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Abstract: The layout of microseismic monitoring (MSM) station networks is very important to ensure
the effectiveness of source location inversion; however, it is difficult to meet the complexity and
mobility requirements of the technology in this new era. This paper proposes a network optimization
method based on the geometric parameters of the proposed sensor-point database. First, according
to the monitoring requirements and mine-working conditions, the overall proposed point database
and model are built. Second, through the developed model, the proposed coverage area, envelope
volume, effective coverage radius, and minimum energy level induction value are comprehensively
calculated, and the evaluation reference index is constructed. Third, the effective maximum envelope
volume is determined by taking the analyzed limit of monitoring induction energy level as the
limit. Finally, the optimal design method is identified and applied to provide a sensor station layout
network with the maximum energy efficiency. The method, defined as the S-V-E-R-V model, is
verified by a comparison with the existing layout scheme and numerical simulation. The results
show that the optimization method has strong practicability and efficiency, compared with the mine’s
layout following the current method. Simulation experiments show that the optimization effect of
this method meets the mine’s engineering requirements for the variability, intelligence, and high
efficiency of the microseismic monitoring station network layout, and satisfies the needs of event
identification and location dependent on the station network.

Keywords: underground mine; microseismic monitoring; network layout; method optimization;
S-V-E-R-V model; monitoring efficiency

1. Introduction

Microseismic monitoring (MSM) represents an important real-time, online, and remote
monitoring method that is widely used in many fields, including underground tunnel
construction, deep mining, water conservancy, and hydropower projects [1–9]. Partic-
ularly in the case of underground mine excavation and mining construction processes,
the scientific framework and practical layout of MSM station networks are the basis for
data acquisition and the promotion of field data interpretation and application [10–12].
Therefore, the development of an optimization method for the station layout of an MSM
system for underground works and mine engineering is very worthwhile [13]. The in-
tegrity and accuracy of monitoring data depend on the effectiveness of the system, and
the layout of the MSM network is the primary and core element when constructing an
effective MSM system. There are five reasons for this: (1) The measurement accuracy of
the source parameters plays a key role in the processing and analysis of MSM data and
even disaster prevention; (2) The purpose of the network layout is to determine the closest
proven location of the event and the real earthquake occurrence time; (3) The travel time
and location are ascertained using data from the established stations; the key parameters
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generated by the network foundation are subject to the deployment of the network; (4) The
layout of the network is a prerequisite and can be optimized with human intervention to
the greatest extent in the primary stage; (5) In the context of the state of the art, with the
help of big data technology and software programming technology, it is the general trend
to conduct a large number of numerical experiments on the indoor network layout scheme,
as it has extremely high test repeatability and promotion feasibility. Therefore, studying
methods to optimize the network layout of an MSM system is of great significance.

To date, many methods have been proposed to optimize the layout of MSM networks,
mainly falling into two categories: (I) basic mathematical and physics theories and algo-
rithms, and (II) methods combining a theoretical basis and a consideration of engineering
practices, improved algorithms, and engineering case application analysis. The advantages
and disadvantages of these two approaches are briefly introduced in Table 1 below.

Table 1. Application effects and limitations of the current typical network optimization methods.

No. I II
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Basic mathematical
and physics theories and algorithms Combined with a theoretical basis and engineering practices

M
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m
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y Monte Carlo method [14]
D-value optimization algorithm and its
improvement method [15–21]
C-value optimal design theory and its
improvement method [22]
Genetic algorithm [23]
Machine learning and deep analysis [24–26]

Numerical analysis method [27]
Wave speed correction method
Engineering location and primary and secondary zoning
method [28]
Energy decay method
Software-corrected inversion method [29]
Comprehensive evaluation method [30]

Fe
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tr
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Advantages:
Realize the local and regional optimization of the network layout, and successfully optimize the positioning
efficiency of the engineering site.

Disadvantages:
1. The actual needs of the engineering site determine the sensor deployment area in the network: the existing
theoretical optimization methods are limited to theoretical assumption models and calculations at the numerical
level, and there is a certain gap in terms of practicability in line with mine engineering sites.
2. The specific quantitative indicators for maximizing the monitoring range are not clear: under the actual
conditions of the project site, the actual measurement indicators and evaluation systems are quite different. This
needs to be combined with the actual coverage area and envelope volume of the network layout and its
monitoring and sensing sensitivity.
3. Continuous changes in different dynamic engineering cycles require more rapid and stylized
optimization methods.

The above two categories of methods are affected by three main limiting factors that
lead to substantial efficiency errors in the sensor layout methods in the existing MSM
network. Therefore, a processing method that adapts to the changes of times and the needs
of the engineering site is urgently needed, to maximize the layout and optimization method
for the MSM sensor network.

In recent years, considerable results have been achieved in the field of grid layout
optimization methods under the conditions of specific structures in mining engineering
sites and other applications [31–33]. Kijko et al. [16,17,19] analyzed the network according
to the epicenter location and time error model and introduced a study of the residual
relationship between the P-wave and S-wave in the average geological model, summing up
classical D-value optimization. Ge et al. [25,26] carried out a detailed theoretical analysis
of the geometry, principles, layout, and accuracy of the average geological model in their
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doctoral dissertations, and carried out program development and application in actual
working conditions in the later stage. Gong and Dou et al. [27] developed a comprehensive
index method based on the D-value optimization theory, formulated the general principles
for determining station candidate points and monitoring areas, established the objective
function for optimizing the layout of the station network, and proposed a model data
preparation module, a genetic algorithm solution module, and a network layout solution
positioning the capability evaluation module as the microseismic network layout solution
model. These methods are classic and enable more realistic results, but they cannot meet
the needs of the current times. This inability is mainly manifested in the grid layout design
method that is adopted by most mines, which does not have the flexibility of a rapid
response time and cannot adapt to the continuous deepening and dynamic changes in
production rhythm and transition efficiency. The combination planning of the grid layout
scheme involves a huge number of calculations, and the velocity field and mathematical
variables under certain grid layout conditions are complex and changeable. This makes it
difficult for a particular algorithm to maintain lasting superiority. Therefore, we propose
a fast, efficient, and intelligent network layout method: an MSM network layout method
with superior dynamic adaptability that can adapt to the engineering design and field
implementation stages and achieve a reliable and sustainable monitoring effect.

