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Abstract: This paper presents a tracking controller for nonlinear systems with matched uncertainties
based on contraction metrics and disturbance estimation that provides exponential convergence
guarantees. Within the proposed approach, a disturbance estimator is proposed to estimate the
pointwise value of the uncertainties, with a pre-computable estimation error bounds (EEB). The
estimated disturbance and the EEB are then incorporated in a robust Riemannian energy condition
to compute the control law that guarantees exponential convergence of actual state trajectories to
desired ones. Simulation results on aircraft and planar quadrotor systems demonstrate the efficacy
of the proposed controller, which yields better tracking performance than existing controllers for
both systems.

Keywords: robust control; nonlinear control; uncertain systems; disturbance estimation; robot safety

1. Introduction

Robotic systems generally have nonlinear dynamics and are subject to model uncertain-
ties and disturbances. Moreover, many robotic systems are underactuated, i.e., having fewer
independent control inputs than degrees of freedom, including fixed-wing aircraft, quadro-
tors and dynamic walking robots. The design of tracking controllers for underactuated
robotic systems is a much more challenging problem compared to that for fully-actuated
systems. Recently, the concept of a control contraction metric (CCM) was introduced
in [1] to synthesize trajectory tracking controllers for general nonlinear systems, including
underactuated ones. The CCM extends contraction theory [2] from analysis to constructive
control design, while contraction theory is focused on analyzing nonlinear systems in
a differential framework by studying the convergence between pairs of state trajectories
toward each other. It was shown in [3] that CCM reduces to conventional sliding and
energy-based designs for fully-actuated systems. On the other hand, for underactuated
systems, compared to prior approaches based on local linearization [4], the CCM approach
leads to a convex optimization problem for controller synthesis and generates controllers
that stabilize every feasible trajectory in a region, instead of just a single target trajectory
that must be known a priori [3].

On the other hand, control design methods to deal with dynamic uncertainties in the
deterministic setting can be roughly classified into adaptive and robust approaches. Robust
approaches, such as H∞ control [5], µ synthesis [6] and robust/tube model predictive
control (MPC) [7,8], usually consider parametric uncertainties or bounded disturbances
and aim to find controllers with performance guarantees for the worst case of such un-
certainties. The consideration of worst-case scenarios associated with robust approaches
often leads to conservative nominal performance. Disturbance–observer (DOB) based
control and related methods such as active disturbance rejection control (ADRC) [9] lump
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all uncertainties that may include parametric uncertainties, unmodeled dynamics and ex-
ternal disturbances, together as a “total disturbance”, estimate it via an observer and then
compute control actions to compensate for the estimated disturbance [10] to recover the
nominal performance. However, for state-dependent uncertainties, DOB-based control
methods usually ignore the dependence of “disturbance” on system states and rely on
assumptions on the derivative of the “disturbance” that are difficult to verify for theoretical
guarantees [10,11]. Alternatively, adaptive control methods such as model reference adap-
tive control (MRAC) [12] usually need a parametric structure for the uncertainties, rely on
online estimation of the parameters for control law construction and provide asymptotic
performance guarantees in most cases. One of the exceptions is L1 adaptive control [13]
that does not need a parameterization of the uncertainties (similar to DOB-based control)
and focuses on transient performance guarantees in terms of uniformly bounded error
between the ideal and uncertain systems.

Both robust and adaptive control approaches have been explored in the context of
CCM-based control in the presence of uncertainties and disturbances. In particular, adap-
tive control was combined with CCM to handle nonlinear control-affine systems with both
parametric [14] and non-parametric uncertainties [15]. The case of bounded disturbances
in CCM-based control was addressed by leveraging input-to-state stability analysis [16] or
robust CCM [17,18]. CCM for stochastic systems was developed in [19] to minimize the
mean squared tracking error in the presence of stochastic disturbances. Closely relevant to
this paper, [15] designed an L1 adaptive controller to augment a baseline CCM-based con-
troller to compensate for matched nonlinear non-parametric uncertainties that can depend
on both time and states. The authors of [15] proved that transient tracking performance
was guaranteed in the sense that the actual state trajectory exponentially converges to
a neighborhood or a tube around the desired one. Compared to [15], our approach relies
on a disturbance observer that yields an estimation error bound and robust Riemannian
energy condition and ensures that the actual state trajectory exponentially converges to the
nominal one.

Statement of Contributions: We present a tracking controller for nonlinear systems sub-
ject to matched uncertainties that can depend on both time and states based on contraction
metrics and disturbance estimation. Our controller leverages a disturbance estimator to
estimate the pointwise value of the uncertainties, with a pre-computable estimation error
bound. The estimated disturbance and the estimation error bound are then incorporated
into a robust Riemannian energy condition to compute the control law that guarantees
exponential convergence of actual state trajectories to nominal ones. We validate the effi-
cacy of our controller on two simulation examples and demonstrate its advantages over
existing controllers.

