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Abstract: Cooperative spectrum sensing (CSS) has been verified as an effective approach to improve
the sensing performances of cognitive radio networks (CRNs). Compared with existing works that
commonly consider fusion with fixed inputs and neglect the duration of the reporting period in
the design, we novelly investigate a fundamental trade-off among three periods of CSS: sensing,
reporting, and transmission periods, and evaluate the impact of the fusion rule with a varying number
of local sensing results. To be specific, the sensing time could be traded for additional mini-slots
to report more local sensing results for fusion, or it could be traded for longer transmission time.
In the CRNs with a given durations of sensing/reporting/transmission periods, we, respectively,
formulate the throughput and collision probability and optimize the throughput under the collision
constraint. The theoretical results show that, in the specific value intervals of the sensing parameters,
the collision constraint provides an upper bound of the number of mini-slots in the reporting period
or a lower bound of the sensing duration. We provide the approach to the maximum throughput in
some cases.Finally, numerical results are presented to validate theoretical results.

Keywords: cooperative spectrum sensing; cognitive radio networks; reporting period; time trade-off

1. Introduction

The fast development of wireless communication technologies and the growing num-
ber of high-speed wireless devices are expected to create an increasing demand for spectrum
resources [1]. This motivates the advent of cognitive radio to tackle the spectrum scarcity
problem by allowing opportunistic spectrum access. In cognitive radio networks (CRNs),
secondary users (SUs) are allowed to dynamically access the licensed spectrum allocated to
primary users (PUs) when the licensed spectrum is temporally available.

To explore the underutilized spectrum resources, SUs need to adopt fast and effective
spectrum-sensing techniques to determine spectrum states. Based on the classification of
spectrum-sensing approaches in [2], there are a number of works that focused on spectrum-
sensing algorithms [3–7]. Liang et al. [3] designed an energy detection sensing scheme to
tackle the sensing–the throughput trade-off of the secondary network. In wideband sce-
narios under noise uncertainty, Dikmese et al. [4] proposed a cyclic prefix auto-correlation-
based spectrum sensing system. By exploiting the signal sparsity, El-Alfi et al. [5] proposed
a sub-Nyquist cyclo-stationary detection of GFDM. Sedighi et al. [6] studied constant false-
alarm-rate eigenvalue-based detectors for multi-antenna spectrum sensing. Tavana et al. [7]
considered the energy and correlation of received signals to suppress error detection.
Among these spectrum-sensing techniques, energy detection is the most popular spectrum-
sensing technique due to its adequate performance, simple practical realization, and low
computational complexity.

Based on the energy-detection technique, many efforts have been geared mainly
towards non-cooperative spectrum sensing and cooperative spectrum sensing (CSS). Com-
pared with non-cooperative users, cooperation among users has potential benefits for key
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performances of CRNs, such as the throughput [8,9], connectivity [10], energy efficiency [11],
delay [12], and security [13,14]. Since the unreliability in a single SU’s sensing result reduces
the accuracy to a certain extent, CSS has been incorporated to overcome the hidden termi-
nal problem and improve the sensing performance, especially in shadowing/multi-path
fading environments [15,16]. In CSS, each user first senses the PU independently and then
sends its local sensing result to a fusion center (FC). Then, the FC makes a final decision
on the spectrum state by combining all the receiving local sensing results [17,18]. The
probability of a false alarm and the probability of detection are two important indicators of
spectrum-sensing accuracy. The low probability of a false alarm improves the spectrum-
access efficiency, while the high probability of detection reduces the interference with the
PU [19]. By exploiting the spatial diversity, cooperative SUs obtain better sensing accuracy
by CSS than a single SU.

Incorporating various techniques, such as sensing algorithms [3–7], access strategies,
fusion rules, and user cooperation, a number of works [16,20–34] have focused on the
performance improvements of CRNs with CSS. From the perspective of access strategy,
Lee et al. [20] proposed an adaptive CSS scheme using random access. Wang et al. [21,22]
proposed a principal–agent-based joint spectrum-sensing and -access framework to thwart
the malicious behaviors. Alhamad et al. [16] designed a reporting channel scheme based
on random access protocols, and Gharib et al. [23,24] proposed multi-band multi-user
CSS schemes for opportunistic spectrum access. From the perspective of fusion rule,
Liu et al. [25] maximized the spectral efficiency based on the logical OR rule. Yin et al. [26]
maximized the secondary the throughput by the optimization of the fusion rule. Ejaz et al. [27]
presented a comparison of hard and soft, combining CSS schemes in heterogeneous CRNs.
Golvaei et al. [28] proposed a soft decision algorithm to improve CSS performance for
hidden PUs in fading and shadowing environments, which showed better performance
than the hard decision algorithm. Yuan et al. [29] and Zhang et al. [30], respectively,
proposed a secure fusion strategy to defend against malicious users for CSS. Taking the
location impact of different SUs into account, Liu et al. [31] proposed a probability-based
fusion rule. Based on the soft rule, Perez et al. [32] presented a new algorithm that jointly
estimates the instantaneous SNRs and detects the presence of primary signals. From
the perspective of coalition formation, Wang et al. [33] considered overlapping coalition
formations for distributed cooperative sensing, where SUs form overlapping coalitions to
improve sensing accuracy. Then Jiang et al. [34] formulated a classical coalition formation
game model for the throughput maximization and cooperation in spectrum sensing.

Among the aforementioned works, [3,26,34,35] study the throughput maximization
of SUs with respect to the fusion rule or sensing parameters such as the detection thresh-
old. However, all four works neglect the duration of the reporting period in the slot
structure, and [26,35] do not consider the sensing cooperation among SUs. Moreover, we
notice that the duration of the reporting period has been analyzed in terms of sensing
performance [16,36], energy consumption [36], and channel utilization [37], respectively.
In this regard, the duration of the reporting period has a vital impact on the performances
of CRNs, while the throughput and sensing performances of the cooperative CRNs with
the design of the reporting period have seldom been studied.

Our work differs from previous works from two perspectives. First, from the perspec-
tive of a time trade-off, the duration of the sensing period, the duration of the transmission
period, and the number of mini-slots in the reporting period, are, respectively, considered
as variables in the formulation and optimization of the secondary the throughput. Sec-
ond, from the perspective of fusion, our work studies the impact of the fusion rule on the
throughput and sensing performances of the cooperative CRNs with a varying number of
local sensing results for fusion, which has seldom been studied.

To explore the crucial impact of the reporting period on the throughput and sensing
performances, this paper studies the throughput maximization of SUs under the collision
constraint in cooperative CRNs, where the CSS process consists of three periods: sensing,
reporting, and transmission. Autonomous SUs perform spectrum sensing during the
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sensing period and then send local sensing results to the FC by a reporting channel. The
FC makes a final decision about the licensed spectrum using the “k-out-of-n” fusion rule
during the reporting period. Obviously, there exists a fundamental time trade-off among the
sensing period, reporting period, and transmission period, which results in the sensing–the
throughput trade-off in the cooperative CRNs. By tackling the time trade-off, the secondary
the throughput is formulated and optimized under the collision constraint, which reflects
the accuracy of spectrum sensing. By tackling the sensing–the throughput trade-off, we
evaluate the impact of the fusion rule with a varying number of local sensing results on the
throughput maximization. Then, we summarize the main contributions as follows.

