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Abstract: Determining the position of ourselves or our assets has always been important to humans.
Technology has helped us, from sextants to outdoor global positioning systems, but real-time indoor
positioning has been a challenge. Among the various solutions, network-based positioning became
an option with the arrival of 5G mobile networks. The new radio technologies, minimized end-to-
end latency, specialized control protocols, and booming computation capacities at the network edge
offered the opportunity to leverage the overall capabilities of the 5G network for positioning—indoors
and outdoors. This paper provides an overview of network-based positioning, from the basics to
advanced, state-of-the-art machine-learning-supported solutions. One of the main contributions is
the detailed comparison of machine learning techniques used for network-based positioning. Since
new requirements are already in place for 6G networks, our paper makes a leap towards positioning
with 6G networks. In order to also highlight the practical side of the topic, application examples from
different domains are presented with a special focus on industrial and vehicular scenarios.

Keywords: positioning techniques; machine learning; 5G; 6G; network-based positioning; indoor
positioning; asset tracking; positioning use cases

1. Introduction

Over the past decade, the rapid development and proliferation of the Internet of
Things (IoT), cloud computing, and intelligent terminals has led to the application of
Location-Based Services (LBS) attracting considerable attention from both academia and
industry [1]. In the outdoor environment, satellite-based positioning technologies can
provide convenient location services for people to support applications such as vehicle
navigation and cargo tracking.

However, indoors and in dense urban areas, the accuracy of satellite-based positioning
technologies decreases due to severe occlusion by objects and multipath effects in signal
propagation, and cannot meet the requirements of the applications; therefore, there have
been continuous efforts in recent decades to find equally (or more) scalable and accurate
positioning techniques [2–4]. There are several publications that summarize the results and
limitations of the various areas of non-satellite-based (or non-GPS) positioning systems, e.g.,
Visible Light Communication (VLC), Sound, Radio Frequency (RF), or Passive Information
(magnetic field or passive sound) based technologies [1–17]. As mobile networking reached
global land coverage, the idea of network-based positioning was (literally) in the air. It
has become an important use case for 5G as it fits the requirements of scenarios related to
vehicles and cyber–physical systems. Increased positioning accuracy also remains a focus
for 6G mobile networks.
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Because of this importance, there have been several studies that have looked at the
positioning capabilities of 5G networks. Most of these works were conducted before
commercial 5G networks were widely deployed, so many more recent works are missing.
In addition, each study has its own perspective with a fairly specific focus. As a result, there
are technologies and methodologies that require more attention. In [15], cellular positioning
methods from previous to current standards, their reported performance, and localization
perspectives in next-generation cellular networks are presented. The authors of [18] provide
a comprehensive overview of the positioning architectures in previous generations of
cellular networks and then propose a general positioning architecture for 5G networks,
leveraging the new features of emerging technologies. The technology and methods
of millimeter Wave (mmWave) and massive Multiple-Input Multiple-Output (MIMO)
localization in 5G networks are discussed in [19,20]. Cooperative positioning technologies
and methods are presented in [21]. The security and privacy threats according to the
participants of 5G positioning are presented in [22]. An overview of 5G positioning
solutions in smart cities is given in [23]. Ref. [24] presents a study on integrated localization
and communication (ILAC) in 6G networks. Ref. [25] discusses the technical trends
and opportunities in 6G networks to achieve latency and accuracy improvements and
low-cost positioning.

The main goal of this paper is to provide a comprehensive overview of machine-
learning-aided and traditional cellular-based positioning techniques and architectures in
5G and 6G networks. To do this comprehensively, we have provided a brief summary on
positioning in cellular networks. Furthermore, we surveyed the conventional positioning
solutions (which do not use machine learning) for 5G networks, as such overviews were
still lacking—in particular, the comparison of the advances in the field. At the end of the
chapters on conventional 5G-based positioning and machine-learning-based positioning,
we present our key findings to briefly summarize the main results of these long surveys.

In this paper, we focus on the machine-learning-aided cellular-based positioning
techniques and architectures utilizing the improvements of 5G networks. The contributions
of this paper are the following:

• Section 2 is an overview of the characteristics of cellular-network-based positioning—
the different types of cellular positioning are summarized here.

• Section 3 describes the capabilities of conventional positioning techniques, and several
non-ML positioning solutions are introduced and compared here.

• An extensive study of ML-aided positioning techniques is provided in Section 4, and
the different methods are compared to each other based on positioning accuracy.

• Section 5 summarizes the expected advancements of 6G networks in terms of positioning.
• Major results of real-world use cases that have been published within the scientific

communities so far are collected in Section 6.

At the end of the paper, Section 7 concludes this research, summarizing the main findings.

2. Positioning in Cellular Networks

In this section, we present the most relevant cellular positioning technologies, discuss
the applicability of ML technologies to improve their accuracy, and highlight the advances
of 5G networks. Accurate and real-time positioning is highly demanded by location-based
services and can be beneficial for radio resource management in 5G networks, which are
deployed to achieve significant performance improvements over existing cellular networks.
Many new technologies, e.g., massive MIMO, mmWave communications, Ultra-Dense
Network (UDN), and Device-to-Device (D2D) communications, are being introduced in 5G
networks to not only improve communication performance, but also provide the ability to
significantly increase positioning accuracy [18]. It is envisioned that 5G networks will be
able to locate User Equipment (UE) with sub-meter accuracy and provide high network
utility [26], such as seamless coverage, low delay, and high throughput, placing higher
requirements for cellular communication systems.
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In cellular-based localization, the downlink transmissions from the Base Station (BS)
to the mobile device and uplink transmissions from the mobile device to BS can be utilized
to determine the position of the UE [18]. The cellular-positioning methods can be classified
into two main categories depending on the entity that computes the position: (1) mobile-
based, where the UE itself calculates its location, and (2) network-based, where the network
location server computes the position of the UE. Most cellular-based positioning solutions
are network-based due to its centralized nature that allows full control of the location service
by the network operator, as well as its support to legacy devices. As shown in Figure 1, the
5G positioning architecture mainly consists of two parts: a Radio Access Network (RAN),
which includes a multi-Radio Access Technology (RAT) network, edge cloud, and control
cloud, where the location of the UE is determined based on the measurements of the UE
and BSs [18]. Every reviewed solution is network-based in this section.

Figure 1. An example for a 5G positioning architecture [18].

Cellular-based localization technologies can be divided into four main categories:
cell-identity-based, angle-based, range-based, and fingerprinting-based [18].

2.1. Cell-Identity-Based Localization Techniques

The Cell identity (CID) or proximity-based technique is the simplest of the four
techniques, as it mainly relies on checking whether or not the object to be positioned is
present in a particular radio coverage area. It is necessary to know the location of the
serving base station and the area of the serving cell that is incorporated to estimate the UE’s
location. It requires many base stations to achieve comparable accuracy to other methods
and is not suited for large areas or areas with low-density populations [27].

2.2. Angle-Based Localization Techniques

The angle-based techniques utilize either the Angle-of-Arrival (AoA), the Angle-of-
Departure (AoD), or even both. The arrival angle is the direction from which the radio
signal is received (see Figure 2), while the angle of departure is the direction where the
signal is transmitted. In 5G networks, with massive MIMO, the BS will be equipped with
hundreds or even thousands of antennas, which can provide an extensive array aperture
and support beam-based operations [10]. During the beam search operation, the angle
can be obtained easily in terms of the downlink Angle of Departure (DL-AoD) and the
uplink Angle of Arrival (UL-AoA). Although UEs and BS search for the best beam for the
radio link, DL and UL Reference Signal Received Power (RSRP) is measured to evaluate
the signal quality of a beam. This enables the BS to analyze the uplink channels using pilot
signals sent by the UEs, which can estimate the AoAs with high accuracy and low inter-
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user interference effect; therefore, massive MIMO will boost the utilization of angle-based
positioning approaches in 5G networks, which are not widely used in 2G–4G networks [18].