The idea presented in this paper is leveraged in [20] for safe learning of uncertain
dynamics using deep neural networks. Compared to [20], this paper is not relevant to
learning and allows the uncertainty to be dependent on both time and states, as opposed
to the dependence on states only in [20]. Additionally, this paper includes an additional
aircraft example for performance illustration and conducts extensive comparisons with
existing adaptive approaches in simulations that are not available in [20].

Notations: Let Rn, R+ and Rm×n denote the n-dimensional real vector space, the set
of non-negative real numbers and the set of real m by n matrices, respectively. I and 0
denote an identity matrix, and a zero matrix of compatible dimensions, respectively;‖·‖
denotes the 2-norm of a vector or a matrix. For a vector y, yi denotes its ith element. For
a matrix-valued function M : Rn → Rn×n and a vector y ∈ Rn, ∂y M(x) , ∑n

i=1
∂M(x)

∂xi
yi

denotes the directional derivative of M(x) along y. For symmetric matrices P and Q, P > Q
(P ≥ Q) means P−Q is positive definite (semidefinite). 〈X〉 is the shorthand notation of
X + X>. Finally, 	 denotes the Minkowski set difference.
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2. Problem Statement and Preliminaries

Consider a nonlinear control-affine system with uncertainties

ẋ(t) = f (x(t)) + B(x(t))(u(t) + d(t, x(t))), (1)

where x(t) ∈ X ⊂ Rn is the state vector, u(t) ∈ U ⊂ Rm is the control input vector,
f : Rn → Rn and B : Rn → Rm are known and locally Lipschitz continuous functions,
and d(t, x) represents the matched model uncertainty that can depend on both time and
states. We assume that B(x) has full column rank for any x ∈ X . Suppose X is a compact
set that contains the origin, and the control constraint set U is defined as U , {u ∈ Rm :
u ≤ u ≤ ū}, where u, ū ∈ Rm denote the lower and upper bounds of all control channels,
respectively. Furthermore, we make the following assumptions on B(x) and d(t, x).

Assumption 1. There exist known positive constants LB, Ld, ld and bd such that for any x, y ∈ X
and t, τ ≥ 0, the following inequalities hold:∥∥B(x)− B(y)

∥∥ ≤ LB
∥∥x− y

∥∥, (2)∥∥d(t, x)− d(τ, y)
∥∥ ≤ Ld

∥∥x− y
∥∥+ ld|t− τ| , (3)∥∥d(t, x)

∥∥ ≤ bd. (4)

Remark 1. Assumption 1 indicates that the uncertain function d(t, x) is locally Lipschitz in both
t and x with known Lipschitz constants and is uniformly bounded by a known constant in the
compact set X .

In fact, given the local Lipschitz constants Ld and ld, a uniform bound on d(t, x) in
X can always be derived by using Lipschitz continuity properties if the bound on d(t, x∗)
for an arbitrary x∗ in X and any t ≥ 0 is known. For instance, assuming

∥∥d(t, 0)
∥∥ ≤ b0

d,
from (3), we have

∥∥d(t, x)
∥∥ ≤ b0

d + Ld maxx∈X ‖x‖ for any x ∈ X and g ≥ 0. In practice,
some prior knowledge about the actual system and the uncertainty may be leveraged to
obtain a tighter bound than the one based on the Lipschitz continuity explained earlier,
which is why we directly make an assumption on the uniform bound. With Assumption 1,
we will show (in Section 3.3) that the pointwise value of d(t, x(t)) at any time t can be
estimated with a pre-computable estimation error bound.

For the system in (1), assume we have a nominal state and input trajectory, x?(·) and
u?(·), which satisfy the nominal, i.e., uncertainty-free, dynamics:

ẋ? = f (x?) + B(x?)u?. (5)

We would like to design a state-feedback controller in the form of

u(t) = k(t, x(t), x?(t)) + u?(t), (6)

so that the actual state trajectory x(·) exponentially converges to the nominal one x?(·).
Our solution is based on CCM and disturbance estimation. Next, we briefly review CCM
for uncertainty-free systems.

Control Contraction Metrics (CCMs)

We first introduce some notations related to Riemannian geometry, most of which are
from [1]. A Riemannian metric on Rn is a symmetric positive-definite matrix function M(x),
smooth in x, which defines a “local Euclidean” structure for any two tangent vectors δ1 and
δ2 through the inner product 〈δ1, δ2〉x , δ>1 M(x)δ2 and the norm

√
〈δ1, δ2〉x. A metric is

called uniformly bounded if a1 I ≤ M(x) ≤ a2 I holds ∀x and for some scalars a2 ≥ a1 > 0.
Let Γ(a, b) be the set of smooth paths connecting two points a and b in Rn, where each
c ∈ Γ(a, b) is a piecewise smooth mapping, c : [0, 1] → Rn, satisfying c(0) = a, c(1) = b.
We use the notation c(s), s ∈ [0, 1], and cs(s) , ∂c

∂s . Given a metric M(x) and a curve c(s),
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we define the Riemannian energy of c(s) as E(c) ,
∫ 1

0 c>s M(c(s))cs(s)ds. The Riemannian
energy between a and b is defined as E(a, b) , infc∈Γ(a,b) E(c).