To further improve the efficiency of the network layout, an optimization method for
the station layout of an MSM system for underground mine engineering is proposed, based
on the comprehensive calculation and evaluation of the coverage area, envelope volume,
effective coverage radius, and minimum energy level induction value of any network. This
method firstly constructs an indexed dataset (S-V-E-R-V) from potential sensor placement
points, calculates the solutions in the proposed library according to the index values, then
weighs and normalizes them and, finally, obtains coverage within the same target range.
The results of the maximum efficiency of the network layout plan verify its effectiveness
and practicability. The specific innovative technology route is shown in Figure 1 below.
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Figure 1. Technical route: (A) objective factors; (B) subjective factors; (C) the main research indicators
of this study; (D) inspection index.

The outline of this paper is as follows. In Section 2, we introduce the materials and
methods in the context of the Xinjiang Ashele Copper Mine, which provides the research
base. In addition, we propose a new method in Section 3, including parameters and
their definitions, calculation procedures, and formula optimization. Several numerical
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simulations and case studies are presented in Section 4, wherein the current network layout
plan of the mine is analyzed. At the same time, based on our new method, the simulation
solution is comprehensively established, and the comparison results of the optimum layout
scheme are given. Finally, our main conclusions are summarized in Section 5.

2. Materials and Methods

This paper takes the Xinjiang Ashele Copper Mine as the engineering backdrop. Its
mining depth is successively from 502 m in the first phase to 910 m in the second phase,
then down to 1243 m in the planned third phase. The MSM service system was fully and
effectively applied in the first and second phases. Figure 2 shows the engineering backdrop
to this research, including the specific natural geographical location and the topology of
the MSM system, particularly the current status of the existing network layout. The aim of
this paper is to study and analyze the network layout of the MSM system in the second
phase of the project and to optimize and improve the monitoring efficiency of the current
network. On this basis, the method in this paper is proposed to optimize the design of the
grid layout of the upcoming three-phase project.
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Figure 2. Microseismic monitoring (MSM) system of the Ashele Copper Mine: (a) the geographical
location of the analysis area; (b) geography of the target mine; (c) topology map of the microseis-
mic monitoring system of the target mine; (d) deployment and monitoring of the microseismic
monitoring system.

With the increase in the use of MSM systems in mines and other engineering fields, the
layout of the network in the early stage of a scheme design is very important. In terms of
theoretical research, the theoretical assumptions and data input factors of traditional analy-
sis and optimization methods are dominant, and the feasibility of procedural processing is
extremely low, resulting in traditional methods that are time-consuming and labor-intensive
and that rely more on the experience of field engineers. To improve the rapid dynamic
response of the network layout plan, based on a certain number of sensors, researchers
focus on maximizing the entire monitoring range of the sensor envelope and improving
the monitoring efficiency. At present, without considering the positioning accuracy and
rock mass structure parameters, only a limited number of sensors have the largest coverage
area and the largest envelope volume; there are few related studies aimed at improving the
monitoring efficiency. A schematic diagram showing the monitoring efficiency analysis of
the MSM system network layout is shown in Figure 3. It depicts the physical representation
and relationship between potential sensor placement and monitoring energy efficiency.
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2.1. Principles of Classical Methods and Optimization Basis

The advantages and disadvantages of the microseismic network layout plan are the
main factors that determine the performance of MSM, so it is necessary to study the optimal
layout of the microseismic network. Regarding the grid layout optimization method,
the internationally developed and mature theoretical foundations of the method are the
D-value optimization and C-value optimization of Kijko and Mendecki, respectively, in
which the objective mathematical function for the evaluation of the grid layout scheme is
constructed [19]. The core idea is to minimize the transformation matrix ellipsoid, formed
by the occurrence time and coordinate position of multiple unknown source events and
other multivariate variables, so as to achieve the optimal network layout effect. Among
them, the multivariate variables can enable the comprehensive monitoring performance of a
specific network, including microseismic event energy, monitorable radius, the magnitude
of the monitored event, the distribution area and probability of major events, and the
sensitivity to hypocenter events.

Based on the uncertainty of different paths and wave speeds, the time parameter is a
relatively accurate measurement value; a time-based approximate equation is constructed
to obtain an approximate analytical solution:

ti = t0 + T(h, si) + εi , (1)

where ti is the arrival time of the i-th triggered sensor to monitor the hypocenter; t0
represents the time when the hypocenter occurs; T(h, si) denotes the travel time of the
wave; and εi stands for the travel time error, where h(x0, y0, z0) and si(xi, yi, zi) are the
source coordinates and the spatial coordinates of the i-th triggered sensor, respectively.

If the most genuine arrival time is required, it is necessary to ensure that the error term
in Equation (1) is the smallest, after which the equations regarding the source parameters
and travel time parameters can be constructed, as follows:

φ(x) = ∑|ti − t0 − T(h, si)|p (2)

where x represents the collection of time and space coordinates of the source (t0, x0, y0, z0),
and where p is usually 2.