• We formulate the secondary the throughput and collision probability in three cases of
the cooperative CRNs, where each time slot in the CSS process consists of the sensing
period, reporting period, and transmission period. In the time trade-off, the sensing
time could be traded for additional mini-slots to obtain more local sensing results,
and it could also be traded for longer transmission times. The impact of the fusion
rule with a varying number of local sensing results is studied in the throughput and
collision analysis.

• In three cases of the cooperative CRNs, according to the mathematical relationship
between k and n, we, respectively, present a monotonicity analysis of the throughput
and collision probability and provide an approach to the maximum the throughput in
some cases of the sensing and fusion parameters under the collision constraint.

• The numerical results show that the throughput and the collision probability possess
the monotonic property in some value intervals of the sensing and fusion parameters,
which is of prime significance for the design of three periods in the slot structure
of the CSS process. Moreover, the numerical results demonstrate that, with a given
sensing period, the maximal throughput is achieved when the trade-off between the
cooperative sensing accuracy, which results from the number of SUs participating in
CSS, and transmission time is optimal. With a given reporting period, the maximal
throughput is achieved when the trade-off between the local sensing accuracy and
transmission time is optimal. With a given transmission period, the maximal through-
put is achieved when the cooperative sensing accuracy, which is jointly determined by
the local sensing accuracy and the number of SUs participating in CSS, is optimal.

The remainder of this paper is organized as follows. The network model is introduced
in Section 2. The the throughput and collision performances of the cooperative CRNs
with a given sensing period, reporting period, and transmission period are, respectively,
investigated in Sections 3–5. The numerical results are given in Section 6, and, finally, this
paper is concluded in Section 7.

2. Network Model and Notations

In this section, we introduce the cooperative CRNs from three aspects: the network
model, the spectrum-sensing model, and the reporting model. We first specify the network
topology and slot structure. Then, we specify how SUs cooperatively and opportunistically
access the licensed spectrum.

2.1. Network Model

We consider the CRN scenario where one pair of PUs, one FC, and N pairs of SUs
coexist. PUs have priorities over SUs to access the licensed spectrum and perform primary
packet transmission (the primary receiver is neglected in Figure 1). Spectrum sensing
by SUs is essential to avoid excessive interference from SUs to PUs, and the collision
probability, which will be defined in the next section, reflects the accuracy of spectrum
sensing to a certain extent. When the licensed spectrum is determined is free by the FC,
one of the SUs exploits the spectrum and transmits secondary packets to the corresponding
secondary receiver (neglected in Figure 1). As shown in Figures 1 and 2, we consider three
periods in the slot structure of the cooperative CRNs: a sensing period with duration τs, a
reporting period with duration τr, and a transmission period with duration τt. As pointed
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out by [38], if the SUs have the perfect knowledge of the PU’s communication mechanism,
the SUs can be synchronous with the PU’s time slots. Here, we consider that all the SUs and
PUs adopt a synchronous slotted protocol with normalized length, where τs + τr + τt = 1
holds for each time slot by normalization.

PU

SU

SU

SU

SU

FC

Figure 1. Network model.

sensing 
period τs

reporting 
period τr

transmission 
period τt

time slot

mini-slot τc, τr=nτc

τc τc .......

Figure 2. Slot structure.

During the sensing period, N pairs of SUs independently perform spectrum sensing to
detect the primary signal in the licensed spectrum by energy detection, which has relatively
low computational and implementation complexities [39]. The details of spectrum sensing
will be introduced in Section 2.2. Due to the arrival of primary packets following a time-
homogeneous random process, the licensed spectrum randomly switches between the free
state and the occupied state at each time slot. We let πo denote the probability that the
licensed spectrum is occupied, and π f denote the probability that the licensed spectrum is
free, where πo + π f = 1.

During the reporting period, the SUs send local sensing results to the FC; the details
of the reporting model will be introduced in Section 2.3. By applying a specific fusion
rule, the FC makes a final decision about the spectrum state based on the received local
sensing results. Then, the FC broadcasts a message containing the final decision about the
spectrum state and the identification of a specified SU to SUs [16]. When the FC determines
the licensed spectrum to be occupied, the specified SU for the transmission does not exist
and would not be contained in the broadcast message. Due to the limited number of bits
in the broadcast message, the time duration of the broadcasting period is neglected in the
time slot structure.

During the transmission period, if the received broadcast message indicates that
the licensed spectrum is decided is free, the randomly specified SU transmits packets to
the corresponding secondary receiver (neglected in Figure 1). Otherwise, the secondary
transmission does not occur during the transmission period. To evaluate the secondary the
throughput of the CRNs from the perspective of the actual transmission time, we define
the throughput as the average time duration of the secondary transmission that does not
collide with the primary transmission in the normalized time slot, and this definition is
similar to that of the average normalized the throughput in [25].

λ = lim
T→∞

∑T
i=1 τti

T
, (1)
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where τti denotes the duration of the secondary packet transmission that does not collide
with the primary packet transmission at slot i, T represents the observed number of time
slots, and 1 ≤ i ≤ T holds. If the FC correctly determines the licensed spectrum is free
at slot i, the secondary packet transmission occurs during the transmission period, and
τti = τt holds. Otherwise, τti = 0 holds at slot i. Therefore, the average normalized the
throughput λ in (1) represents the ratio of the secondary packet transmission duration
without colliding with the primary packet transmission to one time slot from a long-term
perspective. According to the slot structure in Figure 2, the sensing period and the number
of mini-slots in the reporting period have great impacts on the throughput.

2.2. Spectrum-Sensing Model

Various spectrum-sensing techniques have been proposed to determine the spectrum
state, including energy detection [40], matched-filter detection [41], eigenvalue-based de-
tection [42], and cyclostationarity-based detection [43]. Among these four techniques, we
employ energy detection to detect the spectrum in the sensing period due to its adequate
performance, simple practical realization, and low computational complexity [9,39]. During
the sensing period, local sensing is implemented with the energy detector in each SU.
The energy detector in the SU conducts spectrum sensing by executing a binary hypothesis
test. According to [3], the binary hypothesis test for a given SU is expressed as{

H0 : y(m) = l(m),
H1 : y(m) = s(m) + l(m),

where y(m) represents the m-th sample of a SU’s energy detector, and m is a positive integer.
s(m) and l(m) represent the PU’s signal and noise, respectively, and they are modeled
as independent circularly symmetric complex Gaussian (CSCG) random processes with
variances σ2

p and σ2
n , respectively [3]. Let r ∈ {0 (free), 1 (occupied)} denote the sensing

result. Let γ denote the ratio of σ2
p to σ2

n , fs denote the sampling frequency, and ε denote
the detection threshold. According to [3], under hypothesisH0, the probability of a false
alarm, denoted by p f (τs), can be approximately expressed as

p f (τs) = P(r = 1|H0) = Q
((

ε

σ2
n
− 1
)√

τs fs

)
, (2)

where Q(x) = 1√
2π

∫ ∞
x exp(− u2

2 )du is the complementary distribution function of the
standard Gaussian distribution. The probability of a false alarm represents the probability
that the sensing result is occupied while the actual spectrum state is free. Under hypothesis
H1, the probability of detection, denoted by pd(τs), can be approximately expressed as

pd(τs) = P(r = 1|H1) = Q
((

ε

σ2
n
− γ− 1

)√
τs fs

2γ + 1

)
. (3)

The probability of detection represents the probability that the sensing result is occu-
pied while the actual spectrum state is occupied. Each SU is assumed to share the same
sampling frequency, signal-to-noise ratio, and detection threshold for local sensing results
by energy detection as in [16,26]; thus, the identical probability of detection pd(τs) and
that of a false alarm p f (τs) for each SU could be adopted. Based on (2) and (3), we let
p f (τs) = Q(c1

√
τs) and pd(τs) = Q(c2

√
τs) for simplicity and have

c1 =

(
ε

σ2
n
− 1
)√

fs, (4)

and

c2 =

(
ε

σ2
n
− γ− 1

)√
fs

2γ + 1
. (5)
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With respect to the definitions of detection probability pd(τs) in (3) and false alarm
probability p f (τs) in (2), the cases where pd(τs) > 0.5 and p f (τs) < 0.5 are considered
throughout this paper. Otherwise, the probability of correctly determining the spectrum
state would be less than a half, and it is meaningless for SUs to perform spectrum sensing
with such low accuracy. Based on the formula of Q(x) and the aforementioned value
intervals of pd(τs) and p f (τs), we could easily obtain that c1 > 0 in (4) and c2 < 0 in (5).