Contraction theory [2] draws conclusions on the convergence between pairs of state
trajectories toward each other by studying the evolution of the distance between any
two infinitesimally close neighbouring trajectories. CCM generalizes contraction analysis
to the controlled dynamics setting in which the analysis jointly searches for a controller
and a metric that describes the contraction properties of the resulting closed-loop system.
Following [1,14], we now briefly review CCMs by considering the nominal, i.e., uncertainty-
free, system:

ẋ = f (x) + B(x)u, (7)

where x(t) ∈ Rn and u(t) ∈ Rm. The differential form of (7) is given by δ̇x = A(x, u)δx +

B(x)δu, where A(x, u) , ∂ f
∂x +

m
∑

i=1

∂bi
∂x ui with bi(x) denoting the ith column of B(x). Consider

a function V(x, δx) = δ>x M(x)δx for some positive definite metric M(x), which can be
viewed as the Riemannian squared differential length at point x. Differentiating and
imposing that the squared length decreases exponentially with rate 2λ, one obtains

V̇(x, δx) = δ>x (〈MA〉+ Ṁ)δx + 2δ>x MBδu ≤ −2λδ>x Mδx, (8)

where Ṁ = ∂ f+Bu M = ∂ f M + ∑m
i=1 ∂bi

Mui. We first recall some basic results related
to CCM.

Definition 1 ([1]). The system (7) is said to be universally exponentially stabilizable if, for any feasi-
ble desired trajectory x?(t) and u?(t), a feedback controller can be constructed that for any initial con-
dition x(0), a unique solution to (7) exists and satisfies

∥∥x(t)− x?(t)
∥∥ ≤ R

∥∥x(0)− x?(0)
∥∥ e−λt,

where λ and R are the convergence rate and overshoot, respectively, independent of the initial
conditions.

Lemma 1 ([1]). If there exists a uniformly bounded metric M(x), i.e., α1 I≤M(x)≤α2 I for some
positive constants α1 and α2, such that for all x and δx 6=0 satisfying δ>x MB = 0,

δ>x

(〈
M

∂ f
∂x

〉
+∂ f M+2λM

)
δx ≤ 0, (9a)

δ>x

(〈
M

∂bi
∂x

〉
+∂bi

M

)
δx = 0, i = 1, . . . , m (9b)

hold, then the system (7) is universally exponentially stabilizable in the sense of Definition 1 via
continuous feedback defined almost everywhere, and everywhere in the neighborhood of the target
trajectory with the convergence rate λ and overshoot R =

√
α2
α1

.

The condition (9) ensures that the dynamics orthogonal to the input are contracting,
i.e., (8) holds in the presence of δ>x MB = 0 and is often termed as the strong CCM condi-
tion [1]. In particular, the condition (9b) can be satisfied by enforcing that each column
of B(x) forms a killing vector field for the metric M(x), i.e.,

〈
M ∂bi

∂x

〉
+∂bi

M = 0 for all
i = 1, . . . , m. The CCM condition (9) can be transformed into a convex constructive condi-
tion for the metric M(x) by a change of variables. Let W(x) = M−1(x) (commonly referred
to as the dual metric), and B⊥(x) be a matrix whose columns span the null space of the input
matrix B (i.e., B>⊥B = 0). Then, condition (9) can be cast as convex constructive conditions
for W(x):
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B>⊥

(〈
∂ f
∂x

W
〉
− ∂ f W + 2λW

)
B⊥ ≤ 0 (10a)〈

∂bi
∂x

W
〉
−∂bi

W = 0, for i = 1, · · · , m. (10b)

The existence of a contraction metric M(x) is sufficient for stabilizability via Lemma 1.
What remains is constructing a feedback controller that achieves the universal exponential
stabilizability (UES). As mentioned in [1,16], one way to derive the controller is to interprete
the Riemann energy, E(x?(t), x(t)), as an incremental control Lyapunov function and use it
to construct a min-norm controller that renders for any time t

Ė(x?(t), x(t)) ≤ −2λE(x?(t), x(t)). (11)

Specifically, at any time t > 0, given the metric M(x) and a desired/actual state pair
(x?(t), x(t)), a minimum-energy path, i.e., a geodesic, γ(·, t) connecting these two states
(i.e., γ(0, t) = x?(t) and γ(1, t) = x(t)), can be computed (e.g., using the pseudospectral
method in [21] to solve a nonlinear programming problem). Consequently, the Rieman-
nian energy of the geodesic is defined as E(x?(t), x(t)) =