In a mathematical relationship, if a certain quantity is required to be solved, another
predetermined quantity of related eigenvalues is required to be matched and solved. Then,
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a covariance matrix, considering random error and source detection, can be constructed
for the source event x, set at [t0, x0, y0, z0; . . . ; ti, xi, yi, zi] in Equation (2); the minimization
result takes precedence. To minimize the travel-time error, the following mathematical
equation is constructed:

minimum f (Cx) , s ∈ ϕ (3)

where Cx is the covariance matrix of x; the constants and variables of the f function depend
on the physical properties and meaning of the problem under consideration; s represents
the set of station coordinates in the network; and ϕ denotes the spatial domain of the
possible station locations.

Based on the optimization theory of the D-value, an approximate confidence ellipsoid
of the x parameter is constructed. The estimated value x̂ of x and x after the transforma-
tion has a specific relationship with the covariance of the x matrix, and it is subject to a
certain constant c to keep it stable or convergent. Mathematical deformation and matrix
transposition are performed on Cx to form the following expression relationship:

(x− x̂)C−1
x (x− x̂)T ≤ c , c is a constant. (4)

At this point, the characteristics of the determinant can be used to simplify the solution
of the covariance matrix. Specifically, when the propagation process of the randomly
occurring microseismic event is described by a complex nonlinear equation, it is not
appropriate to directly apply the D-value optimization principle, but it can be used at the
initial point. Partial derivative matrices are computed for the common parameters, thereby
eliminating computational complexity.

Assuming that source parameter x can be estimated by any norm p, this results in
Cx ∝

[
AT A

]−1, where A is the partial derivative matrix of the calculated arrival time for x,
transformed as follows in Equation (5):

A =

1,

1,

∂T1
∂x0

, ∂T1
∂y0

, ∂T1
∂xz0

...
...

...
∂Tn
∂x0

, ∂Tn
∂y0

, ∂Tn
∂xz0

 . (5)

According to the matrix characteristics and D-value optimization criteria, in Cx =
[
detC−1

x
]−1,

if detCx is to be minimized, then detAT A can be maximized.
At this point, if the following Equation (6) can be satisfied, the optimal solution can

be obtained:
Cmin = a + b×

∫ xi

x0

f (Cx)dx (6)

where Cmin is the analytical solution of minimizing the covariance matrix when other main
parameters are added; Cx represents the covariance matrix of x; a denotes the constant
term of the additional main parameters; b is the correction coefficient term of the additional
main parameters and x0 is the initial value of the parameter; xi represents the end value of
the source parameter; and dx is the integral of x.

In the D-value optimization criterion, in addition to the core key parameters of Cx,
there are still many other hidden unknown parameters or their subset factors that affect
the monitoring efficiency of the network layout. In the D-value optimization criterion,
the confidence ellipsoid is proportional to Cx. Combining the special factors and other
natural characteristics studied by other scholars, this study conducts the basic and necessary
analyses and research based on this core key parameter: considering the target area and
attribute function of the network layout monitoring, the envelope formed by the sensor
station network space needs to have certain geometric properties. This paper focuses on
the comprehensive influence of these basic properties, such as envelope volume, coverage
area, radiation radius, and induced energy, to optimize the network layout.
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2.2. New Indicators for the S-V-E-R-V Model

Based on the above theory and our analysis of D-value optimization and C-value opti-
mization, in the process of formulating a covariance data solution for D-value optimization,
the key parameters of the target are introduced, to form the optimized S-V-E-R-V parameter
model; thus, this study’s systematic optimization method and scheme are formed. When
arranging the spatial points of sensor stations at mine sites, the site conditions and the
adaptability of structures are often considered, while the principles and mechanisms of the
network layout are rarely applied. Based on the D-value optimization theory, the coverage
area of the field network (S), the network envelope volume (V), the limit magnitude energy
coverage radius of the network (RE), and the effective magnitude sensitivity monitoring
envelope volume (VE) are primarily considered. When the target monitoring area and
spatial scope of the mine are fixed, for a certain epicenter event, the monitoring efficiency of
different network layout schemes varies. First, to ensure that the network layout meets the
necessary space-monitoring conditions, it is necessary to achieve maximum efficiency in the
physical space; second, it is necessary to attain monitoring efficiency regarding the physical
magnitude of the event and its detectable radius scale; third, the minimum magnitude
sensitivity of the event can be monitored. The volume within the effective space range is
used as a guiding parameter for the closed-loop optimization of the model, as shown in
Figure 4. This demonstrates the range of monitoring efficacy resulting from actual sensor
placement in the model that acts as a basis for the calculations in this study.
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Figure 4. Schematic diagram of the optimization model concept.

2.2.1. S + V

When a source rupture event occurs inside the envelope, the precision and accuracy
of localization is much better than when the event occurs outside the envelope. Specifically,
when the sensor array within the monitoring target area is established, its three-view
projection area is given, and the coverage area is expressed as:

S = SPxoy + SPxoz + SPyoz , (7)

where S is the sum of the projected areas of the three views of the sensor array in the spatial
area of the monitoring target range; SPxoy represents the projected area of the XOY plane
in the Cartesian coordinate system; SPxoz denotes the projected area of the XOZ plane in
the Cartesian coordinate system; and SPyoz stands for the projected area of the YOZ plane
in the Cartesian coordinate system.
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Specifically, when the sensor array within the monitoring target area is given, and the
volume of the space that encloses it is given, the envelope volume is expressed as:

V =
∫ zmax

zmin

sxoydz , (8)

where V is the volume of the space domain that can be enveloped by the sensor array that
monitors the spatial area of the target range, and sxoy represents each xoy of the body of
the space formed by the sensor array in the Cartesian coordinate system, differentiated in
the plumb direction. In the surface geometric area, dz is the differential in the z direction, is
the lower limit of the geometric space elevation formed by the sensor array, and zmax is the
upper limit of the geometric space elevation formed by the sensor array.