2.3. Reporting Model

In the reporting model, we consider that the reporting period consists of n mini-slots
with equal duration τc. Actually, τc denotes the reporting duration for one SU. The number
of mini-slots n is considered to be a positive variable in the time trade-off of three periods
for the throughput optimization, where n is a positive integer, τr = nτc, and 1 ≤ n ≤ N
holds. We adopt random access in the reporting period, where the slotted Aloha (S-Aloha)
is adopted due to its easy implementation and low complexity [16]. In the S-Aloha protocol,
each SU randomly selects one of the n mini-slots to transmit its local sensing result to the
FC [16]. Based on the capture effect, we notice that, in the presence of other overlapping
or interfering packets, the strongest packet could capture the receiver when the power
strength of the strongest packet is at least d times the power strength of the second-strongest
packet, where d = 1 holds for a perfect capture [16,44]. Throughout this paper, we consider
the case that the FC receives local sensing results by S-Aloha protocol with perfect capture.
Namely, the FC could successfully receive a local sensing result from a non-repeatable SU
at each mini-slot.

Without loss of generality, we adopt the “k-out-of-n” fusion rule to make a final
decision about the spectrum state. There are n SUs participating in the CSS, and the
local sensing result is independently made by each SU. Then, the FC decides the licensed
spectrum is free if there are k or more local sensing results being idle. The closed interval
of k is [1, n], and k is a positive integer. Since the local sensing results obtained by the
SUs are independent of each other for CSS, we denote Pf (n, τs) as the overall false-alarm
probability and denote Pd(n, τs) as the overall detection probability. According to [9,26],
Pf (n, τs) and Pd(n, τs) are, respectively, given by

Pf (n, τs) =
k−1

∑
x=0

(
n
x

)(
1− p f (τs)

)x(
p f (τs)

)n−x
, (6)

and

Pd(n, τs) =
k−1

∑
x=0

(
n
x

)
(1− pd(τs))

x(pd(τs))
n−x, (7)

where (n
x) =

n!
x!(n−x)! holds. The “k-out-of-n” fusion rule is reduced to the “Logic-AND”

rule when k = 1, and it is reduced to the “Logic-OR” rule when k = n [3].

3. Performance Analysis of the CRN with Given Sensing Period

In this section, we tackle the trade-off between the duration of the reporting period
and that of the transmission period for the throughput optimization. Namely, the number
of mini-slots n in the reporting period could be traded for the transmission time. We start
our analysis by formulating the throughput and collision probability and maximizing the
secondary the throughput of the cooperative CRN under the collision constraint.
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Based on the definition of the throughput in (1), the throughput of the CRN with a
given sensing period τs, denoted by λs, is given by

λs = π f (1− τs − τr)(1− Pf (n, τs))

= π f (1− τs − nτc)
n

∑
x=k

(
n
x

)(
1− p f

)x(
p f

)n−x

= π f (1− τs −nτc)(1−
k−1

∑
x=0

(
n
x

)(
1− p f

)x(
p f

)n−x
), (8)

where p f (τs) in (2) is simplified as p f in (8), since τs is given in this section. Then we
introduce the collision probability. A collision occurs when the FC determines that the
licensed spectrum is free while the licensed spectrum is actually occupied. Hence, the
collision probability represents the probability that the SU accesses the occupied spectrum
and collides with the primary signal.

Ps = πo(1− Pd(n, τs)) = πo

n

∑
x=k

(
n
x

)
(1− pd)

x(pd)
n−x

= πo(1−
k−1

∑
x=0

(
n
x

)
(1− pd)

x(pd)
n−x), (9)

where pd(τs) in (3) is simplified as pd, since τs is given in this section. To protect the
primary transmission from the access of SUs to some extent, SUs must maintain the collision
constraint such that the collision probability remains below the maximum permissible
collision probability Pc, which is commonly viewed as a pre-designed value.

3.1. Throughput Analysis

To tackle the trade-off between the duration of the reporting period and that of the
transmission period, the number of mini-slots n is considered to be a variable to maximize
the throughput λs. Though n is defined as a positive integer, the following analysis of
the continuous function λs that regards n as a positive continuous variable applies to
the throughput analysis of the positive integer n in the closed interval [1, N]. Then, we
differentiate λs in (8) with respect to n as

1
π f

∂λs

∂n
=−τc(1−

k−1

∑
x=0

(
n
x

)(
1− p f

)x(
p f

)n−x
)

−(1−τs−nτc)
k−1

∑
x=0

∂(n
x)

∂n

(
1− p f

)x(
p f

)n−x

−(1−τs−nτc) ln p f

k−1

∑
x=0

(
n
x

)(
1−p f

)x(
p f

)n−x
, (10)

where the k in the “k-out-of-n” fusion rule is considered to be independent of n; thus, ∂(n
x)

∂n is

∂(n
x)

∂n
=

∂
(

n!
x!(n−x)!

)
∂n

=

∂
(

n!
(n−x)!

)
∂n
x!

=
∑x

i=1
1

n−x+i ∏x
j=1(n− x + j)

x!
. (11)

Based on Euler’s constant [45], we approximate the numerator on the right-hand side
of (11) as

x

∑
i=1

1
n−x+i

≈ ln(n+1)−ln(n−x+1)= ln
(

n + 1
n−x+1

)
. (12)
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By combining (11) with (12), we have

∂(n
x)

∂n
≈

ln(1 + x
n−x+1 )∏x

j=1(n− x + j)

x!
= ln

(
n + 1

n− x + 1

)(
n
x

)
. (13)

We approximate the second term on the right-hand side of (10) by substituting (13)
into (10) as

−(1−τs−nτc)
k−1

∑
x=0

∂(n
x)

∂n

(
1− p f

)x(
p f

)n−x
≈

− (1−τs−nτc)
k−1

∑
x=0

ln
(

n + 1
n− x + 1

)(
n
x

)(
1−p f

)x(
p f

)n−x
. (14)

We further simplify the right-hand side of (10) by substituting (14) into (10) as

1
π f

∂λs

∂n
=−τc(1−

k−1

∑
x=0

(
n
x

)(
1− p f

)x(
p f

)n−x
)

− (1−τs−nτc)
k−1

∑
x=0

ln

(
p f (n + 1)
n−x+1

)(
n
x

)(
1−p f

)x(
p f

)n−x
. (15)