∫ 1
0 γs(s, t)>M(γ(s, t)))γs(s, t)ds,

where γs(s) ,
∂γ
∂s , can be calculated. As noted in [16], from the formula for the first

variation of energy [22], Ė(x?(t), x(t)) = 2γ>s (1, t)M(x(t))ẋ(t)− 2γ>s (0, t)M(x?(t))ẋ?(t).
Therefore, (11) can be rewritten as

γ>s (1, t)M(x(t))ẋ(t)− γ>s (0, t)M(x?(t))ẋ?(t) ≤ −λE(x?(t), x(t)), (12)

where ẋ(t) = f (x(t)) + B(x(t))u(t) and ẋ?(t) = f (x?(t)) + B(x?(t))u?(t). Therefore, the
control signal with a minimum norm for u(t)− u?(t) can then be obtained by solving the
following quadratic programming (QP) problem:

u(t) = argmin
k∈Rm

∥∥k− u?(t)
∥∥2 subject to (12) (13)

at each time t, which is guaranteed to be feasible under condition (9) [1]. The minimiza-
tion problem (13) is often termed as the pointwise min-norm control problem and has an
analytic solution [23]. The above discussions can be summarized in the following theo-
rem. The proof is trivial by following Lemma 1 and the subsequent discussions and is
thus omitted.

Theorem 1 ([1]). Given a nominal system (7), assume that there exists a uniformly bounded metric
W(x) that satisfies (10) for all x ∈ Rn. Then, the control law constructed by solving (13) with
M(x) = W−1(x), universally exponentially stabilizes the system (7) in the sense of Definition 1,
where R =

√
α2
α1

with α1 and α2 being two positive constants satisfying α1 I≤M(x)≤α2 I.

Remark 2. According to Definition 1 and Theorem 1, under the conditions of Theorem 1, given
any feasible trajectory (x?((·), u?(·)) of (7), a controller can always be constructed to ensure that
the actual state trajectory x(·) exponentially converges to x?(·).

3. Robust Trajectory Tracking Using CCM and Disturbance Estimation

In Section 2, we have shown that existence of a CCM for a nominal (i.e., uncertainty-
free) system can be used to construct a feedback control law to guarantee the universal
exponential stabilizability (UES) of the system. In this section, we present a controller based
on CCM and disturbance estimation to ensure the UES of the uncertain system (1), whose
architecture is depicted in Figure 1.
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Uncertain System
QP with Robust
Riemannian Energy

Condition

Disturbance
Estimator

DE-CCM Controller

Figure 1. Block diagram of the closed-loop system with the proposed DE-CCM controller.

3.1. CCMs for the Actual System

To apply the contraction method to design a controller to guarantee the UES of the
uncertain system (1), we need to first search a valid CCM for it. Following Section 2, we
can derive the counterparts of the strong CCM condition (9) or (10). Due to the particular
structure with (1) attributed to the matched uncertainty assumption, we have the following
lemma. A similar observation has been made in [14] for the case of matched parametric
uncertainties. The proof is straightforward and thus omitted. One can refer to [14] for
more details.

Lemma 2. The strong (dual) CCM condition for the uncertain system (1) is the same as the strong
(dual) CCM condition, i.e., (9) and (10), for the nominal system.

Remark 3. As a result of Lemma 2, a metric M(x) (dual metric W(x)) satisfying the condition (9)
and (10) for the nominal system (7) is always a CCM (dual CCM) for the true system (1).

Define D = {y ∈ Rm :
∥∥y
∥∥ ≤ bd}, where bd is introduced in Assumption 1.

Assumption 1 indicates d(t, x) ∈ D for any t ≥ 0 and x ∈ X . As mentioned in Section 2,
given a CCM and a desired trajectory x?(t) and u?(t) for a nominal system, a control law
can be constructed to ensure exponential convergence of the actual state trajectory x(t)
to the desired state trajectory x?(t). In practice, we have access to only the nominal dy-
namics (5) instead of the true dynamics to plan a trajectory x?(t) and u?(t). The following
lemma gives the condition when x?(t), planned using the nominal dynamics (5), is also a
feasible state trajectory for the true system.

Lemma 3. Given a desired trajectory x?(t) and u?(t) satisfying the nominal dynamics (5) with
x?(t) ∈ X , if

u?(t) ∈ U 	D, ∀t ≥ 0, (14)

then x?(t) is also a feasible state trajectory for the true system (1).

Proof. Define ū?(t) , u?(t) − d(t, x?(t)). Since u?(t) ∈ U 	 D and −d(t, x?(t)) ∈ D,
which is due to x?(t) ∈ X and Assumption 1, we have ū?(t) ∈ U . By comparing the
dynamics in (1) and (5), we conclude that x?(t) and ū?(t) satisfy the true dynamics (1) and
thus are a feasible state and input trajectory for the true system. �

Lemma 3 provides a way to verify whether a trajectory planned using the nominal
dynamics is a feasible trajectory for the true system in the presence of actuator limits. In the
absence of such limits, any feasible trajectory for the learned dynamics is also a feasible
trajectory for the true dynamics due to the particular structure of (1) associated with the
matched uncertainty assumption.