Version June 19, 2022 submitted to Sensors 4 of 25

Antenna1 Antenna2

. . .

Antennan

d

Incoming Signal

θ
θ

d ∗ sin(θ)

Figure 2. The angle of arrival (θ) can be calculated with the measurement of the incoming signal’s
phase shift between the antennas.
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Figure 2. The angle of arrival (θ) can be calculated with the measurement of the incoming signal’s
phase shift between the antennas.

Unfortunately, most of the time, the positioning requests are coming from dense
multipath environments. In these circumstances, appropriate processing of measurements
is essential for accurate positioning since only the Line-Of-Sight (LOS) measurements reflect
the real angular relationship between the UE and the BS. This is why the most typical
positioning approach is the two-step approach, where first an LOS/Non-Line-Of-Sight
(NLOS) identification is performed, and then the identified LOS measurements are used
for positioning [18]. In some cases, an LOS path may not even exist in the multipath
environment, usually caused by large blocking objects, such as walls. When all signals are
NLOS propagated, the localization errors are substantial.

2.3. Range-Based Localization Techniques

The range-based localization techniques estimate the unknown position of the UE
based on range measurements between transmitters and a receiver (or vice versa). These
measurements can be obtained by extracting the information contained in the received
signal, such as Received Signal Strength (RSS), Time of Arrival (ToA), and Time Difference
of Arrival (TDoA) [28]. As shown in Figures 3 and 4, the distance between the UE and a
minimum of three base stations (or one base station if the BS antennas are separated wide
enough) is required to estimate the BS location by using trilateration [27].

If there is a misalignment between the user receiver clock and the synchronized trans-
mitter clocks, a common offset (bias) corrupts the measurements, resulting in pseudoranges
(a range estimation containing an unknown error). In addition to the unknown user posi-
tion, this offset needs to be treated as an unknown parameter too. It can be either estimated
using the pseudoranges or eliminated by taking differences among the pseudoranges
(hence, TDoA). For fully synchronized (ToA) or non-timing-based systems (such as RSS),
this type of offset does not exist [28].

The 3GPP NR system supports two types of TDoA measurements: (a) the Observed
Time Difference of Arrival (OTDoA), also called downlink-TDoA (DL-TDoA), where the
ToA is measured in the downlink; (b) uplink-TDoA (UTDoA), based on sounding reference
signals (SRS) [29]. One advantage of UTDoA compared to OTDoA is the time-stamping
accuracy, which affects the time measurement accuracy. Time-stamping accuracy depends
on the clock frequency and clock drift in the hardware. In the case of OTDoA, the ToA
is measured at the UE, which typically gives worse performance than measurements at
the BS. Since the UE measurements are performed on separate occasions, the time drift
between the measurements becomes an additional error source.

As emphasized in the discussion of the angle-based techniques, in practice, the UE does
not have line-of-sight paths to more than one BS, resulting in corrupted ToA measurements.
Usually, in non-line-of-sight conditions, the ToA-based solutions have low accuracy.
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2.4. Fingerprinting-Based Localization Techniques

The most-utilized fingerprinting-based positioning method consists of two phases: an
offline (training) phase and an online (positioning) phase. In the offline or training phase,
a database is created by measuring given signal or antenna attributes at known locations
(i.e., known as signatures or fingerprints). Such a signal attribute can be the received signal
strength, which can be measured by the UE. In addition to these attributes, the floor number
(if indoors), the orientation of the device, the TA (Timing Advance) or RTT (Round-Trip
Time) value (or any kind of timing information), the type of mobile unit, etc., may also be
stored. This database of locations and the associated fingerprints are called the radio map
or fingerprint database. This database enables the creation of one or more models through
Machine Learning (ML) techniques. In the online phase, localization is accomplished by
using the model to estimate the user’s position based on the attributes measured by the
mobile unit.
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The most significant advantage of fingerprinting-based solutions is their ability to
remain accurate even in highly cluttered multipath environments [18,30]. It provides an
edge over the angle-based and range-based solutions, but it comes with a high cost, too,
since the offline phase’s fingerprint collection requires extensive human resources. The
Achilles heel of the fingerprinting-based solutions is the alteration of the setup. For example,
when the number or the locations of the access points in the environment changes, the
radio map, i.e., the fingerprint, must be updated accordingly. Although a simple removal
of an access point can be modeled with the deletion of the corresponding values from the
fingerprints, the installation of one or more new access points forces a new fingerprint
collection. Additionally, the different types of mobile devices contain various types of
antennas, resulting in an additional error component in the measurements. These problems
negatively affect the accuracy of positioning.
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3. Conventional Positioning Solutions in 5G Networks

In positioning solutions, the potential of using Machine Learning (ML) models is
generally undisputed; however, in some cases, these models are not a viable solution for
various reasons (e.g., computational resources, training/testing time, and data quantity and
quality). Fortunately, a plethora of 5G positioning methods has already been devised [31]
and most of them are capable of achieving high-quality results even without machine
learning models; therefore, in this section, we present some of the most prominent solutions
without ML for positioning in 5G networks. The experiments to be mentioned are divided
into two groups depending on whether 5G is assisted by other technologies or not.

3.1. Pure 5G Network-Based Positioning

In this section, we briefly present positioning solutions that require input data based
only on 5G signals. As the following solutions show, the data types mentioned in Section 2
can be utilized in various ways for indoor or outdoor positioning.

The reference architectures, signals, and protocol-related peculiarities are well summa-
rized by Dwivedi et al. [32] based on Release 16, as this set of recommendations provides
the foundations for 5G positioning. In addition to illustrating the capabilities of the stan-
dardized components, they also provide simulation results based on key scenarios with
certain assumptions.

Papp et al. [33] investigated the actual realization of a TDoA-based indoor positioning
system on existing 5G small cell networks. Their primary focus was on indoor signal
propagation and to overcome the challenging effects related to such scenarios. Their
approach was to create a channel model based on real 5G measurements and to use the
novel model obtained by using that data for the creation of a realistic simulation framework.
This framework was then utilized to analyze the performance of various algorithms. They
found that using some of these algorithms can significantly reduce the impact of NLOS
propagation. Consequently, a positioning error under 3 m is achievable in certain cases.
Furthermore, accuracy could be improved not only by increasing the number of ARPs
(Antenna Reference Points, radio dots), but further enhancing the RWLS (Robust Weighted
Least Squares) method, the power-delay-profile-based (PDP) NLOS algorithms, or by
combining TDoA measurements with the results from built-in inertial measurement unit
sensors or with the angular measurement data coming from MIMO antenna systems.

Zhang et al. [34] proposed a solution for 3D positioning in a simulated indoor 5G
ultra-dense network. In their work, they proposed a 3D dynamic reconstruction fingerprint
matching algorithm whose first step is to reconstruct the complete fingerprint matrix from
partial data. Then, to simplify the fingerprint data, the suboptimal service base stations are
eliminated from the dataset. Finally, the k-nearest neighbor matching algorithm is used to
estimate the 3D coordinates. The positioning errors are evaluated at several Signal-to-Noise
Ratio (SNR) levels. The mean error at SNR = 2 dB is 0.31 m and 0.16 m at SNR = 20 dB.

