the query instruction. Note that each SN must record the locations of
its EDs. In addition, an SN has to record the deployed time of EDs. When a query filter
judges that EDs are qualified for a specific time interval, the deployed time is extracted and
compared with the time interval in the query instruction. The same idea can be applied to
sensor types and attribute columns.

Table 1. An instance sample of ED_CLUSTER_METADATA.

Node_ID Coordinate Time Type Columns

RS02000D6F000172B951 (12,14) 3 January 2020 watt-meter power, current, voltage
RS02000D6F000172BC59 (13,12) 12 July 2020 water-meter water usage, water pressure
RS02000D6F000172C822 (15,13) 21 September 2020 watt-meter power, current, voltage

3.2. Bounded-Error Query Processing

The bounded-error query process designs an SQL-like language, which is constructed
by the SELECT-FROM-WHERE-GROUPBY structure and bounded-error parameter. The
bounded-error of each sensor’s data is guaranteed to be limited in the user-specified range
of his/her query. DDL depicts the record, fields, and sets of the user data model and

Sensors 2022, 22, 4799 6 of 20

connects the conceptual level and the internal level of the database. CREATE, ALTER, and
DROP are the three main syntaxes of DDLs. In an OBEQ, DDL is extended to sensor mod-
ules and enables users to control sensor modules’ flexibly to manage hardware resources
in EDs.

In real applications, the user will need to modify the database constantly due to newly
sensed data. However, it is resource-consuming for sensors to keep collecting suspended
data while the newly sensed data are redundant. For example, some electric services
provided by Taiwan Power Company [28] are suspended due to a user’s request. Hence, it
is necessary to turn on/off the running sensor modules according to the database columns.
To determine the relationship between the table columns and sensor modules, the edge-
computing local database stores a SENSOR_COLUMN table. Table 2 shows an example
of a SENSOR_COLUMN table and depicts the status of modules on wireless sensors. The
corresponding syntactic examples of DDL are shown in Figure 4.

Table 2. SENSOR_COLUMN table.

Node_ID Current Voltage Timestamp

RS02000D6F000072EE0E True True False
RS02000D6F000072F666 True False True
RS02000D6F000072F737 False True True

Sensors 2022, 22, x FOR PEER REVIEW 6 of 20

3.2. Bounded-Error Query Processing
The bounded-error query process designs an SQL-like language, which is con-

structed by the SELECT-FROM-WHERE-GROUPBY structure and bounded-error param-
eter. The bounded-error of each sensor’s data is guaranteed to be limited in the user-spec-
ified range of his/her query. DDL depicts the record, fields, and sets of the user data model
and connects the conceptual level and the internal level of the database. CREATE, ALTER,
and DROP are the three main syntaxes of DDLs. In an OBEQ, DDL is extended to sensor
modules and enables users to control sensor modules’ flexibly to manage hardware re-
sources in EDs.

In real applications, the user will need to modify the database constantly due to
newly sensed data. However, it is resource-consuming for sensors to keep collecting sus-
pended data while the newly sensed data are redundant. For example, some electric ser-
vices provided by Taiwan Power Company [28] are suspended due to a user’s request.
Hence, it is necessary to turn on/off the running sensor modules according to the database
columns. To determine the relationship between the table columns and sensor modules,
the edge-computing local database stores a SENSOR_COLUMN table. Table 2 shows an
example of a SENSOR_COLUMN table and depicts the status of modules on wireless sen-
sors. The corresponding syntactic examples of DDL are shown in Figure 4.

Figure 4. Syntactic examples of DDL.

Table 2. SENSOR_COLUMN table.

Node_ID Current Voltage Timestamp
RS02000D6F000072EE0E True True False
RS02000D6F000072F666 True False True
RS02000D6F000072F737 False True True

While the user sends a DDL instruction to the local database, it is separated into two
instructions, one for offline databases and the other for online wireless sensors in the
WSN. For example, “ALTER TABLE SENSOR_COLUMN DROP COLUMN current” is
sent to modify the offline database directly. For WSN, “ALTER TABLE SENSOR_COL-
UMN” is redundant for wireless sensors because every ED needs to respond to this in-
struction. To reduce the transmission energy, edge-computing local databases can trun-
cate “ALTER TABLE SENSOR_COLUMN” for its SNs and EDs before sending it to WSN.
When an online query instruction arrives at the EDs, it will check the MODULE_COL-
UMN table, as shown in Table 3, to turn on/off the sensor and then gather corresponding
information so that this table can be initialized before the sensors are deployed in the
WSN.

Table 3. An example of the MODULE_COLUMN table.

Module Column System_Error
Ammeter current 0.1 A
Voltmeter voltage 1.5 V

Watt-meter power 0.5 Wh

As shown in Figure 3, the flowchart indicates that users first issue a query with
bounded-error parameters. Then, this query is analyzed before being transmitted to the
WSN. When a wireless device of either an SN or ED receives a query, it starts to process

Figure 4. Syntactic examples of DDL.

While the user sends a DDL instruction to the local database, it is separated into two
instructions, one for offline databases and the other for online wireless sensors in the WSN.
For example, “ALTER TABLE SENSOR_COLUMN DROP COLUMN current” is sent to
modify the offline database directly. For WSN, “ALTER TABLE SENSOR_COLUMN” is
redundant for wireless sensors because every ED needs to respond to this instruction. To
reduce the transmission energy, edge-computing local databases can truncate “ALTER
TABLE SENSOR_COLUMN” for its SNs and EDs before sending it to WSN. When an
online query instruction arrives at the EDs, it will check the MODULE_COLUMN table, as
shown in Table 3, to turn on/off the sensor and then gather corresponding information so
that this table can be initialized before the sensors are deployed in the WSN.

Table 3. An example of the MODULE_COLUMN table.

Module Column System_Error

Ammeter current 0.1 A
Voltmeter voltage 1.5 V

Watt-meter power 0.5 Wh

As shown in Figure 3, the flowchart indicates that users first issue a query with
bounded-error parameters. Then, this query is analyzed before being transmitted to the
WSN. When a wireless device of either an SN or ED receives a query, it starts to process
the query and generates a local query result. Then, finally, the local query results are sent
to the local database and merged at the sink. Each sensor data error in a query result is
bounded in the range specified by the user from an OBEQ. Meanwhile, one important
feature of an OBEQ is that the applied bounded-error compression becomes better as
bigger bounded-errors are assigned. Hence, it is important to maximize the bounded-error
without damaging the QoS2 and QoD required for IoT applications.

Sensors 2022, 22, 4799 7 of 20

In our modified SQL instructions, “.be(τ)” is used to set up the bounded-error for a
query result. For example, the query instruction “SELECT Data.be(τ) FROM SENSORS”
allows the query result to have an error no larger than τ. The results of query example
“SELECT voltage.be(2) FROM SENSORS” are shown in Table 4. It shows the relation of
raw data, physical data, and output query results for voltage data in EDs. The query result
is allowed to have data distortion no bigger than two. Our OBEQ confirms that the worst
scenario of data distortion will not exceed the specified bounded-error range. We assume
that a value of 116 is the value from an ED and the exact value of physical data is 116.5, any
value between 116.5 ± 2 (e.g., 117) is an acceptable query result.

Table 4. An example of data.

Data Type Value Meaning of Value

Raw data 116 Voltage value collected by sensors with system error applied

Physical data 116.5 Voltage value in reality

Query result 117 Decoded data presented to the user with system error and
specified bounded-error

Again, we use “SELECT Data.be(τ) FROM SENSORS” as an example for an ED to
sense raw data according to the query. The raw data sensed by nodes have already shown a
system error τs (see Table 3) due to sensor accuracy. After a local query result is generated,
it needs to be compressed before sending tit o the SN for reducing power consumption. The
compression for sensor output can be completed in the specified bounded-error τc without
violating the QoS2/QoD required in diversified IoT applications. So, eventually, when the
local query results are all sent to the local database, the total error τ of the query result is
equal to τs plus τc, as shown in Equation (7). The value of system error τs is related to the
hardware equipment the user deploys in the WSN. Since the hardware has been settled, the
value of τs remains unchanged during the query process. The error value τs can be found
in the datasheet of the sensor. Since the bounded-error τ is usually given by users for the
required QoS2/QoD in their IoT applications, the compression error τc can be arranged to
further reduce the communication cost for query results. Finally, the compression error τc
can be deduced as follows.

τ ≥ τs + τc (7)

∴ τc ≤ τ − τs (8)

The SQL query of “SELECT voltage.be(2) FROM SENSORS” is used as a demonstration.
In this query, voltage.be(2) indicates that all voltage data in the query result should have a
data error lower than two. At the time that the data are sensed, a system error is added
to a datum, as shown in Figure 5. The voltage in the physical world is a value between
116 ± 1.5 instead of 116 since the system error τs for voltage data is 1.5. The relationship
between the raw data and the status of the physical world is shown in Figure 5. The upper
bound and lower bound of the expected value of the status of the physical world are 114.5
and 117.5, respectively.