We observe from (15) that (n
x) > 0, p f > 0, 1− p f > 0, τc > 0, and 1− τs − nτc > 0

hold; thus, the first term on the right-hand side of (15) is negative. Only the multipli-

cator ln
( p f (n+1)

n−x+1

)
in the second term on the right-hand side of (15) needs to be further

discussed as

ln

(
p f (n + 1)
n− x + 1

)
< 0⇒

p f (n + 1)
n− x + 1

< 1⇒ x < (1− p f )(n + 1). (16)

With the non-negative integer x in the closed interval [0, k− 1], we obtain the sufficient
condition that the second term on the right-hand side of (15) is positive as

k < (1− p f )(n + 1) + 1. (17)

When the value interval of k in (17) holds, the first term on the right-hand side of (15)
is negative, while the second term is positive. Due to the definition of τc and the value
comparison between τc and (1− τs − nτc), we deduce that the throughput λs increases
with the number of mini-slots n when (17) holds. Otherwise, with the increase of k and
p f , the throughput λs turns to decrease with the number of mini-slots n. Since the k in
the “k-out-of-n” fusion rule is independent of n, 1 ≤ k ≤ n holds. We summarize the
observations from (10)–(17) as follows.

• When k ∈
[
(1− p f )(n + 1) + 1, n

]
, the monotonicity of the throughput λs depends

on p f and k. On the right-hand side of (15), the first term is negative, the summation

of x ∈
[
0, (1− p f )(n + 1) + 1

)
in the second term is positive, while the summation

of x ∈
[
(1− p f )(n + 1) + 1, k

]
in the second term is negative. Compared with the

second item as follows, λs is more likely to decrease with the number of mini-slots n
due to the larger value of k.

• When k ∈
[
1, (1− p f )(n + 1) + 1

)
, the first term on the right-hand side of (15) is

negative, while the second term on the right-hand side of (15) is positive. By comparing
the first and second terms, we deduce from (15)–(17) that the the throughput λs
increases with the number of mini-slots n.
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We also deduce from the value interval of k in the above first item that, when p f <
2

n+1 ,
the lower bound of k in the first item is larger than n; thus, the above first item does not
exist. With respect to the above value interval of p f , the interval of k in the second item
occupies the majority part. Moreover, with the increase of k, it is easy to observe from (15)
and (17) that the throughput λs is more likely to increase with n.

3.2. Collision Analysis

Since the number of mini-slots n is considered to be a variable in this section, in order
to investigate the monotonicity of the collision probability, we differentiate Ps in (9) with
respect to n as

1
πo

∂Ps

∂n
= −

k−1

∑
x=0

∂(n
x)

∂n
(1− pd)

x(pd)
n−x − ln pd

k−1

∑
x=0

(
n
x

)
(1− pd)

x(pd)
n−x. (18)

Based on (13), we simplify (18) as

1
πo

∂Ps

∂n
≈−

k−1

∑
x=0

ln
(

n + 1
n− x + 1

)(
n
x

)
(1− pd)

x(pd)
n−x − ln pd

k−1

∑
x=0

(
n
x

)
(1− pd)

x(pd)
n−x

=−
k−1

∑
x=0

ln
(

pd(n+1)
n−x+1

)(
n
x

)
(1−pd)

x(pd)
n−x. (19)

We observe from (19) that πo > 0, (n
x) > 0, pd > 0, and 1− pd > 0 hold; thus, only the

multiplicator ln( pd(n+1)
n−x+1 ) in (19) needs to be further discussed for the monotonicity of the

collision probability Ps. Then, we have

ln
(

pd(n + 1)
n− x + 1

)
< 0⇒ pd(n + 1)

n− x + 1
< 1⇒ x < (1− pd)(n + 1). (20)

As x is a non-negative integer in the closed interval [0, k− 1], we obtain the sufficient
condition that the right-hand side of (18) is positive as

k < (1− pd)(n + 1) + 1. (21)

Based on (18)–(21), we deduce that the collision probability Ps increases with the number
of mini-slots n when (21) holds. Then, we summarize the observations from (18)–(21) as
follows.

• When k ∈ [(1− pd)(n + 1) + 1, n], the right-hand side of (18) depends on pd and k.
Specifically, in (19), the summation of x ∈ [0, (1− pd)(n + 1) + 1) is positive, while
the summation of x ∈ [(1− pd)(n + 1) + 1, k] is negative.

• When k ∈ [1, (1− pd)(n + 1) + 1), the collision probability Ps increases with the num-
ber of mini-slots n. Thus, the collision probability Ps and the maximum permissible
collision probability Pc provide an upper bound of n for the throughput optimization.

Moreover, with the increase of pd or k, we deduce that the collision probability Ps is
more likely to decrease with the number of mini-slots n based on (19).

3.3. Throughput Optimization

Based on the monotonicity analysis of λs and Ps introduced in Sections 3.1 and 3.2, we
formulate the throughput optimization problem as

max
n

λs (22)

s.t. Ps ≤ Pc. (23)

Equation (22) represents the goal of maximizing the throughput λs and aims to op-
timize the time trade-off between the transmission period and the number of mini-slots
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in the reporting period. Equation (23) represents that the collision probability of the CRN
with a given sensing period Ps should not exceed the maximum permissible collision
probability Pc, by which the PUs can be sufficiently protected from illegal access by the
SUs [9]. The maximum permissible collision probability Pc is a pre-designed value, which
is often determined by the network designer and is independent of other variables [3,9].
Since the throughput depends on the duration of the sensing/reporting/transmission
period, and the collision probability reflects the accuracy of spectrum sensing to a certain
extent, we optimize the secondary the throughput under the collision constraint to tackle
the sensing–the throughput trade-off in the cooperative CRNs. In other words, with the
constraint of the sensing performance that requires the time of local sensing and reporting,
we aim to provide more transmission time for higher the throughput. With respect to the
value intervals of p f and pd in Section 2.2, we have

1 > pd > 0.5 > p f > 0⇒ (1− p f )(n + 1) > (1− pd)(n + 1). (24)

Based on the value interval of k in Sections 3.1 and 3.2, we summarize the throughput
optimization under the collision constraint by optimizing the number of mini-slots n
as follows.

• When k ∈
[
(1− p f )(n + 1) + 1, n

]
, the monotonicities of the throughput λs and the

collision probability Ps depend on the values of p f , pd, and k. Given specified values
of the aforementioned parameters, the optimal n could be determined.

• When k ∈
[
(1− pd)(n+ 1)+1, (1− p f )(n+ 1)+1

]
, the throughput λs increases with

n, while the monotonicity of Ps depends on the values of pd and k.
• When k ∈ [1, (1− pd)(n + 1) + 1], the collision probability Ps increases with the num-

ber of mini-slots n. Thus, the collision probability Ps and the maximum permissible
collision probability Pc provide an upper bound of n. The monotonicity of the through-
put λs is similar to the second item; thus, the provided upper bound of n achieves the
maximum the throughput.

4. Performance Analysis of the CRN with a Given Reporting Period

In this section, we tackle the trade-off between the duration of the sensing period
τs and that of the transmission period τt for the throughput optimization. Namely, the
sensing time τs could be traded for transmission time. We start our analysis by formulating
the throughput λr and the collision probability Pr and maximizing the secondary the
throughput of the cooperative CRN under the collision constraint.