Menta et al. [35] performed their research using a realistic outdoor 5G network testbed.
They utilized a two-stage Extended Kalman Filter (EKF) based positioning engine. In
the first stage, AoA estimation is performed by local EKF computing engines at each
Transmission–Reception Point (TRP). Then, all AoA estimates are fused by a global EKF to
obtain the position estimate. According to their results, a sub-meter 2D error is achievable
with a probability of 95%. Similarly, Koivisto et al. [36,37] also used a cascaded EKF in a
two-stage manner for an unsynchronized 5G ultra-dense network. In their solution, the
computations are performed on the network side to minimize the power consumption
and computational requirements at the UEs. In the first stage, the ToA and the Direction
of Arrival (DoA) of the user nodes are estimated. Then, in the second EKF stage, the
individual ToA/DoA estimates are fused to estimate the user node position. Their results
show that sub-meter accuracy for positioning and tracking is feasible. The simulations in
their work are performed based on the METIS Madrid map model [38]. In their extended
research, sub-meter error was also achievable; however, in this case, a realistic clock model
with clock skews was used.
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Sun et al. [39] focused their experiments on positioning a single cell (base station)
with a wideband 5G signal and a vector antenna (VA). Consequently, this solution is free
from the complications of multi-cell approaches, such as synchronization between base
stations and increased deployment costs due to the complexity of the system. For position
estimation, they used statistics-based expectation maximization and the subspace-spaced
algorithm. The results based on the sounding reference signals in a line-of-sight scenario
prove that VA is capable of providing 3D UE positioning with sub-meter accuracy in
5G networks without requiring multiple cells or multiple antennas. Partly similar to the
previous study, Jin et al. [40] conducted their experiments in a virtualized indoor office
scenario with only one mmWave Base Station (BS). In their solution, an improved Least
Mean Square (LMS) algorithm is used to refine the multipath AoA estimation based on the
motion characteristics of the user devices. Then, an Unscented Kalman Filter (UKF) is used
to estimate the position based on the AoA and ToA distributions of the different mmWave
paths. According to the results, their proposed method is able to achieve a positioning
accuracy of less than one meter.

Kakkavas et al. [41] investigated the performance limits of Vehicle-to-Vehicle (V2V) rel-
ative positioning for vehicles with multiple antenna arrays. AoA and TDoA measurements
are used to estimate the position and direction of the vehicle in platooning and overtaking
scenarios. These are used to obtain the Cramer–Rao bound for lateral and longitudinal
positioning error. The results are compared to the 5G new radio vehicle-to-everything [42]
Positioning Error Bound (PEB) requirements: longitudinal PEB less than 0.5m and lateral
PEB less than 1m. In the overtaking scenario, the requirements are met if the longitudinal
offset between vehicles is less than 22.46 m. In the platooning scenario, the distance be-
tween the vehicles cannot exceed 17.07 m in order to keep the positioning error under the
limit value.

3.2. Assisted Positioning in 5G Networks

In this section, we present the efficiency of 5G hybrid solutions. The following ex-
amples show that GNSS assisted 5G positioning is currently being extensively studied by
multiple research groups. In addition, a promising solution is also reviewed, which utilizes
5G signals assisted by visible light communication.

Sun et al. [43] proposed a hybrid 5G-GNSS positioning method (see Figure 5) based
on combining AOA estimates from 5G base stations and TOA measurements from GNSS
satellites. In their simulations, three satellites are visible. The mathematical models for
the GNSS and 5G measurements are nonlinear due to the clock bias between the UE and
GNSS system time; therefore, the Taylor series least-square method is used to linearize the
mathematical model and estimate the position solution iteratively. Then, moving averaging
is performed for the raw position estimates to reduce the effects of noise. According to
their results, the 2D position error is less than 10m in more than 95% of the cases with the
hybrid 5G-GNSS solution. Under the same circumstances, this value is about 15 m for the
standalone 5G AOA positioning method. Thus, by using both GNSS and 5G signals, the
authors were able to reduce the positioning error by at least 5 m.

Abu et al. [44] proposed their method of hybrid GNSS and 5G positioning for specific
scenarios where systems of Autonomous Vehicles (AVs) are equipped with 5G transceivers.
They focused on scenarios where GNSS and 5G positioning systems individually do not
work well or have too large error. For example, on urban roads, where AVs can only receive
GNSS signals for short periods of time due to limited satellite visibility. The results of
their simulations show that when the GNSS satellites are well-spaced and two 5G base
stations are available, a sub-meter error is achievable with the hybrid solution. Moreover,
the sub-meter error is also obtainable when the GNSS satellites are ill-positioned but
two 5G base stations are still accessible. Based on that, the authors concluded that the
positioning information of the 5G signals is the main component of this hybrid 5G-GNSS
positioning solution.
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Yin et al. [45] focused on hybrid 5G-GNSS D2D positioning in their study. The experi-
ments were conducted with a dataset consisting of real GNSS trajectory data and simulated
5G D2D measurements. Moreover, the GNSS dataset contains both parts with good GNSS
conditions and parts with denied GNSS. To improve the efficiency of measurements for
D2D positioning in 5G networks, a novel Crossover Multiple-Way Ranging protocol (CO-
MWR) was proposed. In addition, a particle filter was used to estimate the user’s position.
They also proposed a state dimension reduction method to prevent particle degeneracy,
which would lead to performance degradation. Their results show that their solution can
provide accurate estimates even in areas where GNSS is not available. Meanwhile, an
RMSE of 3 m or less can be achieved for the entire data set.

Figure 5. Illustration of the hybrid GNSS-5G positioning [43].

In their study, Yang et al. [46] presented a multi-layer network architecture that
integrates visible light communication (VLC) and visible light positioning (VLP) in 5G net-
works. Their simulations compared VLC assisted 5G and WiFi-based positioning solutions
in an indoor environment (one room) with 25 VLC AP and 4 RF AP evenly distributed.
According to their results, the mean positioning error was 7.19 cm in case of the VLC-5G-
based positioning, in contrast to the WiFi fingerprint algorithm, whose mean error was
68.76 cm. Aside from the mentioned sub-meter positioning error, some features of the VLP
technology are worth mentioning: due to the already existing light infrastructures, deploy-
ment costs are low, and they can be used in electromagnetic-interference-sensitive scenarios,
and communication security is ensured since visible light signals cannot penetrate walls.

3.3. Lessons Learned

Based on the previously presented papers (summarized in Table 1), it can be said
that there are several promising methods for positioning in 5G networks without utilizing
machine learning algorithms. According to several simulation results, sub-meter accuracy
could be achieved even if only 5G signals are used. Moreover, the same accuracy is
obtainable in cases where the 5G signals are assisted with other technologies such as GNSS
or VLC.

It should be noted that in most cases, the positioning methods are tested in a fully or
partially simulated environment, due to the lack of deployed 5G networks. Simulations
tend to underestimate the effects of the physical environment because many of these effects
are difficult to estimate and are highly dependent on the particular environment. The
models differ greatly in several parameters, such as the number of LoS base stations, the
type of simulated signal, and the size of the virtual space; therefore, comparing these
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positioning solutions based only on their positioning error could be very misleading. To
mitigate these problems, most of the works include sensitivity analysis to show the impact
of increasing noise on the accuracy of the algorithm. To make simulation results easily
comparable in the future, a common and consistent scale or viewpoint must be established.
In addition, creating publicly available indoor and outdoor data sets and using them to
evaluate the performance of the algorithms would further improve the comparability and
reproducibility of the different positioning solutions.