Sensors 2022, 22, x FOR PEER REVIEW 8 of 20

Figure 5. The bounded-error range of the raw data of voltage 116.

Because the worst scenario of data error is guaranteed to not exceed the user-speci-
fied bounded-error (i.e., 𝜏 = 2), the bounded-error data offered have to fully cover all the
possible value that might happen in the physical world. In this example, if the upper
bound is 117.5 for the raw data of voltage 116, according to the system error (𝜏௦ = 1.5),
then we can accept any sensor value between 115.5 and 119.5. Where the lower bound is
114.5, we accept any value between 112.5 and 116.5 because the user-specified bounded-
error is 2. As shown in Figure 6, the intersection of the above two ranges is 115.5 to 116.5,
which exactly equals 116 ± 0.5, where 0.5 equals the user-specified bounded-error value 𝜏
that subtracts the system error 𝜏௦. With the example described above, the error bound can
be limited strictly as the user expects, and then the power consumption can be reduced
further with our previous BESDC [11].

Figure 6. The range intersection of acceptable bounded-error data.

Our OBEQ method also supports addition, subtraction, multiplication, and division.
It is a frequently used function in query processes. Parentheses and “.be()” are used to
represent the error bound of a query result. For example, “SELECT (Data*m/d + n).be(τ)”
indicates that the error of the calculated data should be limited in τ, where m stands for
multiplicand and d stands for divider.

“SELECT (power/1000).be(1) FROM SENSORS” is an example to change the unit of
the power column from W to kW. In this example, the bounded-error of the calculated
result should not exceed 1 Wh. In WSNs, the calculations can be performed either in EDs
or in the local database. How the calculations are performed by either an ED or a local
database and how they influence the bounded-error are described below.

So, we use “SELECT (Data*m/d + n).be(τ)” as an example; if nodes are used to calcu-
late the query result, following the principle of the four fundamental operations, the user-
assigned error τ bounded for sensor data is related to (m/d)𝜏௦ due to the multiplication
and division with the system error 𝜏௦, then the error of the raw data stays (m/d)𝜏௦ after
addition and subtraction. After the query process and calculations are performed, the sen-
sor has to compress the local query result before sending it to the SN. Using 𝜏௖ as a com-
pression error, our sensor compresses the local query result and sends the compressed
data that have bounded-error equal to (m/d)𝜏௦ + 𝜏௖ to the local database. Hence, we can
deduce that our 𝜏௖ can be calculated as follows. 𝜏 ≥ 𝜏௖ + 𝑚𝑑 𝜏௦ (9)∴ 𝜏௖ ≤ 𝜏 − 𝑚𝑑 𝜏௦ (10)

Figure 5. The bounded-error range of the raw data of voltage 116.

Sensors 2022, 22, 4799 8 of 20

Because the worst scenario of data error is guaranteed to not exceed the user-specified
bounded-error (i.e., τ = 2), the bounded-error data offered have to fully cover all the
possible value that might happen in the physical world. In this example, if the upper bound
is 117.5 for the raw data of voltage 116, according to the system error (τs = 1.5), then we
can accept any sensor value between 115.5 and 119.5. Where the lower bound is 114.5, we
accept any value between 112.5 and 116.5 because the user-specified bounded-error is 2. As
shown in Figure 6, the intersection of the above two ranges is 115.5 to 116.5, which exactly
equals 116 ± 0.5, where 0.5 equals the user-specified bounded-error value τ that subtracts
the system error τs. With the example described above, the error bound can be limited
strictly as the user expects, and then the power consumption can be reduced further with
our previous BESDC [11].

Sensors 2022, 22, x FOR PEER REVIEW 8 of 20

Figure 5. The bounded-error range of the raw data of voltage 116.

Because the worst scenario of data error is guaranteed to not exceed the user-speci-
fied bounded-error (i.e., 𝜏 = 2), the bounded-error data offered have to fully cover all the
possible value that might happen in the physical world. In this example, if the upper
bound is 117.5 for the raw data of voltage 116, according to the system error (𝜏௦ = 1.5),
then we can accept any sensor value between 115.5 and 119.5. Where the lower bound is
114.5, we accept any value between 112.5 and 116.5 because the user-specified bounded-
error is 2. As shown in Figure 6, the intersection of the above two ranges is 115.5 to 116.5,
which exactly equals 116 ± 0.5, where 0.5 equals the user-specified bounded-error value 𝜏
that subtracts the system error 𝜏௦. With the example described above, the error bound can
be limited strictly as the user expects, and then the power consumption can be reduced
further with our previous BESDC [11].

Figure 6. The range intersection of acceptable bounded-error data.

Our OBEQ method also supports addition, subtraction, multiplication, and division.
It is a frequently used function in query processes. Parentheses and “.be()” are used to
represent the error bound of a query result. For example, “SELECT (Data*m/d + n).be(τ)”
indicates that the error of the calculated data should be limited in τ, where m stands for
multiplicand and d stands for divider.

“SELECT (power/1000).be(1) FROM SENSORS” is an example to change the unit of
the power column from W to kW. In this example, the bounded-error of the calculated
result should not exceed 1 Wh. In WSNs, the calculations can be performed either in EDs
or in the local database. How the calculations are performed by either an ED or a local
database and how they influence the bounded-error are described below.

So, we use “SELECT (Data*m/d + n).be(τ)” as an example; if nodes are used to calcu-
late the query result, following the principle of the four fundamental operations, the user-
assigned error τ bounded for sensor data is related to (m/d)𝜏௦ due to the multiplication
and division with the system error 𝜏௦, then the error of the raw data stays (m/d)𝜏௦ after
addition and subtraction. After the query process and calculations are performed, the sen-
sor has to compress the local query result before sending it to the SN. Using 𝜏௖ as a com-
pression error, our sensor compresses the local query result and sends the compressed
data that have bounded-error equal to (m/d)𝜏௦ + 𝜏௖ to the local database. Hence, we can
deduce that our 𝜏௖ can be calculated as follows. 𝜏 ≥ 𝜏௖ + 𝑚𝑑 𝜏௦ (9)∴ 𝜏௖ ≤ 𝜏 − 𝑚𝑑 𝜏௦ (10)

Figure 6. The range intersection of acceptable bounded-error data.

Our OBEQ method also supports addition, subtraction, multiplication, and division.
It is a frequently used function in query processes. Parentheses and “.be()” are used to
represent the error bound of a query result. For example, “SELECT (Data*m/d + n).be(τ)”
indicates that the error of the calculated data should be limited in τ, where m stands for
multiplicand and d stands for divider.

“SELECT (power/1000).be(1) FROM SENSORS” is an example to change the unit of
the power column from W to kW. In this example, the bounded-error of the calculated
result should not exceed 1 Wh. In WSNs, the calculations can be performed either in EDs
or in the local database. How the calculations are performed by either an ED or a local
database and how they influence the bounded-error are described below.

So, we use “SELECT (Data*m/d + n).be(τ)” as an example; if nodes are used to
calculate the query result, following the principle of the four fundamental operations, the
user-assigned error τ bounded for sensor data is related to (m/d)τs due to the multiplication
and division with the system error τs, then the error of the raw data stays (m/d)τs after
addition and subtraction. After the query process and calculations are performed, the
sensor has to compress the local query result before sending it to the SN. Using τc as a
compression error, our sensor compresses the local query result and sends the compressed
data that have bounded-error equal to (m/d)τs + τc to the local database. Hence, we can
deduce that our τc can be calculated as follows.

τ ≥ τc +
m
d

τs (9)

∴ τc ≤ τ − m
d

τs (10)

If the local database is used to calculate the query result, the local query result that the
sensors send to the local database would preserve the bounded-error (τs + τc). In the local
database, the local query result with error (τs + τc) is calculated, and the error of the local
query result becomes (m/d) (τs + τc) after multiplication/division and stays (m/d) (τs + τc)

Sensors 2022, 22, 4799 9 of 20

after addition/subtraction. The user expects (m/d) (τs + τc) to be smaller than τ, so we can
deduce the compression error as the following equations.

τ ≥ m
d
(τs + τc) (11)

∴ τc ≤
d
m

τ − τs (12)

Using “SELECT (power/1000).be(1) FROM SENSORS” as a demonstration, when EDs
are assigned to do the calculation, each power datum has a system error equal to 0.5 (see
Table 3). After the power is divided by a thousand, the system error becomes 1/2000. Then,
we calculate the compression error and obtain 1999/2000. After compression, the error
bound of the data becomes one to meet the user’s request and then the compressed data are
sent to the local database. When the local database performs the calculation, sensors send
the local query result with an error equal to (0.5 + τc). The local database divides the local
query results by one thousand, so now the error bound becomes (0.0005 + 0.001τc), which
should equal one. Hence, it can be calculated that the bounded-error for data compression
to be used in this case is 999.5.

Considering the system error, the real status of the physical world is uncertain, yet
can be deduced in a certain range. Using comparison operations, it is easy to judge that the
status of the physical world is larger or less than a particular value if the possible range of
the physical status is fully larger or less than that value. However, when the possible range
covers the compared value, it is impossible to know whether the status of the physical
world is larger or less than the value.