3.2. Robust Riemannian Energy Condition

Section 2 shows that, given a nominal system and a CCM for such a system, a control
law can be constructed via solving a QP problem (13) with a condition to constrain the
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decreasing rate of the Riemannian energy, i.e., condition (12). When considering the
uncertain dynamics in (1), the condition (12) becomes

γ>s (1, t)M(x(t))ẋ(t)− γ>s (0, t)M(x?(t))ẋ?(t) ≤ −λE(x?(t), x(t)), (15)

where ẋ(t) = f (x(t)) + B(x(t))(u(t) + d(x(t))) represents the true dynamics evaluated
at x(t), and ẋ?(t) = f (x?) + B(x?)u? as defined in (5). Several observations follow im-
mediately. First, it is clear that (15) is not implementable due to its dependence on the true
uncertainty d(x(t)) through ẋ(t). Second, if we could have access to the pointwise value of
d(x(t)) at each time t, (15) will become implementable even when we do not know the
exact functional representation of d(x). Third, if we could estimate the pointwise value of
d(x(t)) at each time t with a bound to quantify the estimation error, then we could derive
a robust condition for (15). Specifically, assume d(x(t)) is estimated as d̂(t) at each time t
with a uniform estimation error bound (EEB) δ, i.e.,

∥∥∥d̂(t)− d(x(t))
∥∥∥ ≤ δ, ∀t ≥ 0. Then, we

could immediately get the following sufficient condition for (15):

γ>s (1, t)M(x) ˙̌x(t)− γ>s (0, t)M(x?)ẋ? +
∥∥∥γ>s (1, t)M(x)B(x)

∥∥∥ δ ≤ −λE(x?, x), (16)

where
˙̌x(t) , f (x) + B(x)(u(t) + d̂(t)). (17)

Moreover, since M(x) satisfies the CCM condition (9), u(t) that satisfies (16) is guar-
anteed to exist for any t ≥ 0, regardless of the size of δ, if the input constraint set U is
sufficiently large. We term condition (16) the robust Riemannian energy (RRE) condition.

3.3. Disturbance Estimation with a Computable EEB

We now introduce a disturbance estimation scheme to estimate the pointwise value of
the uncertainty d(x) with a pre-computable EEB, which can be systematically improved by
tuning a parameter in the estimation law. The estimation scheme is based on the piecewise-
constant estimation (PWCE) law in [24], which was originally from [25]. The PWCE law
consists of two elements, namely a state predictor and a piecewise-constant update law.
The state predictor is defined as:

˙̂x(t) = f (x(t)) + B(x(t))u(t) + σ̂(t)− ax̃(t), x̂(0) = x(0), (18)

where x̃(t) , x̂(t)− x(t) is the prediction error, and a is an arbitrary positive constant.
The estimation, σ̂(t), is updated in a piecewise-constant way:

σ̂(t) = σ̂(iT), t ∈ [iT, (i + 1)T),

σ̂(iT) = − a
eaT − 1

x̃(iT),
(19)

where T is the estimation sampling time, and i = 0, 1, 2, · · · . Finally, the pointwise value of
d(x(t)) at time t is estimated as

d̂(t) = B†(x(t))σ̂(t), (20)

where B†(x(t)) is the pseudoinverse of B(x(t)). The following lemma establishes the EEB
associated with the estimation scheme in (18) and (19). The proof is similar to that in [24].
For completeness, it is given in Appendix A.

Lemma 4. Given the dynamics (1) subject to Assumption 1, and the estimation law in (18) and (19),
if x ∈ X and u ∈ U for any t ≥ 0, the estimation error can be bounded as
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∥∥∥d̂(t)−d(t, x(t))
∥∥∥ ≤ δ(t, T) ,

{
bd, ∀ 0 ≤ t < T,
α(T)maxx∈X B†(x), ∀ t ≥ T,

(21)

where

α(T) ,
(

2
√

nT(Ldφ + ld) + (1−e−aT)
√

nbd

)
max
x∈X

∥∥B(x)
∥∥+ 2

√
nTLBbd, (22)

φ , max
x∈X ,u∈U

∥∥ f (x) + B(x)u
∥∥+ bd max

x∈X

∥∥B(x)
∥∥ , (23)

with constants LB, Ld and bd from Assumption 1, and φ defined in (23). Moreover, limT→0 δ(t, T) = 0,
for any t ≥ T.

Proof. See Appendix A. �

Remark 4. Lemma 4 implies that theoretically, for t ≥ T, the disturbance estimation after a single
sampling interval can be made arbitrarily accurate by reducing T, which further indicates that the
conservatism with the RRE condition can be arbitrarily reduced after a sampling interval.