Table 1. Comparison of the conventional positioning techniques in 5G networks.

Refs. Algorithm Input Data Type Simulation? Environment Error

[33] Robust Weighted Least Squares +
RANSAC and IDD combined TDoA realistic indoor <3 m

[34] Dynamic reconstruction fingerprint
matching algorithm

Received signal strength
indicator simulated indoor <1 m

[35] Extended Kalman filter AoA realistic outdoor <1 m

[36,37] Extended Kalman filter Uplink reference signal simulated outdoor <1 m

[39] Expectation maximization,
subspace-spaced algorithm Uplink reference signal simulated indoor <1 m

[40] Unscented Kalman filter AoA, ToA simulated indoor <1 m

[41] Deriving Cramer–Rao bound AoA, TDoA realistic outdoor
(vehicle) <1 m

[43] Taylor series least-square method GNSS-TOA, 5G-AoA simulated outdoor <10 m (95%)

[44] Deriving Ficher information of 5G
and GNSS signals

Simulated GNSS,
simulated 5G signals simulated outdoor <1 m

[45] Particle filter Real GNSS, simulated 5G
signals simulated outdoor <3 m (RMSE)

[46] OFDMA-based VLCP Light signals, RSS simulated indoor <1 m

4. Machine-Learning-Aided Positioning in 5G Networks

In this section, we present machine-learning-based methods for indoor and outdoor
positioning. The experiments used machine learning approaches to enhance the positioning
accuracy in 5G networks and can be divided into groups based on the used localization
techniques discussed earlier (Table 2).

4.1. Advances in Positioning Aided by Machine Learning

The simplicity is the only advantage of the cell-identity-based techniques; therefore,
no experiments were investigated from a machine learning perspective. Even though
angle-based methods are one of the main winners of the massive MIMO introduced in
5G, the positioning in the LOS scenario does not require an ML approach [47,48]. On the
other hand, even if the angle information cannot be used for accurate positioning (e.g., in a
NLOS scenario), it can be utilized to enhance the accuracy of other approaches [49–51]. In
most cases, the AoA/AoD is used as a fingerprint feature, which can seriously decrease
the positioning error in an LOS scenario. Most of the machine learning approaches are
attempting either to predict the environmental parameters (e.g., LOS/NLOS) or signal
parameters [52].

Malmström et al. [49] have shown that knowledge of the antenna is critical for accurate
position estimation, and that it is possible to position UE within 10 m with 80% accuracy
using an 8 × 8 antenna array. Their work explores the use of two ML methods—neural
network (NN) and random forest (RF)—to estimate the position of UE in an urban area
using antenna beam data. The radio measurements used are Beam Reference Signal
Received Power (BRSRP) and AoD from a set of beams from an antenna. In order to
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have different position models for LOS and NLOS conditions, the authors evaluated two
Generalized Likelihood Ratio Test (GLRT) detectors to detect NLOS conditions. The first
used the difference between the BRSRP measurements as input, whereas the second used
the difference between the AoD measurements. The solution based on the BRSRP difference
achieved a detection probability of 88%, whereas the solution based on the AoD difference
achieved only 76%. The false positive probability was 5% in both cases. In the NLOS cases,
the random-forest-based positioning outperformed the NN-based one (8.4 m vs. 9.2 m);
however, under LOS conditions, the NN performed much better (2.1 m vs. 8.4 m).

Table 2. Comparison of the machine-learning-aided positioning techniques in 5G networks.

Refs. ML Method Measurement Type Simulation/ Realistic Environment Error

[49] NN, RF BRSRP realistic outdoor <10 m (80%)

[53] kNN, ELM CSI realistic outdoor 8.2m

[54]
NN, TDNN

(time-delay neural
network)

TOA, code phase
estimate realistic outdoor 4.9 m (ranging

RMSE)

[55] NN AoA hybrid both 0.4 m

[56] Densely connected
Neural Network RSS, GNSS signal simulation outdoor 0.74 m

[57] NN, DT BRSRP simulation outdoor 1.4 m

[50] CNN, LSTM, TCN Beamformed
fingerprint simulation outdoor 1.78 m

[58] weighted kNN CSI simulation outdoor 2 m (90%)

[59] Deep convolutional
Gaussian process Beamforming images simulation outdoor 2.79 m

[27]
13 ML models

including NN, kNN,
RF

RSRP simulation outdoor 3.3 m (kNN)

[60,61] GPR, kNN, SVM RSRP simulation outdoor 3.5 m

[62] Gaussian Processes RSRP simulation outdoor 10 m

[63] NN, kNN, SVM RSRP simulation indoor 1.6 m

[64] DNN RSS simulation indoor 1.6 m

[65] Gaussian Processes RSRP simulation indoor <2 m

[66] kNN RSS realistic indoor <2 m

[67] NN CSI simulation both <1 m

Decurninge et al. [53] reported experimental results on using a learning-based ap-
proach to infer the location of a mobile user of a cellular network within a cell for a 5G-type
Massive MIMO system. They investigated the extent to which uplink Channel State Infor-
mation (CSI) can be used for UE positioning. They chose the normalized covariance of the
instantaneous uplink propagation channel vector as the input to the learning algorithms,
since according to them, the second-order channel statistics capture most of the location-
related characteristics of the CSI. They argued that statistical learning is a viable way to
deal with the complexity of the relationship between the spatial scattering environment
surrounding a user and the CSI measured by the BS. Two ML approaches were consid-
ered: a feedforward Neural Network (NN) and a k-Nearest Neighbor algorithm (kNN).
The training and testing data were collected on the Huawei 5G testbed of a university
campus. The covered area contains mostly Line-Of-Sight (LOS) locations. The CSI data
were measured for a single-antenna UE on the uplink of a massive-MIMO system with a
32 dual-polarized antenna array at the BS. To evaluate the sensitivity of the localization
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error to the number of antennas, simulations were performed with a varying number of BS
antennas (N) by discarding part of the data. The results show that the localization error is
small and exhibits little sensitivity to N as long as N ≥ 12 (mean error ≤ 14 m), while for
N ≤ 8 the localization accuracy decreases significantly (mean error ≥ 18m). Moreover, the
kNN approach (k = 3) outperformed the NN-based approach in terms of average accuracy
(8.16 m vs. 9.6 m).

Orabi et al. [54] evaluated the ability of different neural networks to mitigate multipath
effects in 5G downlink signals, in particular to learn multipath-induced errors in code phase
estimation of a 5G receiver. The authors studied two types of neural networks, namely
Feed-Forward Neural Networks (FFNNs) and Time-Delay Neural Networks (TDNNs). The
NNs use inputs from the AutoCorrelation Function (ACF) to learn the errors in the code
phase estimate of a conventional Delay-Locked Loop (DLL). A ray-tracing algorithm is
used to model the effects of the Non-Line-Of-Sight (NLOS) components on the Line-Of-
Sight (LOS) component and to generate training data. They investigated the sensitivity
of the out-of-sample error to the number of hidden layers, the number of neurons per
layer, the regularization constant, and the time window of the ACF using five-fold cross-
validation. Their simulation results showed that both TDNNs and FFNNs offered RMSE
reductions of 29.1% and 59.6%, respectively, over a conventional DLL over the test set. The
results highlighted the importance of the available time history, which helped the TDNN
extract information from the dynamics of the LOS and NLOS signals. In addition, the
authors conducted an experiment to test the generalization ability of the TDNN in real
environments. The TDNN showed an overall RMSE reduction of 27.1% with a reduction of
38% in the most severe multipath region.