We describe three possible approaches to deal with it in data comparisons. Each
proposed technique has a different syntax with unique advantages listed below.

Syntax: column_name<?value?
The recall rate is maximized to 100% with a system error. If the range of the physical world covers
the value, it is mapped into the query result.
Syntax: column_name<“value”
The precision rate is maximized to 100% with a system error. If the range of the physical world
exceeds the value, it will not be mapped into the query result.
Syntax: column_name<value
The range of the physical world is treated as the value of raw data.

The first syntax makes sure that all the data with system error τs and possibly smaller
than the value are listed in the query result without false negatives in comparison. The
second syntax makes sure that each datum in the query result is strictly smaller than the
value, since the system error τs may cause false positives in comparison. The third syntax
maps the query result by comparing the sensed data with the value without considering
the system error.

For example, “SELECT node FROM SENSORS WHERE power < 100” queries nodes
whose power usages are with a value smaller than 100. The system error of power according
to Table 3 is 0.5. So, when raw data are 100, the physical status is the range between 99.5
and 100.5. Considering the system error, with this kind of query, it is difficult to determine
whether the power usage of the physical world is less than 100 or not.

As illustrated in Table 5, when the system error is τs, the principles of data selection
are described as follows: Using the example in the previous paragraph, in the syntax of
“power < “100””, we have to avoid mapping those data that are possibly larger than 100
into query result. So, those data that are more than 95.5 are not mapped to a query result.
In the syntax of “power < ?100?”, all possible data that are smaller than 100 have to be
mapped into a query result. Hence, all the data that are smaller than 100.5 are mapped into
query results. In the syntax of “power < 100”, the value of the sensed data in a query result
is simply compared with 100.

Sensors 2022, 22, 4799 10 of 20

Table 5. The comparison syntax table in different query strategies of an OBEQ.

Logic Syntax Actual Process

Larger than
data>“value” Raw data must be larger than value + τs
data>?value? Raw data must be larger than value − τs
data>value Raw data must be larger than the value

Smaller than
data<“value” Raw data must be smaller than value − τs
data<?value? Raw data must be smaller than value + τs
data<value Raw data must be smaller than the value

3.3. Data Aggregation Functions

In an OBEQ, MAX, MIN, SUM, AVG, and GROUP BY, aggregation functions of SQL
are also considered. Two syntactic formats in MAX/MIN aggregations are listed below. One
restricts the bounded-error of the target column and the other restricts the bounded-error
of the aggregated value.

1. SELECT MAX(Data).be(τ) FROM SENSORS
2. SELECT MAX(Data.be(τ)) FROM SENSORS

The first syntactic example indicates that the maximum value is allowed to have
bounded-error τ. The second syntactic example indicates that every datum, even the
maximum value, is allowed to have bounded-error τ. Both syntactic examples return to the
same results. Hence, both are executed in the same way. Using the example of “SELECT
MAX(Data).be(τ) FROM SENSORS”, sensors firstly process raw data with maximum
aggregation. After the MAX value is selected, the error of maximum value data is τs.
After query processing has finished, the local results are compressed and sent to the local
database. The total error of compressed data becomes (τs + τc). On the local database, the
result received from the sensors preserves a data error of (τs + τc), so we can deduce that
the compression error for a sensor to use is mentioned above in Equation (8).

The AVG aggregation has two syntactic formats. One restricts the bounded-error
of the target column and the other restricts the bounded-error of the aggregated values.
Syntactic examples are shown below.

1. SELECT AVG(Data).be(τ) FROM SENSORS
2. SELECT AVG(Data.be(τ)) FROM SENSORS

The first syntactic format indicates that every average value in a query result is allowed
to have bounded-error τ. The second syntactic example indicates that every raw datum
is allowed to have bounded-error τ. In the second syntactic format, after the average
logic is operated on a dataset in which each datum has bounded-error τ, the bounded-
error of the average value would be τ. Both syntactic examples return the result with
bounded-error τ, so both syntactic formats are executed in the same way. The query of
“SELECT AVG(power.be(1)) FROM SENSORS” is a demonstration that queries the average
power of all the sensor readings. The average value is allowed to have bounded-error 1.
Using “SELECT AVG(Data).be(τ) FROM SENSORS” as an example, sensors process the
average value on raw data and obtain an average value that has system error τs. After
the local query result is generated, it can be compressed with a compression error of τc.
The compressed query result with error (τs + τc) is sent to the local database. Users expect
the error of the query result to be τ, so the compression error can be deduced as shown in
Equation (8).

The SUM aggregation has two syntactic formats. One restricts the bounded-error
of the target column and the other restricts the bounded-error of the aggregated value.
Syntactic examples are shown below.

1. SELECT SUM(Data).be(τ) FROM SENSORS
2. SELECT SUM(Data.be(τ)) FROM SENSORS

The first syntactic format indicates that every summation value in the query result is
allowed to have bounded-error τ. The second syntactic example indicates that all raw data

Sensors 2022, 22, 4799 11 of 20

are allowed to have bounded-error τ. In the second syntactic format, after operating the
summation logic on a dataset with n raw data, the bounded-error of the summation value
of the local query result would be nτ. Each syntactic format generates different results, so
they are executed in a different way.

For example, for “SELECT SUM(power).be(1) FROM SENSORS WHERE city = Taipei”
and “SELECT SUM (power.be(1)) FROM SENSORS”, the former one indicates that the
bounded-error range for the SUM aggregation value is allowed to be one, and the second
indicates that the raw data are allowed to have bounded-error 1. In the example of “SELECT
SUM(Data).be(τ) FROM SENSORS”, because the query result is merged by multiple local
query results, the error of different local query results has to be added up to merge to the
final query result. To ensure that the error of the final result is τ, each local result can
only use part of τ. There might be M sensors under an SN. If the quantity of the sensors
answering this query can be predicted, this number M can be used. For example, if the
user wants to know the summation of the power usage of Taipei City, the old dataset can
be used to count the number of sensors in Taipei. If the query cannot be predicted, then
each bounded-error sensor can use τ

M so that the error of the final query result does not
fail to meet the user’s expectations. Hence, the local database would rewrite the query
instruction before propagating the query to the sensors. If there are n raw data in a sensor,
the sensor adds up the data and obtains a summation value with system error nτs. It is
possible that nτs is larger than the bounded-error τ

M . If nτs is larger than τ
M , it means that

the system fails to meet the QoS2/QoD requirement of the user’s needs. In this case, it is
strongly recommended for the users to improve the quality of their hardware. If nτs does
not exceed τ

M , then we use (τ
M − nτs) as a compression error τc (as shown in Equation (13))

to compress the local query result.

τc ≤
τ

M
− nτs (13)

In the example of “SELECT SUM(Data.be(τ)) FROM SENSORS”, each piece of raw
data is allowed to have bounded-error τ. If a sensor has N raw data, the summation of
these raw data has a bounded-error equal to nτs. Because each datum is allowed to have
bounded-error τ, the summation value is allowed to have bounded-error nτ. Hence, the
allowed compression error τc of this sensor is as per the equation below.

τc ≤ nτ − nτs (14)

The query example of “SUM(power).be(1) FROM SENSORS WHERE city = “Taipei””
firstly calculates how much bounded-error from an ED can be allowed. The local database
searches the old data and predicts how many nodes execute the query. If we have two
nodes in Taipei SN, each node is allowed to have a one out of two bounded-error. Then,
the local database changes instructions to “SUM(power).be(0.5)” and sends it to the WSN.
Taking “SELECT SUM (power.be(1)) FROM SENSORS” as a demonstration, when an ED
receives “SELECT SUM (power.be(1))”, it aggregates 10 pieces of raw data, and the total
system errors will be added up to five. Then, the compression error will be five, according
to Equation (14). In this case, the bounded-error of the summation value in the local result
is 10.

The GROUP BY statement usually comes with aggregation functions. In the aggrega-
tion functions, it is common to merge multiple data into one group, which means many
local query results from different sensors may have to be merged together. However, in
other cases, such as “GROUP BY node”, local query results are not merged. Hence, the
group can be divided into two kinds: one needs cross-node aggregation, and the other does
not. If a query contains “GROUP BY node”, it is not necessary to send group by tags to an
SN or to allocate bounded-error. Multiple local query results can simply be put together
and generate the final result without aggregating the groups again. If a query does not
contain a “GROUP BY node”, multiple local query results need to be aggregated from
different nodes in order to generate the final query result. To merge local query results,

Sensors 2022, 22, 4799 12 of 20

group tags must be sent. In the example of query “SELECT SUM(power) FROM SENSORS
GROUP BY HOUR(timestamp), DATE(timestamp)”, the database generates the total power
consumption each hour every day. Furthermore, the AVG aggregation function needs
additional metadata, which are the size of the averaged raw data. In the local database and
SN, the result is merged again according to the group tags and metadata. For cross-node
merging, bounded-error allocation is calculated as mentioned above in other aggregation
functions.