In practice, the value of T is subject to the limitations related to computational hard-
ware and sensor noise. Additionally, using a very small T tends to introduce high frequency
components in the control loop, potentially harming the robustness of the closed-loop sys-
tem, e.g., against time delay. This is similar to the use of a high adaptation rate in model
reference adaptive control schemes as discussed in [13]. Therefore, one should avoid the
use of a very small T for the sake of robustness unless a low-pass filter is used to filter
the estimated disturbance before fed into (16), as suggested by the L1 adaptive control
theory [13].

Remark 5. The estimation in [0, T) cannot be arbitrarily accurate. This is because the estimation
in [0, T) depends on x̃(0) according to (19). Considering that x̃(0) is purely determined by the
initial state of the system, x(0), and the initial state of the predictor, x̂(0), it does not contain any
information of the uncertainty. Since T is usually very small in practice, lack of a tight estimation
error bound for the interval [0, T) will not cause an issue from a practical point of view. Additionally,
the estimation of φ defined in (23) could be quite conservative. Further considering the frequent
use of Lipschitz continuity and inequalities related to matrix/vector norms in deriving the constant
α(T), α(T) can be overly conservative. Therefore, for practical implementation, one should leverage
some empirical study, e.g., performing simulations under a few user-selected functions of d(t, x)
and determining a bound for δ(t, T). In our experiments, we found the theoretical bound δ(t, T)
computed according to (21) was usually at least 10 and could be 104 times more conservative.

3.4. Exponentially Convergent Trajectory Tracking

Based on the review of contraction control in Section 2 and the discussions in
Sections 3.2 and 3.3, the control law can be obtained by solving the following QP problem
at each time t:

u(t) = argmin
k∈Rm

∥∥k− u?(t)
∥∥2 (24)

subject to

γ>s (1, t)M(x) ˙̌x− γ>s (0, t)M(x?)ẋ? +
∥∥∥γ>s (1, t)M(x)B(x)

∥∥∥ δ(t, T) ≤ −λE(x?, x), (25)

where ˙̌x(t) = f (x) + B(x)(k + d̂(t)), according to (17), depends on d̂(t), which is from
the disturbance estimation law defined by (18) to (20), δ(t, T) as defined in (21), and
ẋ?(t) = f (x?) + B(x?)u? as defined in (5). Similar to (13), problem (24) is a point-
wise min-norm control problem and has an analytic solution [23]. Specifically, denot-
ing φ0(t, x?, x) , γ>s (1, t)M(x)( f (x) + B(x)(u?(t) + d̂(t)) +

∥∥∥γ>s (1, t)M(x)B(x)
∥∥∥ δ(t, T)−
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γ>s (0, t)M(x?)ẋ? + λE(x?, x) and φ1(x?, x) , B>(x)M(x)γs(1, t), (25) can be written as
φ0(t, x?, x) + φ>1 (x?, x)(k− u?(t)) ≤ 0, and the solution for (24) is given by

u(t) = k?=


u?(t) if φ0(t, x?, x)≤0,

u?(t)−φ0(t, x?, x)φ1(x?, x)∥∥φ1(x?, x)
∥∥2 if φ0(t, x?, x)>0.

(26)

To move forward with analysis, we need to verify that when x(t), x?(t) ∈ X , the con-
trol signal u(t) resulting from solving the QP problem (24) satisfies u(t) ∈ U . Deriving
verifiable conditions to ensure this set bound is outside the scope of this paper and will be
addressed as future work. We are now ready to state the main result of the paper.

Theorem 2. Given an uncertain system represented by (1) satisfying Assumption 1, assume that
there exists a metric W(x) such that for all x ∈ X , (10) holds and α1 I ≤ M(x) = W−1(x) ≤ α2 I
holds for positive constants α1 and α2. Furthermore, suppose that a nominal trajectory (x?(·), u?(·))
planned using the nominal dynamics (5) and the initial actual states x(0) satisfy (14) and

Ω(t),

{
y∈Rn : y ≤

∥∥x?(t)
∥∥+√α2

α1

∥∥x(0)−x?(0)
∥∥ e−λt

}
⊂ X , (27)

for any t ≥ 0. Then, if u(t) from solving (24) satisfies u(t) ∈ U for any t ≥ 0, the control
law constructed by solving (24) ensures x(t) ∈ X for any t ≥ 0, and furthermore, universally
exponentially stabilizes the uncertain system (1) in the sense of Definition 1 with R =

√
α2
α1

, i.e.,

∥∥x(t)− x?(t)
∥∥ ≤ √α2

α1

∥∥x(0)− x?(0)
∥∥ e−λt, ∀t ≥ 0. (28)

Proof. We use contradiction to show x(t) ∈ X for all t ≥ 0. Assume this is not true.
According to (27), x(0) ∈ X . Since x(t) is continuous, there must exist a time τ such that

x(t) ∈ X , ∀t ∈ [0, τ−] and x(τ) /∈ X . (29)