Based on the definition of the throughput in (1), the throughput of the CRN with a
given reporting period, denoted by λr, is given by

λr =π f (1− τs − nτc)
n

∑
x=k

(
n
x

)(
1− p f (τs)

)x(
p f (τs)

)n−x
. (25)

The collision probability of the CRN with a given reporting period, denoted by Pr, is
given by

Pr = πo

n

∑
x=k

(
n
x

)
(1− pd(τs))

x(pd(τs))
n−x. (26)

Given the duration of the reporting period in this section, the number of mini-slots n
in the reporting period is viewed as given in (25) and (26).
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4.1. Throughput Analysis

To tackle the trade-off between the duration of the sensing period and that of the
transmission period, we optimize the duration of the sensing period τs to maximize the
throughput λr. We differentiate λr in (25) with respect to τs as

1
π f

∂λr

∂τs
= −

n

∑
x=k

(
n
x

)(
1− p f (τs)

)x(
p f (τs)

)n−x
+ (1− τs − nτc)

∂p f (τs)

∂τs

×
n

∑
x=k

(
n
x

)(
1− p f (τs)

)x(
p f (τs)

)n−x
(

n− x
p f (τs)

− x
1− p f (τs)

)
, (27)

where n and k are independent of τs, and we have the first-order partial derivative of p f (τs)
with respect to τs as

∂p f (τs)

∂τs
=

∂Q(c1
√

τs)

∂τs
= − c1

2
√

2πτs
e−

c2
1τs
2 . (28)

Due to c1 > 0, given in Section 2.2, we deduce that
∂p f (τs)

∂τs
in (28) is negative. As the

duration of the sensing period τs ∈ (0, 1− nτc) holds, we have

∂p f (τs)

∂τs

∣∣∣∣
τs→0+

= −∞, (29)

and
∂p f (τs)

∂τs

∣∣∣∣
τs→(1−nτc)−

= − c1

2
√

2π(1− nτc)
e−

c2
1(1−nτc)

2 , (30)

where τs → 0+ represents that τs tends to 0 from the right of 0, and τs → (1− nτc)−

represents that τs tends to (1 − nτc) from the left of (1 − nτc). Then, we discuss the
multiplicator

(
n−x

p f (τs)
− x

1−p f (τs)

)
in (27) as follows.

n− x
p f (τs)

− x
1− p f (τs)

< 0⇒ x > (1− p f (τs))n. (31)

Since x is a positive integer in the closed interval [k, n] based on (25), the sufficient
condition that the second term on the right-hand side of (27) is positive can be deduced as

k > (1− p f (τs))n. (32)

Then, we summarize the observations from (27)–(32) as follows.

• When k ∈ ((1− p f (τs))n, n], the first term on the right-hand side of (27) is negative,
while the second term on the right-hand side of (27) is positive. Based on (28)–(30),
the throughput λr increases with the duration of the sensing period τs when τs tends
to 0. Otherwise, the throughput λr decreases with τs.

• When k ∈ [1, (1− p f (τs))n], the right-hand side of (27) depends on the values of p f (τs)
and k. On the right-hand side of (27), the first term is negative, the second term with
x ∈

[
k, (1− p f (τs))n

]
is negative, while the second term with x ∈

(
(1− p f (τs))n, n

]
is positive. Compared with the above first item, the throughput λr is more likely to
decrease with τs due to the smaller value of k.

Note that the Equations (27)–(32) are derived using differential and integral calculus to
analyze the monotonocity of the throughput with respect to the sensing duration τs. They
are the intermediate results in our analysis of the trade-off among the three periods in the
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CSS,= and do not exist in the existing literature. Moreover, based on (28), the second-order
partial derivative of p f (τs) with respect to τs is

∂2 p f (τs)

∂τ2
s

=
c1

4
√

2πτ3
s

e−
c2
1τs
2 +

c3
1

4
√

2πτs
e−

c2
1τs
2 . (33)

Due to c1 > 0, given in Section 2.2, we deduce that the second-order partial derivative
∂2 p f (τs)

∂τ2
s

is positive. Comparing the first and second terms on the right-hand side of (27), we

infer that the value of
∂p f (τs)

∂τs
in (28)–(30) plays a key role in (27). Moreover, we infer from

(27) and (32) that, with the increase of k (or with the decrease of n), the throughput λr is
more likely to increase with τs.

4.2. Collision Analysis

To analyze the monotonicity of the collision probability, we differentiate Pr with respect
to τs as

1
πo

∂Pr

∂τs
=

∂pd(τs)

∂τs

n

∑
x=k

(
n
x

)
(1−pd(τs))

x(pd(τs))
n−x
(

n−x
pd(τs)

− x
1−pd(τs)

)
, (34)

where we have

∂pd(τs)

∂τs
=

∂Q(c2
√

τs)

∂τs
= − c2

2
√

2πτs
e−

c2
2τs
2 . (35)

Due to c2 < 0 in (5), we deduce that the first-order partial derivative ∂pd(τs)
∂τs

in (35) is
positive.

∂pd(τs)

∂τs

∣∣∣∣
τs→0+

= +∞, (36)

∂pd(τs)

∂τs

∣∣∣∣
τs→(1−nτc)−

=− c2

2
√

2π(1−nτc)
e−

c2
2(1−nτc)

2 , (37)

and
∂2 pd(τs)

∂τ2
s

=
c2

4
√

2πτ3
s

e−
c2
2τs
2 +

c3
2

4
√

2πτs
e−

c2
2τs
2 . (38)

Similar to the analysis of the collision probability (21), (22) in Section 3.2, since πo > 0,
(n

x) > 0, 1− pd(τs) > 0, and pd(τs) > 0 hold in (34), we obtain the sufficient condition that
the right-hand side of (34) is negative as

n− x
pd(τs)

− x
1− pd(τs)

< 0⇒ x > (1− pd(τs))n. (39)

Therefore, we summarize the observations from (34)–(39) as follows.

• When k ∈ ((1− pd(τs))n, n], the right-hand side of (34) is negative, and the collision
probability Pr decreases with τs. Thus, the maximum permissible collision probability
Pc provides a lower bound of τs for throughput optimization.

• When k ∈ [1, (1 − pd(τs))n], the right-hand side of (34) depends on pd(τs) and k.
On the right-hand side of (34), the summation of x ∈ [k, (1− pd(τs))n] is positive,
while the summation of x ∈ ((1− pd(τs))n, n] is negative. Compared with the above
first item, the collision probability Pr is more likely to increase with τs, due to the
smaller value of k.

With respect to the value interval pd(τs) > 0.5, the value interval of k in the first item
occupies the majority the interval [1, n]. Therefore, (34) and (39) indicate that, with the
increase of pd(τs) or k, the collision probability Pr is more likely to decrease with τs.
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4.3. Throughput Optimization

Based on the monotonicity analysis in Sections 4.1 and 4.2, we formulate the through-
put optimization problem as

max
τs

λr (40)

s.t. Pr ≤ Pc. (41)

The variable of the throughput optimization in (40) is the duration of the sensing
period τs. Equation (40) aims to optimize the time trade-off between the sensing period
and the transmission period. With respect to the value intervals of p f (τs) and pd(τs) in
Section 2.2, we have

1 > pd(τs) > 0.5 > p f (τs) > 0⇒ n(1− p f (τs)) > n(1− pd(τs)). (42)

Based on the value interval of k discussed in Sections 4.1 and 4.2, we summarize the
throughput optimization as follows

• When k ∈ ((1− p f (τs))n, n], the collision probability Pr decreases with τs; thus, the
maximum permissible collision probability Pc provides a lower bound of τs in the
interval (0, 1− nτc]. As ∂λr

∂τs
turns from positive to negative with the increase of τs in

(0, 1− nτc), the optimal τs depends on the lower bound of τs and the value of τs that
satisfies ∂λr

∂τs
= 0.