4. Evaluation

An OBEQ has benefits in avoiding false alarms, minimizing false-negative rates, and
reducing power consumption of WSN wireless nodes to extend the IoT’s system lifetime.
To satisfy the demanding QoS2/QoD requirements, many potential applications for IoT
services can be fostered due to the diversified bounded-error-compliant SQL queries as
mentioned above. In this section, we used a wireless watt-meter network to show the benefit
of the OBEQ bounded-error query process. In our experiment, our network consisted of
100 EDs, 20 SNs, and 1 sink node. We assumed that the EDs were deployed homogeneously
and randomly.

4.1. Simulation Scenario

In our experiment, the watt-meter sensor data between January 1st and November
30th had been gathered every day by the offline query using the gather-then-query method.
Wireless watt-meter devices were upgraded to support an OBEQ. The compression algo-
rithm [11,14] was trained by the offline data. The rest of the data gathered in December are
considered as online data, which were then stored in watt-meters.

Bounded-error query processing starts from writing a query, executing a query, and
ends after sending the query result to the local database. How the query instruction
is propagated in the WSN is referred to in [11,14]. During the propagation, the query
instructions are firstly sent from the local database to the sink, then from the sink to the SNs.
After the SN processes the query instructions, the query instructions will be transmitted to
the EDs. The technique for each ED in sending data to the local database can be referred
to [29]. Each device merges data before transmitting.

We used the physical layer of IEEE 802.15.4 as our packet format and used the data
frame as our MAC layer format. In the MAC layer, the footer format and header format are
the same as shown in Figure 7. In previous work, only the compression-related scenarios
were considered in the packet format. To cover query scenarios, we embed the format of
PostgreSQL [30] in our payload of the MAC layer to cover possible query scenarios. The
payload format of the MAC layer is modified from PostgreSQL 8.2. We used the metadata
of PostgreSQL, but embed our SQL-like query format and compressed the data format
together into the representation of our query instruction and query result. Their packet
formats are respectively illustrated in Figure 8.

Sensors 2022, 22, x FOR PEER REVIEW 13 of 20

Figure 7. The format of IEEE 802.15.4.

Figure 8. The packet format of the query instruction and query result.

4.2. Evaluation of Power Consumption
In our experiments, the communication cost of the wireless modules is evaluated.

Wireless modules are responsible for transmitting data packets. It is assumed that if we
use CC2420 as our wireless module, we can then evaluate the communication cost with
the parameters from previous work; the parameters are measured by previous work [31]
and are shown in Table 6. Using the parameter in this table, we can deduce that it costs
2.08 μJ to receive one bit and 1.83 μJ to transmit one bit.

Table 6. The power consumption of wireless module.

Parameter Value 𝐼்௫ 17.4 mA 𝐼ோ௫ 19.7 mA 𝑇்௫ 3.2 × 10−5 s 𝑇ோ௫ 3.2 × 10−5 s 𝑉 ௫ 3.3 V 𝑉ோ௫ 3.3 V

4.2.1. Query Filter
In this paper, a query filter is proposed to reduce communication costs by analyzing

the query instruction. In our experiment, we assumed that an engineer wants to query the
power consumption of a specific wireless watt-meter. The query is “SELECT
SUM(power.be(1)) FROM SENSORS WHERE _time BETWEEN “2013-12-01 00:00:00” and
“2013-12-01 12:00:00””. We consider two scenarios; one simply propagates this query to
the entire network and the other uses a query filter.

In this particular case, the query filter reduces 88% of the communication cost, com-
pared to the cost of not using it. Figure 9 illustrates the power consumption of these two

Payload

MAC Layer MAC Header MAC Service Data Unit MAC Footer

PHY Layer Preamble
Sequence

Start of
Packet

Delimiter

PHY
Header

PHY Service Data Unit

 6 bytes <=127 bytes

23 bytes <=102 bytes 2 bytes

Payload

1 octet 4 octets <= 97 octets
Indicates this is a

simple query
Length of message content

in bytes, including self
The query string itself

Q -2147483648 to +2147483747 String

Payload

1 octet variable octets variable octets
Indicates this is a

query result
Metadata of query result The query result itself

B … Compressed Data Format

Figure 7. The format of IEEE 802.15.4.

Sensors 2022, 22, 4799 13 of 20

Sensors 2022, 22, x FOR PEER REVIEW 13 of 20

Figure 7. The format of IEEE 802.15.4.

Figure 8. The packet format of the query instruction and query result.

4.2. Evaluation of Power Consumption
In our experiments, the communication cost of the wireless modules is evaluated.

Wireless modules are responsible for transmitting data packets. It is assumed that if we
use CC2420 as our wireless module, we can then evaluate the communication cost with
the parameters from previous work; the parameters are measured by previous work [31]
and are shown in Table 6. Using the parameter in this table, we can deduce that it costs
2.08 μJ to receive one bit and 1.83 μJ to transmit one bit.

Table 6. The power consumption of wireless module.

Parameter Value 𝐼்௫ 17.4 mA 𝐼ோ௫ 19.7 mA 𝑇்௫ 3.2 × 10−5 s 𝑇ோ௫ 3.2 × 10−5 s 𝑉 ௫ 3.3 V 𝑉ோ௫ 3.3 V

4.2.1. Query Filter
In this paper, a query filter is proposed to reduce communication costs by analyzing

the query instruction. In our experiment, we assumed that an engineer wants to query the
power consumption of a specific wireless watt-meter. The query is “SELECT
SUM(power.be(1)) FROM SENSORS WHERE _time BETWEEN “2013-12-01 00:00:00” and
“2013-12-01 12:00:00””. We consider two scenarios; one simply propagates this query to
the entire network and the other uses a query filter.

In this particular case, the query filter reduces 88% of the communication cost, com-
pared to the cost of not using it. Figure 9 illustrates the power consumption of these two

Payload

MAC Layer MAC Header MAC Service Data Unit MAC Footer

PHY Layer Preamble
Sequence

Start of
Packet

Delimiter

PHY
Header

PHY Service Data Unit

 6 bytes <=127 bytes

23 bytes <=102 bytes 2 bytes

Payload

1 octet 4 octets <= 97 octets
Indicates this is a

simple query
Length of message content

in bytes, including self
The query string itself

Q -2147483648 to +2147483747 String

Payload

1 octet variable octets variable octets
Indicates this is a

query result
Metadata of query result The query result itself

B … Compressed Data Format

Figure 8. The packet format of the query instruction and query result.

4.2. Evaluation of Power Consumption

In our experiments, the communication cost of the wireless modules is evaluated.
Wireless modules are responsible for transmitting data packets. It is assumed that if we use
CC2420 as our wireless module, we can then evaluate the communication cost with the
parameters from previous work; the parameters are measured by previous work [31] and
are shown in Table 6. Using the parameter in this table, we can deduce that it costs 2.08 µJ
to receive one bit and 1.83 µJ to transmit one bit.

Table 6. The power consumption of wireless module.

Parameter Value

ITx 17.4 mA

IRx 19.7 mA

TTx 3.2 × 10−5 s

TRx 3.2 × 10−5 s

VTx 3.3 V

VRx 3.3 V

4.2.1. Query Filter

In this paper, a query filter is proposed to reduce communication costs by analyz-
ing the query instruction. In our experiment, we assumed that an engineer wants to
query the power consumption of a specific wireless watt-meter. The query is “SELECT
SUM(power.be(1)) FROM SENSORS WHERE _time BETWEEN “2013-12-01 00:00:00” and
“2013-12-01 12:00:00””. We consider two scenarios; one simply propagates this query to the
entire network and the other uses a query filter.

In this particular case, the query filter reduces 88% of the communication cost, com-
pared to the cost of not using it. Figure 9 illustrates the power consumption of these two
scenarios. The darker part represents the power consumption of propagation. The lighter
part represents the cost of transmitting the query result. However, if the query result is
huge, then the improvement by the query filter will be less significant.

Sensors 2022, 22, 4799 14 of 20

Sensors 2022, 22, x FOR PEER REVIEW 14 of 20

scenarios. The darker part represents the power consumption of propagation. The lighter
part represents the cost of transmitting the query result. However, if the query result is
huge, then the improvement by the query filter will be less significant.

Figure 9. The power consumption of query with and without a query filter.

4.2.2. Bounded-Error Query Process
In this experiment for our OBEQ using DDL, we first compare two nodes; one sup-

ports DDL while the other one does not. Data definition instructions are sent to the DDL-
supported node at the 13th second and the temperature sensing module was turned off at
the 80th second. Another DDL instruction is sent to the DDL-supported node at the 30th
second to turn on the temperature sensing module. The instructions for turning off/on the
sensor are “ALTER TABLE SENSOR_COLUMN DROP COLUMN temperature” and
“ALTER TABLE SENSOR_COLUMN ADD COLUMN temperature”, respectively. We
use the LM90 as a temperature sensor, and the power consumption of LM90 is deduced
by the datasheet provided by Texas Instruments. In Figure 10, the y-axis represents power
consumption and the x-axis represents the time unit in seconds, respectively.