Now let us consider the system evolution in [0, τ−]. Since u(t) ∈ U by assumption and
x(t) ∈ X for any t in [0, τ−], the EEB in (21) holds in [0, τ−]. As a result, the control law ob-
tained from solving (24) ensures satisfaction of the RRE condition (16) and thus satisfaction
of the Riemannian energy condition (15) for the uncertain system (1), and thereby univer-
sally exponentially stabilizes the uncertain system (1) in [0, τ−], in the sense of Definition 1
with R =

√
α2
α1

, according to Theorem 1. On the other hand, satisfaction of (14) implies

that x?(t) is a feasible state trajectory for the uncertain system (1) according to Lemma 3.
Further considering Theorem 1, we have

∥∥x(t)
∥∥ ≤∥∥x?(t)

∥∥+√ α2
α1

∥∥x(0)− x?(0)
∥∥ e−λt for

any t in [0, τ−]. Due to (27), the preceding inequality indicates that x(t) remains in the
interior of X for t in [0, τ−]. This, together with the continuity of x(t), immediately implies
x(τ) ∈ X , which contradicts (29). Therefore, we conclude that x(t) ∈ X for all t ≥ 0.
From the development of the proof, it is clear that with the control law given by the solution
of (24), the UES of the closed-loop system in the sense of Definition 1 with R =

√
α2
α1

for all
t ≥ 0 is achieved, which is mathematically represented by (28). The proof is complete. �

3.5. Discussion

Theorem 2 essentially states that under certain assumptions, the proposed controller
guarantees exponential convergence of the actual state trajectory x(t) to a desired one x?(t).
With the exponential guarantee, if the actual trajectory meets the desired trajectory at certain
time τ, then these two trajectories will stay together afterward. While the exponential
convergence guarantee is stronger than the performance guarantees provided by existing
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adaptive CCM-based approaches [14,15] that deal with similar settings (i.e., matched
uncertainties), the proposed method requires the knowledge of the Lipschitz bound of the
uncertainty d(t, x) and the input matrix function B(x) to be in a compact set known a priori
(see Assumption 1), and the actual control inputs to stay in a compact set known a priori,
which cannot be verified at this moment due to the lack of a bound on the control inputs.
These requirements are not needed in [14,15].

The approach here is related to the robust control Lyapunov-based approaches [23]
which provide robust stabilization around an equilibrium point (as opposed to a trajectory
considered in this paper) in the presence of uncertainties.

Remark 6. The exponential convergence guarantee stated in Theorem 2 is based on a continuous-
time implementation of the controller. In practice, a controller is normally implemented on a digital
processor or controller with a fixed sampling time. As a result, the property of exponential conver-
gence may be slightly violated.

Computational cost: As can be seen from Sections Section 2 and 3.2–3.4, computation of
the control signal at each time t includes three steps: (i) updating the estimated disturbance
d̂(t) via (18) to (20), (ii) computing the geodesic γ(·, t) connecting the actual and nominal
states (see the discussion below (11)), and (iii) computing the control signal u(t) via (26).
The computation costs of steps (i) and (iii) are quite low as they only involve integration
and algebraic calculation. In comparison, step (ii) has a relatively high computational
cost as it necessitates solving a nonlinear programming (NLP) problem. However, since
the NLP problem does not involve dynamic constraints, it is much easier to solve than
a nonlinear model predictive control (MPC) problem [21]. Following [21], such a problem
can be efficiently solved by applying a pseudospectral method.

4. Simulation Results

In this section, we illustrate the performance of our proposed tracking controller based
on the RRE condition and disturbance estimation, denoted as DE-CCM, using aircraft and
planar quadrotor examples. For both examples, we perform comparisons of DE-CCM
with standard CCM controllers that ignore the uncertainties and adaptive CCM (Ad-CCM)
controllers considering parametric uncertainties designed using the approach in [14]. All
the computations and simulations were performed in Matlab R2021b.

4.1. Longitudinal Dynamics of an Aircraft

We first implement our method on the simplified pitch dynamics of an aircraft bor-
rowed from [26]:

ẋ ,

θ̇
α̇
q̇

 =

 q
q− L̄(α)

−kqq + M̄(α)

+

0
0
1

u, (30)

where θ, α and q are the pitch angle (in rad), angle of attack (in rad), and pitch rate (in
rad/s). Here L̄(α) and M̄(α) are aerodynamic lift and moment, respectively. Using the
flat plat theory, these two aerodynamic terms are approximated by L̄(α) = 0.8 sin(2α) and
M̄(α) = −lα L̄(α) with unknown parameters kq ∈ [0.1 0.8] and lα ∈ [−3 1]. For all the
simulations, the true values are chosen to be kq = 0.8, lα = −3, while the nominal values
of these parameters used in designing all the tested controllers are limited to knom

q = 0.2,
lnom
α = −1. As a result, the dynamics can be recast in the form of (30) with f (x) = [q, q−

L̄(α),−knom
q q− lnom

α L̄(α)]>, B(x) = [0, 0, 1]> and d(t, x) = −(kq− knom
q )q− (lα− lnom

α )L̄(α).
The control objective is to drive the system from nominal initial states [0, 0, 0]T to terminal
states [180◦, 0, 0]T . For CCM search and trajectory planning, the following constraints are
enforced: x ∈ X = [−10◦, 180◦]× [−5◦, 40◦]× [−10, 50]◦/s, u ∈ U = [−15, 15]◦/s2.