This is convenient for the comprehensive evaluation of the subsequent overall model.
At this point, the geometric space parameters of the sensor array are subjected to the nor-
malization processing and preliminary weighting integration processing at fixed intervals.
The normalization of the coverage area is as follows:

Snew =
S− Smin

Smax − Smin
, (9)

where Snew is the dimensionless coverage area that is normalized; S represents the sum of
the triple-view projected areas of each grid layout scheme; Smin denotes the projected area
and the minimum value; and stands for the projected area and the maximum value.

The normalization of the envelope volume is handled as follows:

Vnew =
V −Vmin

Vmax −Vmin
, (10)

where Vnew represents the dimensionless envelope volume that is normalized; V denotes
the three-dimensional space envelope volume of each grid layout scheme; Vmin is the
minimum envelope volume; and Vmax stands for the maximum envelope volume.

Assuming that the weight ratio of the coverage area is α, and the weight ratio of the
envelope volume is 1 − α, the following expressions are obtained:

RW = α× Snew + 1− α×Vnew , (11)

where RW is the normalized weighted value of the coverage area and the envelope vol-
ume; Snew denotes the dimensionless normalized coverage area; and Vnew stands for the
dimensionless normalized envelope volume. Considering the coverage area and the enve-
lope volume in terms of the geometric parameters, the weight of the network volume is
equivalent; generally, α is taken as 0.5.

2.2.2. RE + VE

In rock mechanics, the instability of the main weight-bearing body and the failure of
key structures are the results of a series of displacements and deformations that occur when
active or passive energy accumulates and breaks through the steady-state critical value.
Among these, a force such as deformation energy is an important scientific index in rock
mechanics research. The main characteristics are as follows: the internal deformation of the
rock mass structure can produce continuous accumulation, which means that the energy
accumulates slowly. When the energy accumulation reaches the steady-state critical value,
it will be released either actively or passively, causing damage to the rock mass structure,
and thus affecting the engineering stability. This forces us to pay attention to the energy
evolution characteristics at any particular time, from stress and strain to energy change, to
deformation and displacement, which is also the ideal state that must be achieved by our
MSM system. This study starts with energy and optimizes the grid layout scheme, based
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on the ability and sensitivity of the energy perception in the research grid layout system,
such as the coverage area and the envelope volume mentioned above.

To evaluate a network layout plan, maximizing the comprehensive monitoring ca-
pability of its network is the ultimate goal that needs to be continuously optimized and
improved, considering the complexity of rock mass mechanics and its failure form, failure
state, and energy transfer characterization methods and mathematical relationships. Based
on the commonly used estimation indicators of source failure potential, energy and magni-
tude are widely used by the relevant scholars and scientific research institutions [34]. In
this study, energy is used as the main monitoring and evaluation index parameter of the
station network. Magnitude can be converted to energy, as follows:

log E = c + dM (12)

where E stands for the source energy; M represents the source magnitude; d is usually 1.5;
and c depends on the specific working conditions of the mine.

Specifically, the energy radiation radius (RE) and the critical sensing-space envelope
volume (VE) of each level of energy in the sensor network are used as the calculation
parameters. Among them, the detectable radius is closely related to many factors, such as
the sensor’s attributes, the target monitoring frequency band, and the on-site environmental
conditions. The farther the monitoring distance between the source and the equipment,
the higher the induction degree of the lowest-energy events that can be monitored, and
the better the monitoring performance. When the sensor equipment is selected, the on-site
working condition is the key and most variable influencing factor. It is necessary to fully
consider the source energy radiation range and attenuation distance, and then extract and
analyze the data obtained from the on-site observation data of a specific mine, as this is
the most real and effective way. From the literature [18,19,35–38], it has been established
that the macroscopic mathematical problem is mainly reflected in the energy, E, of the
microseismic event between the monitoring radius, R, and its derivative relationship:

E = µ× Rq (13)

where E represents the source energy; R denotes the monitoring radius; q is generally close
to 2; and µ and q need to be statistically calculated in the corresponding mine data.

The specific schematic is shown in Figure 5. Specifically, within a certain distance
range, the ability to monitor the event’s energy level is derived from the detectable radius,
which is obtained from the statistical data of the mine. According to the mine’s field
data, the radiation energy of each sensor and its corresponding monitored events are
analyzed, and the relationship between the energy attenuation and the radiation radius is
comprehensively analyzed and fitted. In the network layout scheme, the maximum sensing
radius of the smallest event that can be detected by each sensor is superimposed upon
the others to form a new energy level sensitivity envelope, which is interpolated to obtain
the lowest energy level sensitivity envelope and volume space parameters and, finally,
calculate the new envelope volume.

The maximum coverage radius, matched by the minimum magnitude energy obtained
with Equation (13), is combined with the weighted combined advantages of the coverage
area and the envelope volume. The envelope volume after the actual superposition is
obtained. The formula is as follows:

VE =
∫ Zmax

Zmin

SXOYdZ , (14)

where VE is the envelope volume after the actual superposition of the maximum coverage
radius, matched by the minimum magnitude energy; and SXOY represents each of the
spatial bodies formed by the sensor array in the Cartesian coordinate system, differentiated
in the plumb direction. In the geometric area of the XOY surface, dZ is the differential
in the Z direction, Zmin denotes the lower limit of the geometric space elevation formed
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by the sensor array, and Zmax represents the upper limit of the geometric space elevation
formed by the sensor array.
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Figure 5. Schematic diagram of the minimum energy magnitude induction sensitivity envelope
before and after interpolation superposition: (a) the schematic diagram of the energy efficiency range
of a single sensor; (b) the schematic dia-gram of the superposition of the energy efficiency of the
sensors under the composite condition.