Figure 10. The change in standby power consumption of two nodes.

As shown in Figure 10, when the new node receives the packet that carries the DDL
instruction, the power consumption increases. When a sensor is turned off, the power
consumption of the new node decreases. Our proposed DDL technique can adjust the sta-
tus of modules in nodes and rearrange the resource of nodes flexibly.

Then, considering the system error of data, the query result of comparison might be
ambiguous. In Section 3.2, we describe three possible approaches to deal with this ambi-
guity. We assumed that the engineer queries the power consumption whose power usage
is more than 1 kWh in December. Each piece of data is allowed to have a 1 Wh system
error. We use three different comparison strategies (as shown in Table 5) upon the data
and returned 9 results in precision mode, 17 results in recall mode, and 13 results in nor-
mal mode. The power consumption comparison is shown in Figure 11. The power con-
sumption of these three modes for DDL is pretty close.

Figure 9. The power consumption of query with and without a query filter.

4.2.2. Bounded-Error Query Process

In this experiment for our OBEQ using DDL, we first compare two nodes; one supports
DDL while the other one does not. Data definition instructions are sent to the DDL-
supported node at the 13th second and the temperature sensing module was turned off at
the 80th second. Another DDL instruction is sent to the DDL-supported node at the 30th
second to turn on the temperature sensing module. The instructions for turning off/on
the sensor are “ALTER TABLE SENSOR_COLUMN DROP COLUMN temperature” and
“ALTER TABLE SENSOR_COLUMN ADD COLUMN temperature”, respectively. We use
the LM90 as a temperature sensor, and the power consumption of LM90 is deduced by
the datasheet provided by Texas Instruments. In Figure 10, the y-axis represents power
consumption and the x-axis represents the time unit in seconds, respectively.

Sensors 2022, 22, x FOR PEER REVIEW 14 of 20

scenarios. The darker part represents the power consumption of propagation. The lighter
part represents the cost of transmitting the query result. However, if the query result is
huge, then the improvement by the query filter will be less significant.

Figure 9. The power consumption of query with and without a query filter.

4.2.2. Bounded-Error Query Process
In this experiment for our OBEQ using DDL, we first compare two nodes; one sup-

ports DDL while the other one does not. Data definition instructions are sent to the DDL-
supported node at the 13th second and the temperature sensing module was turned off at
the 80th second. Another DDL instruction is sent to the DDL-supported node at the 30th
second to turn on the temperature sensing module. The instructions for turning off/on the
sensor are “ALTER TABLE SENSOR_COLUMN DROP COLUMN temperature” and
“ALTER TABLE SENSOR_COLUMN ADD COLUMN temperature”, respectively. We
use the LM90 as a temperature sensor, and the power consumption of LM90 is deduced
by the datasheet provided by Texas Instruments. In Figure 10, the y-axis represents power
consumption and the x-axis represents the time unit in seconds, respectively.

Figure 10. The change in standby power consumption of two nodes.

As shown in Figure 10, when the new node receives the packet that carries the DDL
instruction, the power consumption increases. When a sensor is turned off, the power
consumption of the new node decreases. Our proposed DDL technique can adjust the sta-
tus of modules in nodes and rearrange the resource of nodes flexibly.

Then, considering the system error of data, the query result of comparison might be
ambiguous. In Section 3.2, we describe three possible approaches to deal with this ambi-
guity. We assumed that the engineer queries the power consumption whose power usage
is more than 1 kWh in December. Each piece of data is allowed to have a 1 Wh system
error. We use three different comparison strategies (as shown in Table 5) upon the data
and returned 9 results in precision mode, 17 results in recall mode, and 13 results in nor-
mal mode. The power consumption comparison is shown in Figure 11. The power con-
sumption of these three modes for DDL is pretty close.

Figure 10. The change in standby power consumption of two nodes.

As shown in Figure 10, when the new node receives the packet that carries the DDL
instruction, the power consumption increases. When a sensor is turned off, the power
consumption of the new node decreases. Our proposed DDL technique can adjust the
status of modules in nodes and rearrange the resource of nodes flexibly.

Then, considering the system error of data, the query result of comparison might
be ambiguous. In Section 3.2, we describe three possible approaches to deal with this
ambiguity. We assumed that the engineer queries the power consumption whose power
usage is more than 1 kWh in December. Each piece of data is allowed to have a 1 Wh
system error. We use three different comparison strategies (as shown in Table 5) upon the
data and returned 9 results in precision mode, 17 results in recall mode, and 13 results in
normal mode. The power consumption comparison is shown in Figure 11. The power
consumption of these three modes for DDL is pretty close.

Sensors 2022, 22, 4799 15 of 20Sensors 2022, 22, x FOR PEER REVIEW 15 of 20

Figure 11. The communication cost of using 3 different strategies.

In addition, fundamental operations are regularly used functions in SQL queries. Let
us say they want to find out the electric fee for each power reading on 1 December 2013
using the query “SELECT (power*5).be(5) FROM SENSORS WHERE time BETWEEN
‘2013-12-01 00:00:00’ AND ‘2013-12-2 00:00:00’”. We assumed the price of electric power
was five dollars for 1 kWh. The result is shown in Figure 12 where the y-axis is the com-
munication cost. In our first experiment for fundamental operations, we performed the
calculation in the local database. The compression error we used was 0.5 according to
Equation (12). An OBEQ reduced 65% of the power consumption compared to the query
process that does not support bounded-error queries. In the second experiment for fun-
damental operations, we performed the calculation in EDs. In this case, the compression
error we used was 2.5 according to Equation (10). An OBEQ reduced 30% of performed
power consumption compared to the query process that does not support bounded-error
queries.

Figure 12. Communication cost of a query with fundamental operations.

According to the test result from the above OBEQ query instruction, the collected
data values of power multiplied by five (aka “power*5”) seldom occur in our training
data, so the compression ratio of them with the given compression error is worse than
non-calculated data even if we can use larger compression error. However, power data
itself can be trained with larger bounded errors within the QoS2/QoD requirement to
achieve better a compression ratio to further reduce communication costs in our experi-
ment.

For the evaluation of gathering all online data using an OBEQ, we assumed that the
user wants to observe the power readings on all watt-meters in December. In this evalua-
tion, all the online data were queried by “SELECT power.be(1) FROM SENSORS”. We
compared the communication costs of using a traditional online query and an OBEQ with
an error restricted to 1 Wh. In our evaluation, an OBEQ reduced 76% of the communication
cost caused by transmitting the query result. In Figure 13, the lighter one showed the
power consumption of the OBEQ online query process using bounded-error compression
and the other showed the power consumption of the traditional online query process.

Figure 11. The communication cost of using 3 different strategies.

In addition, fundamental operations are regularly used functions in SQL queries. Let
us say they want to find out the electric fee for each power reading on 1 December 2013
using the query “SELECT (power*5).be(5) FROM SENSORS WHERE time BETWEEN ‘2013-
12-01 00:00:00’ AND ‘2013-12-2 00:00:00’”. We assumed the price of electric power was five
dollars for 1 kWh. The result is shown in Figure 12 where the y-axis is the communication
cost. In our first experiment for fundamental operations, we performed the calculation in
the local database. The compression error we used was 0.5 according to Equation (12). An
OBEQ reduced 65% of the power consumption compared to the query process that does
not support bounded-error queries. In the second experiment for fundamental operations,
we performed the calculation in EDs. In this case, the compression error we used was
2.5 according to Equation (10). An OBEQ reduced 30% of performed power consumption
compared to the query process that does not support bounded-error queries.

Sensors 2022, 22, x FOR PEER REVIEW 15 of 20

Figure 11. The communication cost of using 3 different strategies.

In addition, fundamental operations are regularly used functions in SQL queries. Let
us say they want to find out the electric fee for each power reading on 1 December 2013
using the query “SELECT (power*5).be(5) FROM SENSORS WHERE time BETWEEN
‘2013-12-01 00:00:00’ AND ‘2013-12-2 00:00:00’”. We assumed the price of electric power
was five dollars for 1 kWh. The result is shown in Figure 12 where the y-axis is the com-
munication cost. In our first experiment for fundamental operations, we performed the
calculation in the local database. The compression error we used was 0.5 according to
Equation (12). An OBEQ reduced 65% of the power consumption compared to the query
process that does not support bounded-error queries. In the second experiment for fun-
damental operations, we performed the calculation in EDs. In this case, the compression
error we used was 2.5 according to Equation (10). An OBEQ reduced 30% of performed
power consumption compared to the query process that does not support bounded-error
queries.

Figure 12. Communication cost of a query with fundamental operations.

According to the test result from the above OBEQ query instruction, the collected
data values of power multiplied by five (aka “power*5”) seldom occur in our training
data, so the compression ratio of them with the given compression error is worse than
non-calculated data even if we can use larger compression error. However, power data
itself can be trained with larger bounded errors within the QoS2/QoD requirement to
achieve better a compression ratio to further reduce communication costs in our experi-
ment.