Comiter et al. [55] proposed a data-driven localization approach for narrow beam
alignment for mmWave networks. According to real experiments, their methods achieve
sub-meter localization accuracy (median squared error) both indoors (0.33–0.37 m) and
outdoors (0.76 m). They argue that their domain-specific neural network approach can
increase localization accuracy while minimizing the amount of real samples that need to
be collected to train the model. Their approach consists of the following elements: the
Structured Multilayer Perceptron model (SMLP), which addresses the problem of collinear
regions (localization on the line between 2 BS), a quantized loss function that focuses on
points with significant error, and a synthetic data generation procedure to limit the amount
of measurements required for accurate localization. They confirm with simulations and
real experiments that their methods are robust under different noise models, outperform
the conventional NN model, meet the latency requirements of 5G networks, and solve the
problem of collinear regions.

Klus et al. [56] proposed a densely connected NN-based solution for increasing the
positioning accuracy in an urban beamforming-based network scenario with high RSS
uncertainty. The authors combined RSS and GNSS localization data to enhance the posi-
tioning performance. They executed their experiments in a ray-tracing-based simulation
setup using the Madrid grid layout [38] with 7 BS. The positioning performance of the NN
model was evaluated with and without the combined localization data on six different RSS
uncertainty levels. On the lowest uncertainty level, the utilization of both the GNSS and
RSS data led to a 32% error reduction compared to using only the RSS signal. Moreover, in
this case, the mean error is 0.74 m. On the highest uncertainty level, the error reduction is
49% and the mean error is 1.75 m with the fusion NN model.

Butt et al. [57,68] used Deep Neural Networks (DNN) and decision tree regression
for positioning based on BRSRP data. An outdoor urban environment was simulated,
where the base stations had a 16 × 16 antenna array. With a network-level DNN model (the
DNN training was performed with all the data from all the sites at one location server), the
average error is approximately 5 m. Additionally, the authors investigated the positioning
accuracy by training individual cell-specific DNN models for each cell. In this scenario, the
average error can be as low as 1.4 m.
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Gante et al. [50] evaluated several NN architectures for Beamformed Fingerprint (BFF)
data-based positioning. They also enhanced the positioning with tracking techniques,
which leveraged short-term historical data. The BFF is a 2D matrix, where the data se-
quences along both dimensions carry valuable information. This is why the Convolutional
Neural Network (CNN) and the hierarchical CNN were used for the single BFF positioning.
For the BFF tracking problem, where the positioning has to be performed based on a
sequence of BFFs, the Long Short-Term Memory Networks (LSTM) and Temporal Convolu-
tional Networks (TCN) were considered. In the single BFF positioning, the average error
ranges from 4.57 m to 6.17 m in the case of the CNN and from 3.31 m to 5.13 m in the case
of the hierarchical CNN with K = 64 partitions, subject to the noise level. The average
errors in the BFF tracking are reduced thanks to the increased number of datapoints. At
lower sequence numbers, the TCN outperformed the LSTM (2.3 m vs. 3 m), but in the case
of longer sequences, the gap shrank while the TCN remained reasonable. In low-noise
scenarios, the TCN achieved an average error of 1.78 m.

Sun et al. [58] proposed a fingerprint-based single-site localization method for mas-
sive Multiple-Input Multiple-Output (MIMO) orthogonal frequency-division multiplex-
ing (OFDM) systems using both the AOA and PDP parameters as fingerprint. In massive
MIMO-OFDM systems, fingerprint extraction and matching has high computational com-
plexity due to the high multipath resolution in the angle and delay domains; therefore,
they proposed an efficient fingerprint extraction method with a corresponding similarity
function and a fingerprint clustering algorithm with a new location estimation method.
The fingerprints are extracted from the channel estimation results through Fast Fourier
Transform (FFT) and named as the Angle Delay Channel Power Matrix (ADCPM). The
authors argue that the ADCPM contains rich multipath information with clear physical
interpretation, such as the channel power associated with the specific AOA and TOA.
To exploit the information in fingerprints, they proposed a new similarity criterion for
fingerprints, the Joint Angle Delay Similarity Coefficient (JADSC), which is used to calcu-
late the distance between two fingerprints. For fingerprint compression, they developed a
two-step fingerprint clustering algorithm for database preprocessing, which uses the spatial
characteristics of fingerprints to significantly reduce matching operations. Finally, they
used the Weighted K-Nearest Neighbor (WKNN) method for accurate location estimation.
Their simulation results show that their fingerprint-based method is able to outperform
DiSouL and TF-MUSIC in an outdoor scenario. With multiple BSs, their method achieves
90% reliability at 2 m accuracy and with one BS it provides 95% reliability at 3 m accuracy.

Wang et al. [59] proposed a Deep Convolutional Gaussian Process (DCGP) based
regression for fingerprinting-based mmWave positioning in an outdoor environment. For
the simulations, the authors used an open-source mmWave dataset, which contains beam-
forming images from 160,801 bidimensional positions [50]. According to their results, the
95th percentile error for a CNN model is 14.289 m and for the DCGP model it is 7.018 m;
however, on their hardware, the training time for the DCGP took longer (533 min) than for
the CNN model (376 min). They also evaluated the impact of the number of epochs on the
mean distance error. In their experiments, the highest number of epochs was 550, and in
this case the mean distance error is 4.46 m for the CNN and 2.79 m for the DCGP.

Al-Rashdan et al. [27] evaluated the performance of thirteen ML algorithms employed
in conjunction with fingerprint-based MT localization for distributed massive MIMO
wireless systems configurations. The fingerprints used RSRP measurements of one BS
solely with an 8 × 8 antenna array from a simulated outdoor environment. The authors
investigated the effect of the number of antennas, the inter-element separation distance,
the frequency, and the weather. In each case, the kNN achieved the lowest MAE (Mean
Absolute Error), followed by the random forest and gradient boosting. In most cases, the
SVM and NN achieved the highest MAE. The lowest MAE of the kNN was 3.3 m in the
best-case scenario. The frequency and the weather had no significant effect on the error,
while the increased number of antennas and the increased inter-element separation distance
decreased the average error.
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El Boudani et al. [63] proposed the DEep Learning-based co-operaTive Architecture
(DELTA) machine learning model implemented on a 3D multi-layered fingerprint radio
map. The RSRP measurements were collected in an indoor environment with the following
dimensions: 8 m width ×16 m depth ×2.75 m height. The positioning method begins with
estimating the 2D position. Then, the output is used recursively to predict the 3D location of
a mobile station. The DNN-based positioning has outperformed the kNN and SVM-based
methods. The 2D average error of the DNN was only 1.6 m while the kNN’s was over 2.5 m
and the SVM’s was over 5 m. The identification of the height translated into a classification
problem where three classes were considered. The SVM had a misclassification rate of 66%
while it was 22% in case of the kNN and only 11% in case of the DNN.