2.3. Formula Optimization

Referring to the literature [19], based on Equation (6) and the above analysis key indi-
cators (S, V, RE, and VE), the following improved calculation methods and corresponding
formulas are constructed, as follows:

Cmin =
∫ Rmax

Rmin

∫ Zmax

Zmin

RW × SXOY × ER(R)× f (Cx)dZdR, s ∈ ϕ, R ∈ Ra (15)

where Cmin is the final evaluation value for the optimal configuration standard of the
stations in the MSM network; Rmin and Rmax are the respective maximum propagation
radii of each sensor at different energy levels; Ra represents the collection of sensors
in the network (Ra = [R1, R2, . . . , Rn−1, Rn]); Zmin and Zmax are the same as the items in
Equation (14); RW is Equation (11); and ER(R) denotes the internal network. The magnitude
energy value corresponding to each sensor in the different radius ranges is the range that
the station network can accept, in terms of the different energy levels of the source-induced
events. Cx is the covariance matrix of x; the constants and variables of the f function depend
on the physical properties of the problem and meaning. dR represents the differential of the
radius, R, of each sensor with different energy levels, s denotes the set of station coordinates
in the network, and ϕ is the spatial domain of potential station locations.

The optimal estimation method for the station network, based on the coordinates of the
stations and the source coordinates in the MSM network, is the most practical optimization
method. On the one hand, when calculating the covariance matrix, C, based on the D-value
optimization theory, the arrival time error, the uncertainty of the velocity model, and the variance
of the source event parameters are considered. On the other hand, thanks to the D-value opti-
mization method, which relies upon a classical theoretical basis and the scalability of its unknown
parameters, the attribute assignment and positive correlation of the key parameters are increased
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in the traditional covariance confidence ellipsoid evaluation. Based on this relationship and the
abovementioned deduction formula, the configuration of the network layout scheme is verified
by the numerical simulation method. According to the calculation result map of the S-V-E-R-V
model, a comprehensive evaluation and display of the configuration quality of the MSM network
can be carried out.

2.4. Solution Process

Considering the problem of identifying the key parameters of the constructed S-V-E-
R-V model, the controllability of the sensor layout variables of each scheme needs to be
consistent. Among them, clear sensor placement information is the key information needed
to obtain the coverage area and establish the envelope volume parameters. In addition, the
radiation radius and energy level sensitivity are the main parameters of the calculation and
comparison process. This model can quickly determine and compare the optimal layout
plan, based on the above key information.

Step 1: Build a sensor coordinate selection library. First, we delineate the range in
each middle section of the research space, particularly to meet the monitoring needs of the
main ore body range and the main structures and facilities. Second, we select the proposed
sensor points in all suitable locations, such as roadways and stopes, where sensors may be
installed. Third, we synthesize all the proposed points to calculate and analyze the spatial
boundary of the model and build the model. Fourth, we derive the three-dimensional
spatial coordinates of all the proposed sensor points.

Step 2: Select a combination scheme. Select the coordinates of a certain number of sensors
from the coordinate library described in step 1 and select them in sequence according to the
combination method in mathematics to form the first, second, third, . . . , n − 1, and n types of
combination schemes.

Step 3: Calculate the key parameters in the S-V-E-R-V model. First, concerning
the above analysis and transformation equations (see Equations (7)–(12)), we calculate
the overall global coverage area and the coverage area of each target middle section
under different radiation radius conditions. Second, according to the existing data and
Equation (13), we conduct statistical analysis and fitting of the specific relationship between
the radiation radius and the energy level. Third, we determine the volume enveloped by
the energy levels of each level under the condition of different radiation radii.

Step 4: Weighted comparison of key parameter data, such as the overall coverage area
under different radiation radius conditions (coverage area in different projection directions),
the coverage area of each middle section with different radiation energy levels, and the
envelope volume of each radiation radius.

Step 5: Repeat steps 3 and 4 in sequence, according to the combination scheme of
step 2 and its sequence, until the best result is obtained.

Step 6: Determine the plan, produce the resulting diagram, and provide engineer-
ing guidance.

Due to the large volume of data from the proposed points database and the proposed
coordinates, the number of all possible combinations is large, and a certain amount of
thinning retrieval is required. On one hand, the data redundancy and combination scheme
redundancy caused by a large number of calculations is excluded; on the other hand, it
is more in line with the density of the sensor points to be selected in an actual project
layout and the ore mining construction technology. In the solution process, the combination
scheme of each group of sensors will have the calculation and storage of the key parameters
in this model, which is convenient for making a weighted comparison with the sequence
scheme until the optimal result is obtained.

3. Case Analysis

The feasibility of this model method is demonstrated by the following cases. The
second-phase MSM system of the Xinjiang Ashele Copper Mine is used as an example for
analysis. The mine has a development layout within an MSM sensor network layout project.
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Several sensors are mainly arranged in the +150 m middle section and the +200 m middle
section, respectively. The specific global three-dimensional view, global top view, and the
positional relationship of each middle section are shown in Figure 6a–d. To determine
the specific coordinates of the fracture sources and sensors in the mine rock structure, a
Cartesian coordinate system has been established. Then, with the help of a full set of
Zhongke MSM System (http://www.sinoseism.com/, accessed on 30 May 2022) hardware
equipment, tests on monitoring and positioning, data processing, and analysis were carried
out. The physical structure of the hardware equipment connection is shown in Figure 6e.
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Figure 6. Mine development layout and the existing MSM sensor network layout engineering
drawing: (a) 3D perspective view; (b) overall top view; (c) +200 m middle section plan; (d) +150 m
middle section plan; (e) hardware equipment connection diagram.