For the evaluation of gathering all online data using an OBEQ, we assumed that the
user wants to observe the power readings on all watt-meters in December. In this evalua-
tion, all the online data were queried by “SELECT power.be(1) FROM SENSORS”. We
compared the communication costs of using a traditional online query and an OBEQ with
an error restricted to 1 Wh. In our evaluation, an OBEQ reduced 76% of the communication
cost caused by transmitting the query result. In Figure 13, the lighter one showed the
power consumption of the OBEQ online query process using bounded-error compression
and the other showed the power consumption of the traditional online query process.

Figure 12. Communication cost of a query with fundamental operations.

According to the test result from the above OBEQ query instruction, the collected
data values of power multiplied by five (aka “power*5”) seldom occur in our training
data, so the compression ratio of them with the given compression error is worse than
non-calculated data even if we can use larger compression error. However, power data itself
can be trained with larger bounded errors within the QoS2/QoD requirement to achieve
better a compression ratio to further reduce communication costs in our experiment.

For the evaluation of gathering all online data using an OBEQ, we assumed that the
user wants to observe the power readings on all watt-meters in December. In this evaluation,
all the online data were queried by “SELECT power.be(1) FROM SENSORS”. We compared
the communication costs of using a traditional online query and an OBEQ with an error
restricted to 1 Wh. In our evaluation, an OBEQ reduced 76% of the communication cost
caused by transmitting the query result. In Figure 13, the lighter one showed the power
consumption of the OBEQ online query process using bounded-error compression and the
other showed the power consumption of the traditional online query process.

Sensors 2022, 22, 4799 16 of 20Sensors 2022, 22, x FOR PEER REVIEW 16 of 20

Figure 13. The power consumption of querying all online data.

Moreover, we evaluated the communication cost by retrieving arbitrary data from
arbitrary EDs. In the first experiment, we randomly retrieved one thousand pieces of data
from arbitrary wireless devices and recorded their power consumption one thousand
times. In the second experiment, we randomly retrieved two thousand pieces of data from
arbitrary wireless devices and recorded their power consumption one thousand times,
etc. In the final experiment, we randomly retrieve ten thousand pieces of data from arbi-
trary wireless devices and recorded their power consumption one thousand times. In each
case, we compared the difference in power consumption using bounded-error 1 and loss-
less compression.

In Figure 14, we illustrate the power consumption of transmitting datasets in differ-
ent sizes. Under the query condition that the bounded-error was one, transmitting differ-
ent sizes of the dataset spent 70.31 to 112.61 mJ on average for communication costs with
a bounded-error of 1 Wh, while the traditional query process spent 71.03 to 154.66 mJ. We
further evaluated the reduction ratio of power consumption in transmitting different sizes
of the dataset. This evaluation shows that an OBEQ can successfully reduce the power
consumption by up to 27%, as shown in the gray curve of Figure 14.

Figure 14. The power consumption of querying different-size datasets.

4.2.3. Bounded-Error Data Aggregation
To evaluate the MAX aggregation function for an OBEQ, we assumed that the user

wants to find out the maximum power usage per hour of each house between December
1st 2013 and December 7th 2013, using “SELECT MAX(power).be(1) FROM SENSORS
WHERE time BETWEEN ‘2013-12-01 00:00:00’ AND ‘2013-12-7 0:00:00’ GROUP BY
DATE(time), HOUR(time), node”. In this evaluation for the MAX aggregation function

Figure 13. The power consumption of querying all online data.

Moreover, we evaluated the communication cost by retrieving arbitrary data from
arbitrary EDs. In the first experiment, we randomly retrieved one thousand pieces of
data from arbitrary wireless devices and recorded their power consumption one thousand
times. In the second experiment, we randomly retrieved two thousand pieces of data from
arbitrary wireless devices and recorded their power consumption one thousand times, etc.
In the final experiment, we randomly retrieve ten thousand pieces of data from arbitrary
wireless devices and recorded their power consumption one thousand times. In each case,
we compared the difference in power consumption using bounded-error 1 and lossless
compression.

In Figure 14, we illustrate the power consumption of transmitting datasets in different
sizes. Under the query condition that the bounded-error was one, transmitting different
sizes of the dataset spent 70.31 to 112.61 mJ on average for communication costs with a
bounded-error of 1 Wh, while the traditional query process spent 71.03 to 154.66 mJ. We
further evaluated the reduction ratio of power consumption in transmitting different sizes
of the dataset. This evaluation shows that an OBEQ can successfully reduce the power
consumption by up to 27%, as shown in the gray curve of Figure 14.

Sensors 2022, 22, x FOR PEER REVIEW 16 of 20

Figure 13. The power consumption of querying all online data.

Moreover, we evaluated the communication cost by retrieving arbitrary data from
arbitrary EDs. In the first experiment, we randomly retrieved one thousand pieces of data
from arbitrary wireless devices and recorded their power consumption one thousand
times. In the second experiment, we randomly retrieved two thousand pieces of data from
arbitrary wireless devices and recorded their power consumption one thousand times,
etc. In the final experiment, we randomly retrieve ten thousand pieces of data from arbi-
trary wireless devices and recorded their power consumption one thousand times. In each
case, we compared the difference in power consumption using bounded-error 1 and loss-
less compression.

In Figure 14, we illustrate the power consumption of transmitting datasets in differ-
ent sizes. Under the query condition that the bounded-error was one, transmitting differ-
ent sizes of the dataset spent 70.31 to 112.61 mJ on average for communication costs with
a bounded-error of 1 Wh, while the traditional query process spent 71.03 to 154.66 mJ. We
further evaluated the reduction ratio of power consumption in transmitting different sizes
of the dataset. This evaluation shows that an OBEQ can successfully reduce the power
consumption by up to 27%, as shown in the gray curve of Figure 14.

Figure 14. The power consumption of querying different-size datasets.

4.2.3. Bounded-Error Data Aggregation
To evaluate the MAX aggregation function for an OBEQ, we assumed that the user

wants to find out the maximum power usage per hour of each house between December
1st 2013 and December 7th 2013, using “SELECT MAX(power).be(1) FROM SENSORS
WHERE time BETWEEN ‘2013-12-01 00:00:00’ AND ‘2013-12-7 0:00:00’ GROUP BY
DATE(time), HOUR(time), node”. In this evaluation for the MAX aggregation function

Figure 14. The power consumption of querying different-size datasets.

4.2.3. Bounded-Error Data Aggregation

To evaluate the MAX aggregation function for an OBEQ, we assumed that the user
wants to find out the maximum power usage per hour of each house between December 1st
2013 and December 7th 2013, using “SELECT MAX(power).be(1) FROM SENSORS WHERE
time BETWEEN ‘2013-12-01 00:00:00’ AND ‘2013-12-7 0:00:00’ GROUP BY DATE(time),

Sensors 2022, 22, 4799 17 of 20

HOUR(time), node”. In this evaluation for the MAX aggregation function applied in an
OBEQ, as shown in Figure 15, we save more than 51% of the power consumption during
the bounded-error query process when compared to the traditional query process that only
supports lossless compression.

Sensors 2022, 22, x FOR PEER REVIEW 17 of 20

applied in an OBEQ, as shown in Figure 15, we save more than 51% of the power con-
sumption during the bounded-error query process when compared to the traditional
query process that only supports lossless compression.

Figure 15. The power consumption of MAX aggregation.

Again, we assumed that our user wants to find out the average power usage per hour
of each house between December 1st 2013 and December 7th 2013 using “SELECT
AVG(power).be(1) FROM SENSORS WHERE _time BETWEEN ‘2013-12-01 00:00:00’
AND ‘2013-12-14 0:00:00’ GROUP BY DATE(_time), HOUR(_time), node”. The query re-
sults from the AVG aggregation function were firstly aggregated and compressed in wire-
less watt-meters and then sent to SNs. SNs aggregated and compressed the data again and
then sent the query result to the local database. In Figure 16 of this evaluation for the AVG
aggregation function, we save about 78% of the power consumption by an OBEQ.

Figure 16. The power consumption of AVG aggregation.

Finally, we assumed that the user wants to find out the summation of power usage
per hour on 1 December 2013 using “SELECT SUM(power).be(10) FROM SENSORS
WHERE _time = 2013-12-1’ GROUP BY HOUR(_time), node”. The intention of this SUM
aggregation query was to observe how the power usage changes over time, so we did not
need to be extremely accurate. In this case, we used bounded-error 𝜏 equal to 10 to com-
press the query result. The query results were firstly aggregated into SUM without violat-
ing the total bounded error of 10, compressed in wireless watt-meters, and then sent to
SN. SN aggregated and compressed the data again and sent the query result to the local
database. As shown in Figure 17 for the SUM aggregation evaluation, we save more than
15.78% of the power consumption compared to the traditional online query without the
bounded-error query process.

Figure 15. The power consumption of MAX aggregation.