Liu et al. introduced BeamMaP in [60], which was later improved in [61]. BeamMaP
uses Gaussian Process Regression (GPR) as a machine learning regression technique on the
beamforming transmission patterns. The improved BeamMaP uses adaptive beamforming
as a candidate for building the testing process since it can cover a larger area of MUs and
provides more comprehensive interference rejection compared to switched beamforming.
They argue that the improved BeamMaP not only provides more efficient coverage, but
also reduces base station power consumption. The simulations took place in an outdoor
environment with LOS and NLOS areas in different weather conditions, and the GPR model
was compared with the kNN and SVM models. The improved adaptive BeamMaP shows
better performance than the original BeamMaP in different weather conditions, although it
achieves comparable performance to other machine learning methods such as kNN and
SVM in dynamic environments. The obtained RMSE performances of BeamMaP are proved
to be close to the Bayesian Cramer–Rao bounds. The proposed method outperformed the
other models and achieved an MAE of 3.5 m at 1 dB shadowing noise in the simulated
dynamic environment. BeamMaP outperformed the kNN and SVM models even at higher
noise levels, but its accuracy decreased significantly as the noise level increased.

El Boudani et al. [64] proposed DNN models (one for horizontal and one for vertical
positioning) for RSS fingerprint-based 3D positioning in a 5G IoT setup testbed. They
compared the results of the DNN model with the performance of SVM and KNN models.
In 2D (horizontal) positioning, the DNN model showed the best accuracy with a 1.6 m
mean error. For the vertical positioning, the authors trained the models to classify the
samples into three classes of height (0.25 m, 0.75 m, and 1.75 m). In this case also, the DNN
achieved the best results by perfectly classifying the samples in the 1.75 m class, and more
than 95% of the samples were accurately classified in the other two class.

Prasad et al. [62,65] proposed a supervised ML approach based on Gaussian Pro-
cess (GP) regression to position users in a distributed massive MIMO system using uplink
RSRP. They focused on the scenario where noise-free RSS is available for training but
only noisy RSS is available for estimating the user’s location. The authors consider the
Conventional GP (CGP) and Numerical approximation GP (NaGP) in [65], while in [62],
they use the Gaussian approximation GP (GaGP) and the reconstruction-cum-Gaussian
approximation GP (RecGaGP) method. It is shown that the achieved RMSE of all GP is
close to the Bayesian Cramer–Rao lower bound. In [65], the methods are compared to
three baseline methods, which are as follows: the linear least squares, improved linear
least-squares trilateration schemes, and the kNN. Both GP methods outperformed the
baseline methods and achieved almost the same error in LOS and NLOS indoor scenarios.
In [62], the GaGP and RecGaGP methods are compared to the NaGP and CGP methods in
outdoor scenarios. The GaGP method had similar results as the CGP and NaGP methods
but the RecGaGP outperformed all of them by a large margin.
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Huang et al. [66] proposed the following pipeline for indoor positioning. Firstly, they
used a Kalman filter to preprocess the raw RSS values. Then, a universal Kiring algorithm
is utilized in order to improve the resolution of the fingerprint database. Ultimately, a kNN
model is used to estimate the position of the UE. Their experiments were performed in two
indoor office rooms. In each room, one 5G NR BS was deployed 3.62 m high above the
floor. The data for testing were collected in multiple unconnected test points. According to
their results, in the first room, the Kalman filter improved the performance by 31% and the
universal Kiring enhanced the accuracy by an additional 26%. In case of the other room,
the Kalman filter increased the performance by 6% and the universal Kiring with 36%. Due
to the improvements listed above, the achieved error was less than 1.6 m in more than 80%
of the test samples.

Gao et al. [67] proposed a dataset generating method, whose output is suitable for 5G
high-precision localization. This includes the multilevel feature synthesis method, which
flattens the features of a multiple-input multiple-output channel into a single image in order
to improve the information density and the robustness to noise. They also introduced the
multipath res-inception, which is a deep learning solution for positioning. In this method,
in order to extract position related features in the frequency domain and capture the fine
channel differences between adjacent antennas, multiple specially sized filters are created.
Their simulations were executed in an indoor scenario, and the positioning results show a
0.28 m mean error and 90% of the samples have an error less than 0.51 m. Moreover, in an
urban canyon environment they achieved a 0.204 m mean error and less than 0.36 m for
90% of the samples. According to their comparison, the proposed method outperformed
the results of four other positioning solutions (TDoA, AoA , kNN, and TDoA-AoA) in
both environments.

4.2. Lessons Learned

The presented papers show how the emerging communication technologies (e.g.,
massive MIMO, mmWave communication) of 5G networks can be used for positioning
with machine learning. These new technologies increase the amount of data and the number
of features available for positioning. Most of these new features (e.g., AoD) can be handled
with traditional techniques (e.g., triangulation), but the combination of these features and
the increased amount of data make the ML techniques easily manageable compared to
traditional techniques. The main advantage of ML algorithms is rapid model development
and updating, as new data and measurement types can be used and combined immediately.
This makes them particularly well suited as a replacement for traditional fingerprinting
algorithms, especially in cases where measurements have a complex relationship to positions.

Results show that in ideal scenarios (low noise, high number of antennas or BSs, LOS
propagation), a MAE of less than 2 m can be achieved in indoor and outdoor environments.
In NLOS scenarios and high noise scenarios, the MAE becomes much higher and can easily
exceed 20 m. It should be noted that in most cases, positioning methods are tested in a fully
or partially simulated environment, due to the lack of deployed 5G networks. Simulations
tend to underestimate the effects of the physical environment, as many of these effects are
difficult to estimate and depend heavily on the particular environment. Models vary greatly
in several parameters, such as the number of LoS base stations, the type of simulated signal,
and the size of the virtual space; therefore, a comparison of these positioning solutions
based only on their positioning error could be very misleading.



Sensors 2022, 22, 4757 15 of 25

5. Beyond 5G

The evolution of expectations, and thus solutions, in cellular positioning remains
unbroken—just as the emergence of commercial use cases such as factory automation,
transportation, and logistics have shaped 5G positioning, advanced commercial applica-
tions of the future such as extended reality (XR) gaming, telemedicine, driverless vehicles,
and autonomous industrial systems will largely influence the evolution of cellular networks
beyond 5G [25,69–73].

The 6G network will aim to satisfy the challenging requirements of these new appli-
cations based on its unprecedented technological advancements. These advancements in-
clude even higher frequency ranges, wider bandwidths, massive antenna arrays, intelligent
surfaces, intelligent beam-space processing, AI and machine-learning-based techniques,
sidelink solutions, architecture evolution, and beyond connectivity [25,69–75]. These new
technologies (as illustrated by Figure 6) will enhance legacy solutions through efficiency
and cost optimization [25,74], and open up new possibilities for 6G localization [25,69–73].

Figure 6. The enablers, new applications, and challenges of 6G [69].

In order to satisfy the requirements of new technologies, networks beyond 5G will be
forced to conform to even higher standards related to positioning, translating to possibly
under 0.5 ms latency, up to eight nines reliability and down to centimeter-level positioning
accuracy [72,75,76], or even sub-centimeter level relative-positioning accuracy [73]. The
possible capabilities of 6G networks as opposed to 5G are summarized in Table 3.
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Table 3. The possible capabilities of 6G as opposed to 5G [74].

Major Factors 6G 5G

Peak data rate >100 Gb/s 10[20] Gb/s

User experience data rate >10 Gb/s 1 Gb/s

Traffic density >100 Tb/s/km2 10 Tb/s/km2

Connection density >10 million/km2 1 million/km2

Delay <1 ms ms level

Mobility >1000 km/h 350 km/h

Spectrum efficiency >3x relative to 5G 3–5x relative to 4G

Energy efficiency >10x relative to 5G 1000x relative to 4G

Coverage percent >99% ∼70%

Reliability >99.999% ∼99.9%

Positioning precision Centimeter level Meter level

Receiver sensitivity <–130 dBm About –120 dBm

In current 5G NR positioning, position estimation is based on three components: signal
strength, which is often inaccurate because both the path loss of the radio channel and the
exact gain of the transmitter and receiver chains are unknown, time-of-arrival, which is
limited by the bandwidth of the Positioning Reference Signal (PRS), or angle measurements
whose accuracy is limited by the size of the antenna array or the aperture [25].