The location of the sensor and its ancillary properties have a great influence on the
source location results. Against this engineering backdrop, in order to verify the practica-
bility of the above optimization method, according to the deployed sensor station network,
its actual monitoring effect was analyzed, and a comparison basis for the optimized layout
scheme was conducted. The specific coordinates of the eight sensor coordinate points in
the original layout plan shown in Figure 6 are given in Table 2.

Table 2. Mine target analysis area sensor installation coordinates.

Serial Number 1 2 3 4 5 6 7 8

Numbering S150-6 S150-7 * S150-9 S200-10 * S200-11 S200-12 S200-13 S200-14
x (m) 254.71 212.83 353.7 260.09 211.8 191.53 349 391.01
y (m) 109.51 250.27 149.6 91.61 184.64 287.44 229.1 407.55
z (m) 153.2 153.1 154.6 202.5 202.7 203.7 203.8 208.2

Note: (1) The coordinates in the table have been transformed without changing their relative positional relationship;
(2) the coordinates with ‘*’ are three-way speed sensors, and the rest are one-way speed sensors.

To use this method to evaluate the existing sensor network in Phase II of the Ashele
Copper Mine, it was first necessary to calculate the coverage area and the envelope volume
of the network, composed of all sensors (as shown in Figure 7). Second, the minimum
coverage radius of each sensor in the previous monitoring data was analyzed, and the
monitoring range of each energy level of each sensor was drawn up (as shown in Figure 5a);
that is, its sensitivity index and distribution, and the monitoring energy levels in different
coverage radii were superimposed (as shown in Figure 5b). Finally, numerical interpolation

http://www.sinoseism.com/
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and superposition calculations were carried out on the monitoring ranges of the different
energy levels of all sensors, and the actual monitoring optimum coverage volume for
optimal performance was obtained. After data statistics analysis, it was found that in the
second phase of the mine site project, the average monitoring radius of each sensor during
the 24-month monitoring period in 2018 and 2019 was 165.8 m. Taking the minimum
monitoring radius, R (50 m), from the statistical results as the assumption analysis, the
monitoring radius corresponding to the energy range is shown in Figure 7.
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Figure 7. Analysis chart of the monitoring efficiency of the mine’s current network layout: (a) Global
stereo view; (b) XOZ normal top view; (c) XOY normal top view; (d) YOZ normal top view.

In the S-V-E-R-V model, the monitoring efficiency of the network layout is determined
by the maximum coverage radius and the envelope volume after the superposition of all
interpolations under the condition of the lowest monitoring energy level. To accurately
calculate the relationship between the actual propagation radius and the monitoring energy
level, in addition to consulting the relevant literature, it is more important to combine
the long-term effective monitoring data from actual mining engineering to calculate a
mathematical relationship that conforms to the actual working conditions. Based on
Equation (13) and the 24-month effective mine-monitoring data, the relationship with the
energy E monitoring radius R of the microseismic event, in this case, can be expressed as:

E = 3.748× 10−4 × R3.0810 . (16)

Specifically, this analysis is based on the MSM data of the +150 m middle section and
the +200 m middle section of the second phase of the mine. The intuitive distribution of
the statistical data values is shown in Figure 8. Figure 8a shows the intuitive distribution
relationship between the sensors in the target study middle section and their log energy
values, and Figure 8b shows the intuitive distribution relationship between the sensors in
the target study middle section and all sensing radius values in the statistical period.
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Figure 8. Research target sensor monitoring the energy range and radius distribution map: (a) distri-
bution of energy logarithm corresponding to each sensor; (b) distribution of radiation radius value
corresponding to each sensor.

Figure 9 shows the distribution of all sensing radii and the energy size of each sensor in
the statistical period of each sensor in the current research area of the mine’s MSM system.
The use of small to large circles in the figure indicates that the monitoring radiu is from
small to large, and the use of color from cool to warm in the figure indicates that the event
energy is from small to large. Except for those individual values that are extremely large
or extremely small, the minimum monitoring sensing radius is usually 26.3 m, and there
are also a few cases where it is 50.0 m. The maximum value is 360.5 m, but the proportion
of events is small, and these events with a large radiation radius and high energy level
are more often at 281.6 m. On the one hand, the relationship between the energy of the
microseismic event and the monitoring radius conforms to the mathematical relationship
expression deduced above and, therefore, can be statistically analyzed and verified at the
mine site; on the other hand, the statistical results provide a hierarchical research basis
for the subsequent model-building process. The choice of different radiation radii has a
reference basis, along with analytical and comparison significance.

Sensors 2022, 22, x FOR PEER REVIEW 15 of 23 
 

 

 

Figure 9. Summary of the monitoring radius and energy distribution corresponding to sensors in 

the study area. 

Referring to the existing statistical data of the mine and the analysis of the 

assumption of the minimum radius and Equation (13), the data of the proposed five levels 

of the radius (100 m, 150 m, 200 m, 250 m, and 300 m) correspond to the monitoring energy 

sensitivity, and the sensitivity is assigned. To distinguish the monitoring range of different 

energy levels of independent sensors and their comprehensive monitoring range after all 

sensors are superimposed, the distribution of the independent point clouds of each sensor 

in different monitoring energy levels is shown in Figure 10. Specifically, it is a schematic 

diagram to distinguish the paving steps of determining the coverage area and the 

envelope volume for interpolation calculation and, especially, to lay the foundation for 

the calculation of the envelope volume of the energy-sensing sensitivities corresponding 

to the different monitoring radii of all sensors. 

 

Figure 10. Distribution of the independent point clouds of each sensor according to the different 

monitoring energy levels. 