Again, we assumed that our user wants to find out the average power usage per
hour of each house between December 1st 2013 and December 7th 2013 using “SELECT
AVG(power).be(1) FROM SENSORS WHERE _time BETWEEN ‘2013-12-01 00:00:00’ AND
‘2013-12-14 0:00:00’ GROUP BY DATE(_time), HOUR(_time), node”. The query results
from the AVG aggregation function were firstly aggregated and compressed in wireless
watt-meters and then sent to SNs. SNs aggregated and compressed the data again and
then sent the query result to the local database. In Figure 16 of this evaluation for the AVG
aggregation function, we save about 78% of the power consumption by an OBEQ.

Sensors 2022, 22, x FOR PEER REVIEW 17 of 20

applied in an OBEQ, as shown in Figure 15, we save more than 51% of the power con-
sumption during the bounded-error query process when compared to the traditional
query process that only supports lossless compression.

Figure 15. The power consumption of MAX aggregation.

Again, we assumed that our user wants to find out the average power usage per hour
of each house between December 1st 2013 and December 7th 2013 using “SELECT
AVG(power).be(1) FROM SENSORS WHERE _time BETWEEN ‘2013-12-01 00:00:00’
AND ‘2013-12-14 0:00:00’ GROUP BY DATE(_time), HOUR(_time), node”. The query re-
sults from the AVG aggregation function were firstly aggregated and compressed in wire-
less watt-meters and then sent to SNs. SNs aggregated and compressed the data again and
then sent the query result to the local database. In Figure 16 of this evaluation for the AVG
aggregation function, we save about 78% of the power consumption by an OBEQ.

Figure 16. The power consumption of AVG aggregation.

Finally, we assumed that the user wants to find out the summation of power usage
per hour on 1 December 2013 using “SELECT SUM(power).be(10) FROM SENSORS
WHERE _time = 2013-12-1’ GROUP BY HOUR(_time), node”. The intention of this SUM
aggregation query was to observe how the power usage changes over time, so we did not
need to be extremely accurate. In this case, we used bounded-error 𝜏 equal to 10 to com-
press the query result. The query results were firstly aggregated into SUM without violat-
ing the total bounded error of 10, compressed in wireless watt-meters, and then sent to
SN. SN aggregated and compressed the data again and sent the query result to the local
database. As shown in Figure 17 for the SUM aggregation evaluation, we save more than
15.78% of the power consumption compared to the traditional online query without the
bounded-error query process.

Figure 16. The power consumption of AVG aggregation.

Finally, we assumed that the user wants to find out the summation of power usage per
hour on 1 December 2013 using “SELECT SUM(power).be(10) FROM SENSORS WHERE
_time = 2013-12-1’ GROUP BY HOUR(_time), node”. The intention of this SUM aggregation
query was to observe how the power usage changes over time, so we did not need to be
extremely accurate. In this case, we used bounded-error τ equal to 10 to compress the
query result. The query results were firstly aggregated into SUM without violating the
total bounded error of 10, compressed in wireless watt-meters, and then sent to SN. SN
aggregated and compressed the data again and sent the query result to the local database.
As shown in Figure 17 for the SUM aggregation evaluation, we save more than 15.78% of the
power consumption compared to the traditional online query without the bounded-error
query process.

Sensors 2022, 22, 4799 18 of 20Sensors 2022, 22, x FOR PEER REVIEW 18 of 20

Figure 17. The power consumption of SUM aggregation.

Since the proposed OBEQ scheme applies data compression algorithms from previ-
ous work [14,15]. For better data compression performance to reduce communication
costs, the corresponding settings and parameters (e.g., codebooks) in data compression
were trained by historical offline data. We simply conducted the experiments for commu-
nication costs of different sizes in a historical training dataset. We used the “SELECT
power.be(1) FROM SENSORS” query to find out the communication cost from different
sizes of historical training data. As shown in Figure 18, it indicates that if the historical
training data size is not that large, an OBEQ can still effectively reduce the communication
cost for energy-efficient IoT sensors.

Figure 18. The power consumption of different-size training data.

From an OBEQ performance evaluation perspective, the calculations including data
compressions about the change in bounded errors at each step online during the query
process were all performed by the CPU in sensors. As the power consumption of trans-
mitting one-bit data on a WSN is higher than that of computing a thousand lines of code
on a CPU of sensors, our OBEQ evaluations for online queries indicate that applied
bounded-error compression can save more power consumption. Moreover, in the three-
tier WSN architecture (as shown in Figure 2) of OBEQs, all the nodes on the same tier can
calculate and transmit data in parallel. Thus, OBEQs will not suffer more latency time
costs than traditional online queries.

5. Conclusions and Future Works
In this paper, edge-computing of an OBEQ scheme for energy-efficient IoT sensors is

proposed. Unlike other previous query process methods, system errors during the query
process are considered, and our query process technique even allows users to restrict data

Figure 17. The power consumption of SUM aggregation.

Since the proposed OBEQ scheme applies data compression algorithms from previous
work [14,15]. For better data compression performance to reduce communication costs, the
corresponding settings and parameters (e.g., codebooks) in data compression were trained
by historical offline data. We simply conducted the experiments for communication costs
of different sizes in a historical training dataset. We used the “SELECT power.be(1) FROM
SENSORS” query to find out the communication cost from different sizes of historical
training data. As shown in Figure 18, it indicates that if the historical training data size
is not that large, an OBEQ can still effectively reduce the communication cost for energy-
efficient IoT sensors.

Sensors 2022, 22, x FOR PEER REVIEW 18 of 20

Figure 17. The power consumption of SUM aggregation.

Since the proposed OBEQ scheme applies data compression algorithms from previ-
ous work [14,15]. For better data compression performance to reduce communication
costs, the corresponding settings and parameters (e.g., codebooks) in data compression
were trained by historical offline data. We simply conducted the experiments for commu-
nication costs of different sizes in a historical training dataset. We used the “SELECT
power.be(1) FROM SENSORS” query to find out the communication cost from different
sizes of historical training data. As shown in Figure 18, it indicates that if the historical
training data size is not that large, an OBEQ can still effectively reduce the communication
cost for energy-efficient IoT sensors.

Figure 18. The power consumption of different-size training data.

From an OBEQ performance evaluation perspective, the calculations including data
compressions about the change in bounded errors at each step online during the query
process were all performed by the CPU in sensors. As the power consumption of trans-
mitting one-bit data on a WSN is higher than that of computing a thousand lines of code
on a CPU of sensors, our OBEQ evaluations for online queries indicate that applied
bounded-error compression can save more power consumption. Moreover, in the three-
tier WSN architecture (as shown in Figure 2) of OBEQs, all the nodes on the same tier can
calculate and transmit data in parallel. Thus, OBEQs will not suffer more latency time
costs than traditional online queries.

5. Conclusions and Future Works
In this paper, edge-computing of an OBEQ scheme for energy-efficient IoT sensors is

proposed. Unlike other previous query process methods, system errors during the query
process are considered, and our query process technique even allows users to restrict data

Figure 18. The power consumption of different-size training data.

From an OBEQ performance evaluation perspective, the calculations including data
compressions about the change in bounded errors at each step online during the query
process were all performed by the CPU in sensors. As the power consumption of transmit-
ting one-bit data on a WSN is higher than that of computing a thousand lines of code on a
CPU of sensors, our OBEQ evaluations for online queries indicate that applied bounded-
error compression can save more power consumption. Moreover, in the three-tier WSN
architecture (as shown in Figure 2) of OBEQs, all the nodes on the same tier can calculate
and transmit data in parallel. Thus, OBEQs will not suffer more latency time costs than
traditional online queries.

5. Conclusions and Future Works

In this paper, edge-computing of an OBEQ scheme for energy-efficient IoT sensors is
proposed. Unlike other previous query process methods, system errors during the query
process are considered, and our query process technique even allows users to restrict data
errors at certain levels during queries. Most important of all, the bounded-error techniques

Sensors 2022, 22, 4799 19 of 20

are used to reduce communication costs. In our experiments, our OBEQ can efficiently
reduce communication costs. The reduction rate is related to the query result and the size
of the query result. In our experiment, communication costs are reduced by up to 88%.

In the near future, many techniques can be proposed based on our query scheme. For
example, adaptive codebook techniques can be applied to our OBEQ system to achieve
better a compression ratio more flexibly, and data mining techniques can be developed
based on bounded-error data, or error bound can be deduced with mathematical analysis
techniques to reduce system errors before compression, etc.

Author Contributions: Conceptualization, R.-I.C.; methodology, R.-I.C.; software, J.-H.T.; validation,
R.-I.C. and C.-H.W.; formal analysis, R.-I.C., J.-H.T. and C.-H.W.; investigation, J.-H.T. and C.-H.W.;
data curation, R.-I.C. and J.-H.T.; writing—original draft preparation, J.-H.T. and C.-H.W.; writing—
review and editing, R.-I.C. and C.-H.W.; visualization, J.-H.T. and C.-H.W.; funding acquisition, R.-I.C.
and C.-H.W. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by MOST Taiwan, grant numbers 110-2410-H-002-094-MY2 and
110-2221-E-130-001 and the APC was funded by 110-2410-H-002-094-MY2 and 110-2221-E-130-001.