• When k ∈ ((1− pd(τs))n, (1− p f (τs))n], the collision probability Pr decreases with τs,
and a lower bound of τs is also provided. The optimal τs depends on the values of c2
and k.

• When k ∈ [1, (1− pd(τs))(n + 1)], the monotonicities of the throughput λr and colli-
sion probability Pr depend on the values of c1, c2, and k.

4.4. Special Case

In this subsection, we analyze the throughput and collision performances of the CRN
with n = 1; thus, k = 1 holds due to the definition of the “k-out-of-n” fusion rule in
Section 2.3. The case n = 1 corresponds to the CRN scenario with only one pair of SUs.
Based on the throughput λr in (25) and the collision probability Pr in (26), we formulate the
optimization problem by specifying n = 1 and k = 1 as

max λr|n=1 = π f (1− τs − nτc)(1− p f (τs)) (43)

s.t. Pr|n=1 = πo(1− pd(τs)) ≤ Pc. (44)

Based on (35), it is easy to deduce that Pr|n=1 decreases with τs; thus, the collision
constraint (44) provides a lower bound of τs for the optimization problem. The lower bound
of τs is given by

τs ≥
(
Q−1(1− Pc

πo
)

c2

)2

. (45)

Then, we analyze the monotonicity of λr|n=1 and differentiate λr|n=1 with respect to τs as

1
π f

∂λr|n=1

∂τs
= −1 + p f (τs)− (1− τs − nτc)

∂p f (τs)

∂τs
. (46)

We again differentiate ∂λr |n=1
∂τs

with respect to τs as

1
π f

∂2λr|n=1

∂τ2
s

=
2∂p f (τs)

∂τs
− (1− τs − nτc)

∂2 p f (τs)

∂τ2
s

. (47)
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Based on (28) and (33), we deduce that the right-hand side of (47) is negative. Moreover,
we have

1
π f

∂λr|n=1

∂τs

∣∣∣∣
τs→0+

> 0, (48)

and
1

π f

∂λr|n=1

∂τs

∣∣∣∣
τs→(1−nτc)−

< 0. (49)

Based on (46)–(49), we deduce that there exists a unique τ∗s ∈ (0, 1− nτc) that satisfies
the first-order partial derivative of λr|n=1 with respect to τs in (46) equaling zero. If τ∗s
satisfies the inequality (45), τ∗s is the optimal value of τs that maximizes the throughput λr.
Otherwise, the lower bound of τs in (45) is the optimal value of τs due to the monotonicity
analysis in (46)–(49).

Therefore, for the CRN with n = 1, we have proved the existence of the optimal
duration of the sensing period τ∗s and provided an approach to obtain the explicit value.

5. Performance Analysis of the CRN with a Given Transmission Period

In this section, we tackle the trade-off between the duration of the sensing period
and that of the reporting period for the throughput optimization and start our analysis by
formulating the throughput and the collision probability.

Based on the definition of the throughput in (1), the throughput of the CRN with a
given transmission period τt, denoted by λt, is given by

λt = π f τt

n

∑
x=k

(
n
x

)(
1− p f (τs)

)x(
p f (τs)

)n−x

= π f τt(1−
k−1

∑
x=0

(
n
x

)(
1− p f (τs)

)x(
p f (τs)

)n−x
). (50)

The collision probability of the CRN with a given transmission period, denoted by Pt,
is given by

Pt = πo

n

∑
x=k

(
n
x

)
(1− pd(τs))

x(pd(τs))
n−x

= πo(1−
k−1

∑
x=0

(
n
x

)
(1− pd(τs))

x(pd(τs))
n−x). (51)

With respect to the given transmission period in this section, the mathematical rela-
tionship between τs and n can be formulated as

τs + nτc = 1− τt. (52)

5.1. Throughput Analysis

Notice that both p f (τs) and (n− x) in (50) could be viewed as functions of n, so we
derive partial derivatives of positive functions f (y) and g(y) as follows.

∂ f (y)g(y)

∂y
= f (y)g(y)

(
ln f (y)

∂g(y)
∂y

+
g(y)
f (y)
· ∂ f (y)

∂y

)
. (53)
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To tackle the trade-off between τs and nτc, we differentiate λt with respect to n as

1
π f τt

∂λt

∂n
=−

k−1

∑
x=0

∂(n
x)

∂n

(
1−p f (τs)

)x(
p f (τs)

)n−x
−

∂p f (τs)

∂n
×

k−1

∑
x=0

(
n
x

)(
1−p f (τs)

)x(
p f (τs)

)n−x
(

n− x
p f (τs)

− x
1−p f (τs)

)

− ln p f (τs)
k−1

∑
x=0

(
n
x

)(
1− p f (τs)

)x(
p f (τs)

)n−x

≈ −
k−1

∑
x=0

ln

(
p f (τs)(n+1)

n− x + 1

)(
n
x

)(
1− p f (τs)

)x(
p f (τs)

)n−x

−
∂p f (τs)

∂n

k−1

∑
x=0

(
n
x

)(
1− p f (τs)

)x(
p f (τs)

)n−x
(

n− x
p f (τs)

− x
1− p f (τs)

)
. (54)

Then, we discuss the first term on the right-hand side of (54) as follows.

ln

(
p f (τs)(n + 1)

n− x + 1

)
< 0⇒

p f (τs)(n + 1)
n− x + 1

< 1

⇒ x < (1− p f (τs))(n + 1). (55)

As x is a non-negative integer in the closed interval [0, k− 1], we obtain the sufficient
condition that the first term on the right-hand side of (54) is positive as

k < (1− p f (τs))(n + 1) + 1. (56)

Moreover, based on (28) and (52), we have

∂p f (τs)

∂n
= −τc

∂p f (τs)

∂τs
> 0. (57)

We observe from (54) and (57) that
∂p f (τs)

∂n > 0, (n
x) > 0, p f (τs) > 0, and 1− p f (τs) > 0

hold; thus, the sufficient condition that the second term on the right-hand side of (54) is
negative could be represented as

n− x
p f (τs)

− x
1− p f (τs)

> 0⇒ x < (1− p f (τs))n. (58)

As x is a non-negative integer in the closed interval [0, k− 1], we simplify the sufficient
condition as

k < (1− p f (τs))n + 1. (59)

We infer from (56) and (59) that the upper bound in (56) and that in (59) are approxi-
mately equal. Thus, we neglect the difference in the upper bounds to present the following

observations concisely. As
∂p f (τs)

∂τs
in (28)–(30) is negative, we summarize the observations

from (54)–(59) as follows.

• When k ∈ ((1− p f (τs))n + 1, n], we deduce from (28)–(30) and (54) that the second
term is dominant when τs tends to 0. Otherwise, the monotonicity of λt with respect
to the number of mini-slots n depends on c1 and k. Compared with the second item as
follows, the throughput λt is more likely to increase with n.