Possible solutions to overcome these accuracy limitations on the way to 6G are carrier
aggregation for positioning and carrier-phase based positioning [77]. Carrier aggregation
aims to achieve a higher overall effective bandwidth by combining PRSs received on
different carriers into one signal with a very high overall bandwidth [25]. Carrier-phase-
based positioning methods [25] use a different approach in which the phase of the correlator
output signal varies quickly with increasing propagation distance. One full phase cycle
corresponds to one wavelength of the carrier signal. Since the carrier frequency is usually
at least a factor of ten or more higher than the bandwidth, the achievable accuracy is
about this factor higher, assuming that it is possible to measure a certain fraction of a full
phase cycle [25]. The same principle is used in GNSS-RTK (Global Navigation Satellite
System-Real Time Kinematic) to achieve centimeter accuracy [25]. All phase measurements
need to be performed on the Line-Of-Sight (LoS) path—this requires advanced LoS/NLoS
(Non-LoS) detection and separation methods. Standard support to identify NLoS paths
and mitigate their impact on timing measurements is already part of the 17th 3GPP release,
but this needs to be extended to phase measurements and higher accuracies [25].

Aside from accuracy, low latency is another critical factor for delivering effective
positioning services in 5G and beyond [70]. The applications strongly related to positioning
in 5G networks and beyond are associated with an increased level of automation, which
requires the location of objects (such as automated vehicles) to be obtained at a millisecond
level [25,70,74]. New latency solutions being considered for 6G include: allowing inter-layer
interactions at the Radio Access Network (such inter-layer interactions would allow the
RAN nodes to directly access LTE positioning protocol messages, which could drastically
reduce the overall latency budget of positioning sessions), shortening the distance between
the location server and the NG-RAN (which could be crucial for latency-intolerant 6G
applications), and UE-based positioning, which could transform cellular positioning toward
UE-based calculation in a network-controlled manner [25].

Additionally, artificial intelligence and machine learning are expected to play an impor-
tant role in the cellular network of the future [25,69–71,73], especially in conjunction with
traditional positioning solutions. AI is expected to have an impact on mobile positioning
for Non-Line-Of-Sight (NLoS) multi-paths and possibly on achieving ultra-low latency [70].
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It is predicted to be especially crucial in data-rich and complex localization applications
(e.g., poor GNSS channel conditions indoor and outdoor urban environments) where we
have a large number of multi-modal, indirect, and noisy observations and the physical
properties of the system’s nonlinear signal characteristics may be unknown or difficult to
model [69]. Another application of AI and ML methods could be semantic localization, as
suggested in [73]. Semantic localization means that the position of the target is not given
with numerical coordinates, but with a semantic description, such as “put this equipment
on the table or in the recycle bin”. In this case, the AI algorithm needs to interpret the
connection between the physical coordinates and semantic locations.

Possible further novelties expected in networks beyond 5G include lower instanta-
neous PRS bandwidth for positioning (to reduce complexity), sidelink solutions to enable
localization in areas with partial coverage or no cellular coverage, decentralized architec-
ture, device-free localization, the inclusion of location functionalities in the RAN, as well as
intelligent environments and Intelligent Reflective Surfaces (IRS) [25,70,72].

Among these, a lot of attention has recently been given to intelligent reflecting surfaces
in particular, which comprise an array of IRS units, each of which can independently incur
some change to the incident signal (such as amplitude, frequency, or even polarization,
but most often a phase shift) [72,78]. IRS are meant to intelligently configure the wireless
environment to help the transmissions between the sender and receiver in case direct
communications have bad qualities [78], and they offer a cost-effective solution to link
blockage problems in mmWave communications [79]. In [79], a method using random
beamforming and maximum likelihood estimation to calculate the AoA and AoD of the
line-of-sight path between BS/AP (or IRSs) and the mobile terminal is shown, which
then, with the estimated AoDs, proposes an iterative positioning algorithm that achieves
centimeter-level positioning accuracy. In [80], a systematic overview of existing works is
presented on IRS/RIS, mainly from the signal processing point of view, by focusing on
channel estimation, transmission design, and radio localization issues.

Similarly, edge intelligence—a novel technological framework focusing on the seam-
less integration of AI, communication networks, and mobile edge computing—is widely
recognized to be one of the most sought after functions for wireless 6G cellular systems [81].
It conventionally consists of sensing, communication, training, and inference stages, where
sensing and communication are executed sequentially, often leading to an excessive amount
of dataset generation and uploading time [82]; however, novel solutions, such as integrated
sensing and communication (ISAC) introduced in [73,82], merge the sensing and commu-
nication stages in order to make the best use of the wireless signals for the dual purpose
of dataset generation and uploading. In addition, to address the additional interference
between sensing and communication functionalities that ISAC introduces, this paper also
proposes a classification error minimization formulation to design the ISAC beamforming
and time allocation [82].

Recently, increasing attention has been paid to device-free localization [83–85], i.e., the
ability to detect and track objects that do not communicate with the localization infrastruc-
ture or do not want to be detected and localized at all. These technologies rely on signals
designed for target detection and localization (active radar) or signals emitted by other
sources of opportunity (passive radar) that are used for localization. Unlike UE localization,
device-free localization can use any modulated signal at any operating frequency. As
the wireless industry moves toward frequencies above 90 GHz (and eventually Terahertz
frequencies) in the future, several Gigahertz wide frequency ranges will become available.
Difficult indoor conditions (e.g., multipath effects and signal obstructions) can be mitigated
by using waveforms characterized by this wide bandwidth, e.g., UWB waves, using prior
knowledge of the environment, selecting reliable measurements, and employing various
signal processing techniques [83,85]. UWB technology provides exceptional resolution
and localization accuracy in harsh environments because of its ability to resolve multipath
effects and penetrate obstacles. These characteristics have helped make UWB an ideal
candidate for non-collaborative object detection in short-range radar sensor networks.
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Device-free localization could be used for fall detection in assisted living facilities. Security
applications such as intruder detection in offices are enabled by device-free localization
without the knowledge or cooperation of the intruder [85].

Another key technology prominent for 6G network applications such as intelligent
transportation systems is data-driven wireless sensing, such as Human Motion Recognition
(HMR). HMR systems currently use Support Vector Machines (SVMs) and Convolutional
Neural Networks (CNNs) to classify radar signals, but new solutions such as the Deep
Spectrogram Network (DSN) introduced in [86] are paving the way for the technology with
a significant reductions of recognition errors.

Clearly, numerous challenges await on the road to 6G, particularly tied to the evolution
and integration of machine learning and artificial intelligence, which will be expected from
networks beyond 5G. The development of intuitive AI solutions without excessive storage
needs and their integration into 6G networks without compromising low latency will be
one of the key challenges while building the network of the future.

Given that the driving applications in 6G (AR/VR/XR gaming, low-cost tracking
and new industrial applications) have very different, and sometimes even conflicting-
requirements, they will also require flexible and scalable positioning solutions and location
service architectures, which will undoubtedly be expected from the next-generation cellu-
lar network.