Acknowledgments: The authors gratefully thank the financial support from the Ministry of Science
and Technology, Taiwan (MOST 110-2410-H-002-094-MY2 and MOST 110-2221-E-130-001.).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Arshad, R.; Zahoor, S.; Ali Shah, M.; Wahid, A.; Yu, H. Green IoT: An investigation on energy saving practices for 2020 and

beyond. IEEE Access 2017, 5, 15667–15681. [CrossRef]
2. Li, Y.; Wang, Z.; Midya, R.; Xia, Q.; Yang, J.J. Review of memristor devices in neuromorphic computing: Materials sciences and

device challenges. J. Phys. D Appl. Phys. 2018, 51, 503002. [CrossRef]
3. Lin, H.; Xu, N.; Wang, D.; Liu, L.; Zhao, X.; Zhou, Y.; Luo, X.; Song, C.; Yu, G.; Xing, G. Implementation of Highly Reliable and

Energy-Efficient Nonvolatile In-Memory Computing using Multistate Domain Wall Spin–Orbit Torque Device. Adv. Intell. Syst.
2022, 2200028. [CrossRef]

4. Zhang, X.; Lu, J.; Wang, Z.; Wang, R.; Wei, J.; Shi, T.; Dou, C.; Wu, Z.; Zhu, J.; Shang, D.; et al. Hybrid memristor-CMOS neurons
for in-situ learning in fully hardware memristive spiking neural networks. Sci. Bull. 2021, 66, 1624–1633. [CrossRef]

5. Kaixuan, S.; Chen, J.; Yan, X. The future of memristors: Materials engineering and neural networks. Adv. Funct. Mater. 2021, 31,
2006773.

6. Rabaey, J.M.; Ammer, M.J.; da Silva, J.L.; Patel, D.; Roundy, S. PicoRadio supports ad hoc ultra-low power wireless networking.
Computer 2000, 33, 42–48. [CrossRef]

7. Freedman, D.; Purves, R. Statistics; Norton & Company: New York, NY, USA, 1998.
8. Balestrieri, E.; Daponte, P.; Rapuano, S. A state of the art on ADC error compensation methods. IEEE Trans. Instrum. Meas. 2005,

54, 1388–1394. [CrossRef]
9. ASHRAE. Standard Method for Temperature Measurement; ASHRAE: Peachtree Corners, GA, USA, 2013.
10. National Taiwan Central Weather Bureau. Available online: http://www.cwb.gov.tw/ (accessed on 1 May 2020).
11. Chang, R.-I.; Chu, Y.-H.; Wei, L.-C.; Wang, C.-H. Bounded-Error-Pruned Sensor Data Compression for Energy-Efficient IoT of

Environmental Intelligence. Appl. Sci. 2020, 10, 6512. [CrossRef]
12. Even, S.; Goldreich, O.; Micali, S. On-line/off-line digital signatures. In Proceedings of the Conference on the Theory and

Application of Cryptology, Houthalen, Belgium, 10–13 April 1989; pp. 263–275.
13. Sharaf, M.A.; Beaver, J.; Labrinidis, A.; Chrysanthis, P.K. TiNA: A Scheme for Temporal Coherency-Aware in-Network Aggrega-

tion. In Proceedings of the 3rd ACM International Workshop on Data Engineering for Wireless and Mobile Access, San Diego,
CA, USA, 7 September 2003; pp. 69–76.

14. Chen, Y.-H.; Huang, N.Y.; Chu, Y.-H.; Li, M.-H.; Chang, R.-I.; Wang, C.-H. Dynamic bounded-error data compression and
aggregation in wireless sensor network. In Proceedings of the Sensors, 2012 IEEE, Taipei, Taiwan, 28–31 October 2012; pp. 1–4.

15. Hellerstein, J.M.; Haas, P.J.; Wang, H.J. Online aggregation. In Proceedings of the 1997 ACM SIGMOD International Conference
on Management of Data, Tucson, AZ, USA, 13–15 May 1997; Volume 26, pp. 171–182.

16. Agarwal, S.; Mozafari, B.; Panda, A.; Milner, H.; Madden, S.; Stoica, I. BlinkDB: Queries with bounded errors and bounded
response times on very large data. In Proceedings of the 8th ACM European Conference on Computer Systems, Prague, Czech
Republic, 15–17 April 2013.

17. Kossmann, D. The state of the art in distributed query processing. ACM Comput. Surv. 2000, 32, 422–469. [CrossRef]
18. Woo, A.; Madden, S.; Govindan, R. Networking support for query processing in sensor networks. Commun. ACM 2004, 47, 47–52.

[CrossRef]
19. Date, C.J. An Introduction to Database Systems; Addison-Wesley: Reading, MA, USA, 1986; Volume 7.

http://doi.org/10.1109/ACCESS.2017.2686092
http://doi.org/10.1088/1361-6463/aade3f
http://doi.org/10.1002/aisy.202200028
http://doi.org/10.1016/j.scib.2021.04.014
http://doi.org/10.1109/2.869369
http://doi.org/10.1109/TIM.2005.851083
http://www.cwb.gov.tw/
http://doi.org/10.3390/app10186512
http://doi.org/10.1145/371578.371598
http://doi.org/10.1145/990680.990706

Sensors 2022, 22, 4799 20 of 20

20. Yao, Y.; Gehrke, J. The cougar approach to in-network query processing in sensor networks. ACM SIGMOD Rec. 2002, 31, 9–18.
[CrossRef]

21. Yao, Y.; Gehrke, J. Query Processing in Sensor Networks. In Proceedings of the 2003 CIDR Conference, Asilomar, CA, USA, 5–8
January 2003; pp. 233–244.

22. Madden, S.; Hellerstein, J.; Hong, W. TinyDB: In-Network Query Processing in Tinyos, Version 0.4. 2003. Available online:
http://cs.uccs.edu/~{}cs526/mote/doc/tinydb.pdf (accessed on 7 January 2020).

23. Madden, S.; Franklin, M.J.; Hellerstein, J.M.; Hong, W. The design of an acquisitional query processor for sensor networks. In
Proceedings of the 2003 ACM SIGMOD International Conference on Management of Data, San Diego, CA, USA, 9–12 June 2003;
pp. 491–502.

24. Ganesan, D.; Greenstein, B.; Perelyubskiy, D.; Estrin, D.; Heidemann, J. An Evaluation of Multi-Resolution Storage for Sensor
Networks. In Proceedings of the 1st International Conference on Embedded Networked Sensor Systems, Los Angeles, CA, USA,
5–7 November 2003; pp. 89–102.

25. Chamberlin, D.D.; Boyce, R.F. SEQUEL: A structured English query language. In Proceedings of the 1974 ACM SIGFIDET (now
SIGMOD) Workshop on Data Description, Access and Control, Ann Arbor, MI, USA, 1–3 May 1974; pp. 249–264.

26. Astrahan, M.M.; Blasgen, M.W.; Chamberlin, D.D.; Eswaran, K.P.; Gray, J.N.; Griffiths, P.P.; King, W.; Lorie, R.; McJones, P.; Mehl,
J.; et al. System R: Relational approach to database management. ACM Trans. Database Syst. 1976, 1, 97–137. [CrossRef]

27. Madden, S.R.; Franklin, M.J.; Hellerstein, J.M.; Hong, W. TinyDB: An acquisitional query processing system for sensor networks.
ACM Trans. Database Syst. 2005, 30, 122–173. [CrossRef]

28. Taiwan Power Company. Available online: http://www.taipower.com.tw/ (accessed on 1 February 2020).
29. Madden, S.; Szewczyk, R.; Franklin, M.J.; Culler, D. Supporting aggregate queries over ad-hoc wireless sensor networks. In

Proceedings of the Fourth IEEE Workshop on Mobile Computing Systems and Applications, Callicoon, NY, USA, 20–21 June
2002; pp. 49–58.

30. PostgreSQL. Available online: http://www.postgresql.org/ (accessed on 7 January 2020).
31. Liang, Y.; Peng, W. Minimizing energy consumptions in wireless sensor networks via two-modal transmission. ACM SIGCOMM

Comput. Commun. Rev. 2010, 40, 12–18. [CrossRef]

http://doi.org/10.1145/601858.601861
http://cs.uccs.edu/~{}cs526/mote/doc/tinydb.pdf
http://doi.org/10.1145/320455.320457
http://doi.org/10.1145/1061318.1061322
http://www.taipower.com.tw/
http://www.postgresql.org/
http://doi.org/10.1145/1672308.1672311

	Introduction
	Related Works
	Online Bounded-Error Query (OBEQ)
	OBEQ Query Filter
	Bounded-Error Query Processing
	Data Aggregation Functions

	Evaluation
	Simulation Scenario
	Evaluation of Power Consumption
	Query Filter
	Bounded-Error Query Process
	Bounded-Error Data Aggregation

	Conclusions and Future Works
	References