• When k ∈ [1, (1− p f (τs))n + 1], the first term on the right-hand side of (54) is positive,
while the second term on the right-hand side of (54) is negative. We deduce from
(28)–(30) and (57) that the second term is dominant when τs tends to 0. Thus, the
throughput λt decreases with n when τs tends to 0.
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Due to the value interval of p f (τs) in (42), the value interval of k in the first item
occupies the majority part of the interval [1, n]. Moreover, we infer from (54) and (58) that,
with the increase of k, the throughput λt is more likely to increase with nτc.

5.2. Collision Analysis

To analyze the monotonicity of the collision probability, we differentiate Pt with respect
to n as

1
πo

∂Pt

∂n
= −

k−1

∑
x=0

∂(n
x)

∂n
(1− pd(τs))

x(pd(τs))
n−x− ∂pd(τs)

∂n
×

k−1

∑
x=0

(
n
x

)
(1− pd(τs))

x(pd(τs))
n−x
(

n− x
pd(τs)

− x
1− pd(τs)

)

− ln pd(τs)
k−1

∑
x=0

(
n
x

)
(1− pd(τs))

x(pd(τs))
n−x

≈ −
k−1

∑
x=0

ln
(

pd(τs)(n + 1)
n− x + 1

)(
n
x

)
(1− pd(τs))

x(pd(τs))
n−x

− ∂pd(τs)

∂n

k−1

∑
x=0

(
n
x

)
(1− pd(τs))

x(pd(τs))
n−x
(

n− x
pd(τs)

− x
1−pd(τs)

)
. (60)

For the first term on the right-hand side of (60), we have

ln
(

pd(τs)(n + 1)
n− x + 1

)
< 0⇒ pd(τs)(n + 1)

n− x + 1
< 1

⇒ x < (1− pd(τs))(n + 1). (61)

Since x is a non-negative integer in the closed interval [0, k − 1], and (n
x) > 0, 1−

pd(τs) > 0, and pd(τs) > 0 hold, we obtain the sufficient condition that the first term on
the right-hand side of (60) is positive as

k < (1− pd(τs))(n + 1) + 1. (62)

Moreover, based on (35) and (52), we have

∂pd(τs)

∂n
= −τc

∂pd(τs)

∂τs
< 0. (63)

Then, we discuss the second term on the right-hand side of (60) as

n− x
pd(τs)

− x
1− pd(τs)

> 0⇒ x < (1− pd(τs))n. (64)

Similarly, we obtain the sufficient condition that the second term on the right-hand
side of (60) is positive as

k < (1− pd(τs))n + 1. (65)

Therefore, when k ∈ [(1− pd(τs))(n + 1) + 1, n], the right-hand side of (60) depends
on c2 and k. When k ∈ [(1− pd(τs))n + 1, (1− pd(τs))(n + 1) + 1), the analysis of this case
is similar to that of the third case as follows. Due to the limited value interval, this case
could be neglected. When k ∈ [1, (1− pd(τs))n + 1), both the first and second terms on
the right-hand side of (60) are positive; thus, the collision probability Pt increases with
nτc. Moreover, we infer from (62) and (65) that, with the increase of k, Pt is more likely to
decrease with nτc.
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5.3. Throughput Optimization

Based on the monotonicity analysis in Sections 5.1 and 5.2, we formulate the through-
put optimization problem as

max
n

λt (66)

s.t. Pt ≤ Pc. (67)

The variable of the throughput optimization in (66) is the number of mini-slots
n. (66) aims to optimize the time trade-off between the sensing period and the num-
ber of mini-slots in the reporting period. Based on the value interval of k discussed in
Sections 5.1 and 5.2, we summarize the throughput optimization as follows.

• When k ∈ [(1− p f (τs))(n + 1) + 1, n], the monotonicities of the throughput λt and
the collision probability Pt depend on c1, c2, and k.

• When k ∈ [(1− pd(τs))(n + 1) + 1, (1− p f (τs))(n + 1) + 1], the throughput λt de-
creases with the number of mini-slots n when τs tends to 0. Comparing it with the
third item, the collision probability Pt is less likely to increase with the duration of
the reporting period nτc due to the larger value of k. The optimal n depends on c1, c2
and k.

• When k ∈ [1, (1 − pd(τs))(n + 1) + 1], the collision probability Pt increases with
the duration of the reporting period nτc, and the maximum permissible collision
probability Pc provides an upper bound of n in the interval (0, 1−τt

τc
]. As ∂λt

∂n turns
from negative to positive with the increase of τs, the optimal τs depends on the upper
bound of n.

6. Numerical Results

In this section, we evaluate the throughput and collision performances of the CRN
with CSS. The numerical results consist of three parts, which correspond to the theoretical
results in Sections 3–5, respectively. The impact of the “k-out-of-n” fusion rule on the
throughput and collision performances is also presented for comparison. The parameters
are set as follows unless otherwise specified. Without loss of generality, the length of a time
slot is normalized as a unit time. The probability that the licensed spectrum is occupied
is set to πo = 0.2, and the probability that the licensed spectrum is free is set to π f = 0.8.
In accordance with the value intervals of pd(τs) and p f (τs) in Section 2.2, the parameter in
p f (τs) is set to c1 = 2, and the parameter in pd(τs) is set to c2 = −2.

Corresponding to the theoretical analysis in Section 3, Figure 3 plots the throughput
λs and the collision probability Ps of the CRN with a given sensing period. We observe
from Figure 3 that the throughput λs increases with the number of mini-slots n when (17)
holds; otherwise, the throughput λs decreases with the number of mini-slots n. Thus, there
is an optimal number of mini-slots for the throughput λs. When the number of mini-slots is
larger than the optimal number of mini-slots, the throughput λs decreases almost linearly
due to the decrease of the duration of the transmission period τt. Namely, nτc + τt could
be viewed as a constant in this scenario, and τt is represented as a multiplicator in the
throughput formula (1− τs − nτc in (8)). Moreover, with the increase of k, we observe from
Figure 3 that the throughput λs has a larger value interval where λs increases with n, which
is in accordance with the impact of the “k-out-of-n” fusion rule in Section 3.1. The reason
behind this observation is that, based on the definition of the “k-out-of-n” fusion rule and
the binomial coefficient in λs (8), the FC has a higher probability to determine that the
licensed spectrum is free when n increases. However, with the increase of n, the increase in
the probability that FC determines the licensed spectrum is free could not compensate for
the decrease of the transmission time in λs (8); thus, the throughput λs decreases with the
number of mini-slots n when n is larger than the optimal value. Notice that this result is
also in accordance with [16]. We also observe from Figure 3 that the collision probability Ps
increases with the number of mini-slots n; thus, Ps provides an upper bound of n in the
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throughput optimization. This observation is in accordance with the collision analysis in
Section 3.2 and the throughput optimization in Section 3.3. The reason is similar as that
for the throughput λs. Based on the definition of the “k-out-of-n” fusion rule, the FC has a
higher probability to determine the licensed spectrum is free when n increases. Therefore,
the increase of n leads to more opportunities of spectrum access and more collisions with
the primary packet transmission.
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Figure 3. Throughput and collision performances of the CRN with a given sensing period.