Sensor number-monitoring radius-radiant energy

360.5m

281.6m

50.0m

26.3m

radiant energy increase monitoring radius increase
Legend

R=100m

R=150m

R=200m

R=250m

R=300m

Figure 9. Summary of the monitoring radius and energy distribution corresponding to sensors in the
study area.



Sensors 2022, 22, 4775 15 of 23

Referring to the existing statistical data of the mine and the analysis of the assumption
of the minimum radius and Equation (13), the data of the proposed five levels of the
radius (100 m, 150 m, 200 m, 250 m, and 300 m) correspond to the monitoring energy
sensitivity, and the sensitivity is assigned. To distinguish the monitoring range of different
energy levels of independent sensors and their comprehensive monitoring range after all
sensors are superimposed, the distribution of the independent point clouds of each sensor
in different monitoring energy levels is shown in Figure 10. Specifically, it is a schematic
diagram to distinguish the paving steps of determining the coverage area and the envelope
volume for interpolation calculation and, especially, to lay the foundation for the calculation
of the envelope volume of the energy-sensing sensitivities corresponding to the different
monitoring radii of all sensors.
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From the basic schematic diagram and pavement of Figures 7 and 10, we can easily as-
sume that the monitoring efficiency of the actual network in the mine MSM system is based
on the maximum envelope range formed by the mutual superposition of various sensors.
At this point, the coverage area, envelope volume, and target energy level corresponding
to the maximum monitoring volume enclosed within the radiation radius yield the most
accurate basic reference data, which can be calculated and compared with the compound
covariance in Equation (15). Verification and the comparative basic data for the subsequent
optimization of the method can also be provided. First, under the condition that eight
sensors are deployed at the same time and are effective, the interpolated cloud map of
the different energy level coverage of the study area (as shown in Figure 11a), and the
interpolated contour map of the radiation radius in the middle section where the sensors
are deployed, can be obtained (see Figure 11b,c).

From the display in Figure 11 and the analytical process of the aforementioned formula,
it can be seen that it is helpful to observe the monitoring sensitivity of the energy levels
of monitoring events in different regions and to make visual sensory judgments to carry
out the primary optimization of the network layout method. This procedure is used
to obtain the radiation radius data and calculate the required geometric parameters, to
provide detailed data support for the comparability and applicability of the optimization
scheme. Then, the most important thing is to help judge the different distributions of
sensors in the network and the different monitoring effects. In addition, its visualization
and data characteristics are obvious, which is convenient for improving the efficiency
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of network optimization and analysis. Specifically, the higher the relative independence
of a single sensor, the worse its peripheral monitoring performance, and the lower the
energy level-sensing sensitivity. The more inclusive the multiple sensors, the better the
monitoring performance within a specific range, and the energy level sensing sensitivity in
general. When the monitoring range is fixed, the farther away from the sensor, the worse
the monitoring efficiency, and the lower the energy level-sensing sensitivity.
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Figure 11. The result of the interpolation calculation of the current deployment’s network efficiency:
(a) overall slice; (b) 150 m middle section; (c) 200 m middle section.

In addition to comparing and analyzing the point-cloud maps of the abovementioned
network with different radiation radii and the slice maps of the whole and of each middle
section, it is important to calculate the corresponding monitoring range data. The evaluation
criteria and data results in the actual analysis of the existing engineering case are used
as the basic comparison data source for subsequent method optimization. The overall
coverage area is calculated, based on Equation (7) and Figure 11 above, according to the
different radiation radius levels, and the global projection area maximization joint analysis
and its calculation. The coverage area parameter value under this deployment situation (the
coverage area of different radiation radius levels in each middle section) is more specific
and true to the sensor network deployment quality of the target middle section, which is the
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key parameter of the coverage area index. The maximization of the envelope volume of the
different levels of radiation radii reflects the overall monitoring efficiency of the network
layout, especially since, once the radiation radii and the corresponding minimum energy
level sensitivity are converted, the practical significance of this parameter is more relevant.
The specific main research parameters of the existing second-phase project network layout
are the overall coverage radius of each projected area and its mean value, the coverage area
of each middle section with the different radiation radii, and the envelope volume of the
radiation radius at all levels (for detailed parameters, see Table 3). A specific comparison of
the current layout plan of the mine is shown in Figure 12.

Table 3. Summary of main research parameters of the existing second-phase project grid layout.

Radiation
Radius/m

Overall Coverage Area/m2

Projection Plane
Coverage Area of Each

Middle Section/m2 Radiation Radius
Envelope at All Levels/m3

XOY XOZ YOZ Subtotal 150 m 200 m

100 1.27 ×105 6.85 × 104 8.18 × 104 9.23 × 104 2.48 × 104 9.71 × 104 1.89 × 107

150 2.01 × 105 1.25 × 105 1.61 × 105 1.62 × 105 1.45 × 105 1.91 × 105 4.76 × 107

200 3.06 × 105 1.89 × 105 2.55 × 105 2.50 × 105 2.45 × 105 2.76 × 105 9.83 × 107

250 3.86 × 105 2.00 × 105 3.01 × 105 2.96 × 105 3.45 × 105 2.21 × 105 1.42 × 108

300 # 4.15 × 105 2.00 × 105 3.29 × 105 3.15 × 105 9.80 × 104 1.06 × 104 1.25 × 108

Note: # indicates that the data has no actual envelope in some areas within the research range.
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Figure 12. Evaluation results of the new method for the current grid layout of the mine.