6. Use-Case Examples

Positioning of devices in indoor environments was a focus area of 3GPP Release 16 [87],
and further enhancements are expected in Release 17 [88]. With the fast advances of 5G
standardization, several new indoor positioning use cases are brought along. They fall into
the following categories:

1. Location-based services-related use cases include AR- and VR-scenarios, telepresence
and wearables for entertainment [89] and educational [90] reasons, as well as smart
advertising [91], navigation, building occupancy-count estimation[92], and social
networking [14].

2. Industrial use cases include trolley location, waste management, container handling,
manufacturing, warehousing, and Industrial Internet of Things (IIoT) [88,93–95].

3. eHealth-related use cases are split to positioning of people and medical equipment,
including patient location, remote health care, and remote surgery [96–98].

4. Emergency and mission critical use cases are related to emergency services, first re-
sponders, alerting nearby responders, emergency vehicle and equipment location [14].

5. Road-related use cases include traffic monitoring, management and control, V2X, car
and bike sharing, as well as flow control in transportation hubs and public transporta-
tion [99].

6. Rail, maritime, and aerial use cases are related to asset tracking (wagon and container),
drones (transport and inspection), mining, and underwater and aerial unmanned
vehicles [100–103].

Expectations for 5G- and 6G-based positioning depend on the application area. A
comprehensive summary of positioning requirements for different use cases can be found
in [87]. This standard defines positioning requirements, such as horizontal and vertical
accuracy, availability, heading, and latency for some typical scenarios, given that the UE
moves slower than a given speed.

6.1. Positioning in Industrial Settings and Cyber–Physical Systems

When it comes to certain use cases, general process automation tasks require sub-meter
accuracy, where the latency of positioning estimation is <2 s. A very different use case is
inbound logistics for manufacturing, where the requirement on both horizontal and vertical
accuracy should be below 20 cm with a positioning estimation latency of <1 s. Regarding
this latter parameter, augmented reality applications for smart factories have much stricter
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latency criteria: less than 15 ms. Although the standard discusses various other use cases
as well, their requirements fall within the range of the previously listed scenarios [88].

Industrial use cases have extraordinary potential to benefit most from the positioning
capabilities of 5G and 6G networks. Position information can help optimize and automate
processes in various vertical sectors, from logistics and manufacturing to mining and
transportation [2]. In industrial control and factory automation, location information is
of great benefit to both sides of communication: to the (mobile) terminals (or robots) to
perform their tasks, and to the network to allocate and control resources and increase
processing efficiency.

The requirements of cyber–physical control applications (i.e., in factories of the future)
are covered by the 3GPP standard [88]. Here, the main categories of generic 5G-related
use cases are (i) factory automation, (ii) process automation, (iii) HMIs and production
IT, (iv) logistics and warehousing, and (v) monitoring and maintenance. Among them,
logistics and warehousing are the prominent case for indoor positioning.

Asset tracking is a trivial use case, not only in warehousing [93], but also in smart
product manufacturing [94] and smart logistics [95]. In all of these scenarios, 5G and 6G
positioning comes into play, linking location data to the status change of the tracked asset.
For smart products, not only the change in physical position is logged and time-stamped,
but the change in various environmental variables (e.g., temperature, vibration, acceleration
during carriage, etc.) could also be noted in the asset’s history.

When it comes to service guarantees, the 5G slice for massive Machine Type Commu-
nication (mMTC) would be best suited for information exchange in these use cases [104].
As for warehousing technology, indoor logistics are operated through AGVs or forklifts,
and in less advanced settings, human-operated, manual (engineless) carts. In either case,
the moving logistics equipment is the one to track, and the products themselves could be
linked to the equipment upon pickup (e.g., through RFID) so that their location can be
tracked even while in motion [93]. Nevertheless, both indoor and outdoor logistics require
large amounts of interaction with the public network.

6.2. Specialties of V2X Positioning

Of all the use cases related to 5G positioning, V2X scenarios appear most frequently in
scientific publications and reports. This is mainly due to the increased public expectations
for autonomous vehicles on public roads. In general, 5G V2X requirements (in terms of
throughput, delay, and other QoS metrics) are set in 3GPP recommendation TS22.186 [105]
for various use cases. These include trajectory sharing and coordinated driving, vehicle
platooning, and remote driving, among others, which may or may not require position
data retrieval and sharing. Begheri et al. [106] have summarized the key features and
roadmap of the new 5G wireless system that will help meet these requirements. Similar
to other authors, they emphasize the importance of sensor fusion, multi-connectivity, and
the various security aspects of 5G V2X communications. They also devote a short chapter
to precise positioning and describe the main features of NR-V2X that contribute to more
precise positioning compared to LTE-V2X.

According to Wymeersch et al., positioning for V2X applications is supported by five
properties of 5G (and later 6G): high carrier frequencies, large bandwidths, large antenna
arrays, device-to-device communications, and ultra-dense networking [107]. They rein-
force the general view that accurate positioning will rely on a combination of sensors.
In the highlighted promising research directions, gaps identified include tracking algo-
rithms, information fusion of device-centric and network-centric positioning, accuracy,
and reliability.

Bartoletti and her co-authors focus on how 5G and beyond positioning can support
vehicle safety applications [108]. They emphasize that joint communication strategies,
such as integrated mobile communication, positioning, and radar (in short: JRC ), will
be key to safety-critical vehicular applications. One of their concluding remarks is that
during the definition and standardization of 6G, the communication parameters that affect
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JRC performance should be watched closely. Another important suggestion is that the
waveform design (such as OFDM) should consider radar performance requirements for
vehicular safety scenarios.

In their paper, Fouda et al. analyze various solutions for long-term and high-precision
positioning for new V2X mobile radios [109]. They propose a novel selection-positioning
method to dynamically switch between GNSS and downlink TDOA measurements based
on the locations of V2X UEs and the accuracy of the collected measurements.

7. Conclusions

In this paper, we provided an overview of the positioning approaches, methods, and
algorithms that are envisioned and used with the help of 5G and 6G mobile networks. The
main goal of the paper was to provide a comprehensive overview of Machine Learning
(ML) aided positioning techniques; however, in order to introduce those, the positioning
approaches used in cellular networks had to be summarized first. After describing the
state-of-the-art techniques and enhanced algorithms, we surveyed the published use-case
results in various application areas—especially for industrial cyber–physical systems and
the V2X domain.

Machine learning plays an important role in the control and optimization of 5G and
beyond networks. Furthermore, ML solutions improve various cellular-based solutions,
including positioning. Regarding 6G-supported indoor and outdoor positioning, several
new approaches are being investigated, including inter-layer interactions at the Next Gen-
eration Radio Access Network (NG-RAN), as well as the extensive usage of mobile edge
computing, where the location servers are closer to the NG-RAN. Although 6G standard-
ization has just started, it is clear that there are numerous new solutions for latency control.
These include allowing inter-layer interactions at the Radio Access Network, shortening the
distance between the location server and the NG-RAN, and UE-based positioning. Mixing
UE-based positioning with cellular-based positioning is also an interesting approach, where
the UE-based calculations are supported with network-controlled measurements.

Aside from aiming to be an extensive study of the cellular-based positioning domain,
the additional value of the paper lies in its comparison tables, where the various approaches,
methods, and results are compared for both the conventional solutions and those enhanced
with machine learning capabilities. The subsections on lessons learned also helps the reader
find the core messages and the most promising solutions for enhanced positing that are
based on 5G and 6G network capabilities.
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