Corresponding to the theoretical analysis in Sections 4.1–4.3, Figures 4 and 5 plot the
throughput λr and the collision probability Pr of the CRN with a given reporting period.
In Figures 4–6, we tackle the trade-off between the duration of the sensing period τs and
the duration of the transmission period τt for the optimization problem in the CRN with a
given number of mini-slots n in the reporting period and adopt τs as the variable on the
horizontal axis to plot the performances of the throughput and the collision probability.
We observe that the throughput λr increases with the duration of the sensing period τs
when τs tends to 0, otherwise the throughput λr decreases with the duration of the sensing
period τs. This observation is in accordance with the throughput analysis in Section 4.1.
The reason behind this observation is that, based on the throughput λr in (25), the increase
of τs leads to the decrease of the transmission time (1− τs − nτc) and the increase of the
probability, the FC determines the licensed spectrum is free. However, with the increase of
τs, the increase in the probability that FC determines the licensed spectrum is free could not
compensate for the reduction of the transmission time in the throughput λr (25). Thus, there
is an optimal duration of the sensing period for the throughput λr, and the throughput
λr decreases with τs when the duration of the sensing period τs is larger than the optimal
duration of the sensing period. The throughput λr decreases almost linearly due to the
decrease of the duration of the transmission period in (25). Figure 4 indicates that, with
the decrease of n, the throughput λr is more likely to increase with τs. Figure 5 indicates
that, with the increase of k, the throughput λr is more likely to increase with τs. These
observations are also in accordance with the throughput analysis and the impact of the
“k-out-of-n” fusion rule in Section 4.1. We also observe from Figures 4 and 5 that the collision
probability Pr decreases with the duration of the sensing period τs; thus, Pr provides a
lower bound of τs in the throughput optimization, which is in accordance with the collision
analysis in Section 4.2 and the throughput optimization in Section 4.3. The reason behind
this observation is that, based on (35), the probability of detection pd(τs) increases with τs.
Based on the collision probability Pr in (26), the FC has a lower probability to determine
the licensed spectrum is free when τs increases. Therefore, the increase of τs leads to fewer
opportunities of spectrum access and fewer collisions with primary-packet transmission.
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Figure 4. Throughput and collision performances of the CRN with a given reporting period and k in
the “k-out-of-n” fusion rule.
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Figure 5. Throughput and collision performances of the CRN with a given reporting period and n in
the “k-out-of-n” fusion rule.
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Figure 6. Throughput and collision performances of the CRN with a given reporting period, n = 1,
and k = 1.

Corresponding to the theoretical analysis in Section 4.4, Figure 6 plots the throughput
λr|n=1 and collision probability Pr|n=1 versus the duration of the sensing period. We
observe that Pr|n=1 decreases with the duration of the sensing period τs; thus, Pr|n=1, and
the maximum permissible collision probability Pc provides a lower bound of τs in the
throughput optimization. As for the case of the maximum permissible collision probability
with the value Pc2, the throughput λr|n=1 decreases with the duration of the sensing period
τs under the lower bound of τs, and this lower bound achieves the maximal throughput. As
for the case with value Pc1, the throughput λr|n=1 first increases with τs when it is relatively



Sensors 2022, 22, 4753 20 of 23

small and decreases with τs when it is relatively large; thus, the global optimal throughput
could be achieved as shown in Figure 6. The above observations are in accordance with
the performance analysis in Section 4.4. Moreover, we infer from Figures 3–6 that when
the duration of the sensing period τs is relatively large (does not tend to 0), the duration
of the transmission period τt plays a much more important role than that of the reporting
period or sensing period. The reason is that, due to the role of the transmission time as a
multiplicator in the throughput Formulas (8) and (25), the throughput increases almost
linearly with τt.

Corresponding to the theoretical analysis in Section 5, Figures 7 and 8 plot the through-
put λt and the collision probability Pt of the CRN with a given transmission period. In
Figures 7 and 8, we tackle the trade-off between the duration of the sensing period τs and
the number of mini-slots n in the reporting period for the optimization problem in the CRN
with a given duration of the transmission period τt and adopt τs as the variable on the
horizontal axis to plot the performances of the throughput and the collision probability. We
observe that the throughput λt increases with the duration of the sensing period τs when τs
tends to 0; otherwise, the throughput λt decreases with τs. In the CRN with a given duration
of the transmission period τt, τs + nτc could be viewed as a constant, and this observation
is in accordance with the throughput analysis in Section 5.1. Namely, according to the given
transmission period, the throughput λt increasing with τs is equivalent to the throughput
λt decreasing with nτc, and the observation from Figure 8 that the throughput λt increases
with τs when τs tends to 0 is also equivalent to the theoretical result in Section 5.1. The
reason behind this observation is that, based on the definition of the “k-out-of-n” fusion
rule and the binomial coefficient in λt (50), the FC has a higher probability to determine
the licensed spectrum is free when n or τs increases. As τs + nτc could be viewed as a
constant in this CRN scenario and τc is considered as a constant, the impact of τs on the
throughput λt is higher than that of n when τs tends to 0. The impact relationship between
τs and λt is due to the monotonicity of Q(·) in (2) and the binomial coefficient in λt (50).
We also observe from Figures 7 and 8 that the collision probability Pt decreases with τs,
which is in accordance with theoretical result in Section 5.2. Namely, the FC is less likely
to determine that the licensed spectrum is free with the increase of τs (or equivalently, the
decrease of n in this CRN scenario). Similarly, Figure 7 indicates that, with the increase
of k, the throughput λt is more likely to decrease with τs, which is in accordance with the
throughput analysis with the fusion rule in Section 5.1. The reason behind this indication
is that, with the increase of k, the FC is less likely to determine the licensed spectrum is
free according to the received n local sensing results. The increase of τs is equivalent to
the decrease of n in this CRN scenario. Therefore, based on the binomial coefficient in (50),
with the increase of k, the throughput λt is more likely to decrease with τs.
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Figure 7. Throughput and collision performances of the CRN with a given transmission period when
τs is relatively large.
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Figure 8. Throughput and collision performances of the CRN with a given transmission period when
τs tends to 0.

Moreover, we observe from Figures 3–8 that both the throughput and the collision
probability decrease with the parameter k in the “k-out-of-n” fusion rule, and this observa-
tion is in accordance with the definition of the “k-out-of-n” fusion rule. The reason behind
this observation is that, with the increase of k, the FC is less likely to determine the licensed
spectrum is free according to the received n local sensing results, resulting in a smaller
opportunity of secondary-packet transmission and a smaller probability of collision.

7. Conclusions

In this paper, we have studied the throughput and collision performances of the
cooperative CRN, where the crucial impact of the reporting design and that of the “k-
out-of-n” fusion rule with a varying number of local sensing results are explored. To
tackle the time trade-off among sensing, reporting, and transmission, theoretical evalu-
ations and optimizations are performed in the CRNs with a given duration of the sens-
ing/reporting/transmission period, respectively.

We have formulated the throughput and collision probability in the three cases of the
CRN. In each case, the monotonicity analysis of the collision constraint and the maximum
permissible probability provides an upper bound of n (Sections 3.2 and 5.2) or a lower
bound of τs (Section 4.2) for throughput maximization in the specific value intervals of
sensing parameters. The monotonicity analysis of the throughput with the aforementioned
upper/lower bounds provide approaches to the maximal throughput while satisfying
the collision constraint. In the other value intervals of sensing parameters, the maximal
throughput could be obtained with specified values of sensing and fusion parameters.
The derived theoretical results are validated with numerical studies, especially analyzing
the effect of the fusion parameters. The derived analytical results can be used to design a
cooperative CRN with the required throughput and collision performances. Future works
include more complex scenarios, such as the presence of malicious users that may make
inappropriate use of the spectrum.
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