4. Numerical Simulation Analysis

Due to the different placement positions of sensors in the network, the geometric
structure formed by the layout of a particular network and its energy-sensing sensitivity
determine the comprehensive monitoring efficiency of the network. The abovementioned
method, based on an analysis of the S-V-E-R-V model for the key parameters of the existing
sensors in the mine, is only used as the basic comparison data source for the subsequent
program optimization. To further verify and promote the application of this method, the
solution steps of the new method can be followed and numerical simulation can be used to
analyze the possible potential grid layout forms of the mine, one by one, to further compare
and optimize the optimal grid layout scheme. Here, to evaluate the monitoring efficiency of
the network layout in the monitoring area, all possible sensor locations are identified from
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the middle of the second phase of the mine project to form a sensor coordinate database
and to build a numerical simulation model and its boundaries (as shown in Figure 13).
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Figure 13. Model construction of the network layout in the target area of the mine: (a) delineation
of the monitoring range; (b) proposed sensor points; (c) construction of a simulation model and
boundaries: a, b, c, d are the actual boundary limit coordinate point considering the sensor point
database; A, B, C, D mean boundary limit coordinate points for numerical simulation considering
sensor monitoring efficiency.

The basic principle of selecting sensors is as follows: according to the proposed coordi-
nate database, it is necessary to delineate potential sensor points and record the data. There
are 99 proposed coordinate positions in the two middle sections, including 55 in the +150 m
middle section and 44 in the +200 m middle section. To study the maximum monitoring
efficiency of a certain network layout, the sensor coordinate database is combined, referring
to the statistical data of the mine and the above analysis to comprehensively select different
radii of 100 m, 150 m, 200 m, 250 m, and 300 m, and to calculate the radiation. For the
energy level, we select the maximum monitoring range that corresponds to the lowest
energy level that can be sensed by the grid and compare the geometric parameters of the
solver horizontally to obtain the best layout plan.

Figure 14 shows the monitoring efficiency results of the five optimal networks, de-
termined using the above optimization method at different radiation radius energy levels
of 100 m, 150 m, 200 m, 250 m, and 300 m. The color change from cool to warm indicates
that the minimum energy level required to monitor the event is becoming increasingly
higher. In other words, if you need to achieve a larger monitoring range performance,
you need a certain mesh layout to sense events that are more distant using smaller energy
levels. By comparing the envelope ranges of the monitoring energy level sensitivity under
different radiation radii, and then performing a weighted comparison, five optimal layout
schemes are selected. This is in sharp contrast to the current monitoring network used
in mines, which is established via the monitoring range of different energy levels. In
addition, the network layout optimized using the new method provides a more obvious
data comparison under different radiation radii, indicating that the new method is superior
to the traditional method.
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Figure 14. Optimization results of the network layout: monitoring efficiency in the case of different
middle sections and different radiation radius conditions.

Under the conditions of different levels of radiation radius, as the radiation radius
increases, the geometric parameters adapt to the increase and the corresponding monitoring
performance of the network is optimized, based on meeting the needs of the mine, which
verifies that the use of the S-V-E-R-V model has obvious advantages. Figure 15 shows
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the calculation results of the comparison between the first five optimal schemes after
optimization and the mean absolute error and standard deviation of the mine’s existing grid
layout. Since the effective coverage range of the 300 m radiation radius in all optimization
schemes is not fully covered in this figure, when assessing the calculation effectiveness of
the minimum monitoring energy level, the geometric parameters covered by the radius
of 250 m and below are primarily considered. It can be seen from Figure 15 that the five
optimal schemes, optimized based on this model, all have more advantageous analysis
results than those of the current mine layout. It can be seen that the S-V-E-R-V model is
helpful for determining the layout of the mine MSM network and for the optimization
of the scheme and that the room for error is small, indicating that the method is highly
appropriate. Therefore, this method is suitable for the comparison and optimization of
existing MSM network deployment systems in mine engineering, and has high applicability,
especially for mines that have never employed an MSM network.
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Figure 15. Average absolute distance error and standard deviation of the calculation results of various
geometric parameters under multi-level radiation radii: (a) advantage scheme I; (b) advantage
scheme II; (c) advantage scheme III; (d) advantage scheme IV; (e) advantage scheme V.
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5. Discussion and Conclusions

This paper proposes a method for optimizing the mesh distribution of microseismic
monitoring stations in mines and other underground mine engineering scenarios, based
on the S-V-E-R-V model. The advantages of this method are as follows: (1) Being aimed
at monitoring efficiency, it maximizes the monitoring range, monitoring mobility, and
field transition efficiency, thus meeting actual engineering needs; (2) The S-V-E-R-V model
and its indicators are easy for front-line technicians to understand, and they can quickly
obtain and build a practical model that includes the coverage area of the network (S),
the envelope volume of the network (V), the coverage radius of each energy level of
the network (RE), and the effective energy level sensitivity monitoring envelope volume
(VE), so as to comprehensively evaluate and optimize the monitoring performance of the
network layout; (3) With regard to visualization, the expected monitoring energy level
sensitivity in the target monitoring area can be dynamically visualized in real time using
this method, thus providing a data comparison and analysis basis for the judgment of
various schemes, making the results more intuitive and improving their credibility. The
accuracy of the method is verified by the simulation comparison between this method
and the existing scheme in the mine site. The results show that this method has better
monitoring efficiency and practicability than the traditional methods. Internal iteration
and optimization are carried out in this method, and the simulation results show that it is
always possible to optimize the optimal network layout plan by an iterative cycle, with a
strong self-correction ability.

However, this method has the following limitations: (1) the theoretical basis of the net-
work layout is relatively weak; (2) the innovation of the network layout and the adaptability
of the engineering site still need to be optimized; (3) the promotion of all underground
mine application platforms is difficult; and (4) the demand for fast, efficient, and intelligent
mining sites is the development direction of the network layout. Therefore, a network
layout optimization method that is capable of automatic iterative optimization and deep
learning is of great significance and deserves further research.
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