We set the convergence rate λ to 1. By gridding the set of α and evaluating the con-
straints (9) in those grid points, we found a CCM W(x) as a quadratic function of α with the
SPOT toolbox [27] (to formulate the convex optimization problem) and Mosek solver [28].
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Additionally, the constants α1 and α2 in (28) such that α1 I ≤ M(x) = W−1(x) ≤ α2 I for all
x ∈ X were found to be α1 = 0.1 and α2 = 396.5. We planned a nominal trajectory (x?(·),
u?(·)) using OptimTraj [29,30], to drive the system from the initial states [0, 0, 0]T to the
terminal states [180◦, 0, 0]T , while minimizing the task completion time (Ta) and energy
consumption characterized by the cost function J =

∫ Ta
0 u(t)2dt + 5Ta. For simulation,

OPTI [31] and Matlab fmincon solvers were used to solve the geodesic optimization prob-
lem (see Section 2). The initial states of the actual system were chosen to be [5◦, 5◦, 0]T ,
slightly deviated from that planned ones to better illustrate the tracking performance. We
implemented our proposed DE-CCM, Ad-CCM from [14] and a standard CCM which
neglects all the uncertainty. For Ad-CCM design, the adaptation gain was chosen to be
diag([103, 103]) to achieve a relatively good tracking result, while further increasing it did
not help much with the tracking performance. The design procedure for Ad-CCM in [14]
requires a parametric structure for the uncertainty, which is given by

d(t, x) =
[
q L̄(α)

]
︸ ︷︷ ︸

∆(t,x)

[
knom

q − kq

lnom
α − lα

]
︸ ︷︷ ︸

θ

=
[
q 0.8 sin(2α)

][−0.6
2

]
, (31)

where ∆(t, x) is the known base function and θ is the unknown parameter vector to be esti-
mated by the adaptive law proposed in [14]. The control signals under all three controllers
were updated at 200 Hz.

It is easy to notice from Assumption 1 that LB = 0 and ld = 0 since the input matrix
is constant, and the uncertainty is time-invariant. We can also verify that the disturbance
is bounded by bd = 2.12 and has a Lipschitz constant Ld = 3.80. By gridding the space X
and making use of the control input bound, the system derivative can also be bounded by
a constant φ = 2.11. According to (21), if we want to achieve an EEB δ(t, T) = 0.05 for all
t ≥ T, the maximum value for the estimation sample time T is 7.76× 10−4 s. However,
as mentioned in Remark 5, the way to compute the EEB is quite conservative. In the
simulations we found that Ts = 0.005 was more than enough to ensure the EEB and
therefore used Ts = 0.005 for implementing the DE-CCM controller.

As shown in Figures 2 and 3, due to ignoring the uncertainties, CCM yielded a
large tracking error between 2 and 6 s. The state trajectories under Ad-CCM had some
oscillations, which lasted roughly up to 8 s. All three states yielded by DE-CCM achieve
good tracking performance without large deviations from the planned trajectories, unlike
the performance yielded by Ad-CCM and CCM. From Figure 3 we notice that the tracking
error represented by x − x? under DE-CCM monotonically decreases and achieves the
smallest steady-state error. The small non-zero tracking error at the end under DE-CCM,
which is inconsistent with the performance guarantee in (25), is due to the limited control
update frequency, while the performance guarantee in Lemma 4 holds under continuous
update of the control signal, i.e., corresponding to an infinitely high update frequency.
Table 1 shows the mean squared error (MSE) for state trajectory tracking defined by

MSE =
1
N

N

∑
i=1

∥∥x(ti)− x?(ti)
∥∥2 , (32)

where N is the number of data points, under DE-CCM, Ad-CCM and CCM. We observe that
DE-CCM outperforms CCM and Ad-CCM in terms of MSE by 54% and 2%, respectively.
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Figure 2. Trajectory tracking performance of different controllers.
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Figure 3. Tracking error under different controllers.

Table 1. MSE for state trajectory tracking for the aircraft example.

CCM Ad-CCM DE-CCM

MSE 2.994× 10−3 1.397× 10−3 1.369× 10−3
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From Figure 4, we observe that the input of DE-CCM is smoother than Ad-CCM.
The small oscillations between 2 s to 8 s in DE-CCM input are due to the finite tolerance in
the geodesic optimization. Decreasing the tolerance and the sample time will reduce the
oscillations but request more iterations (and thus more time) to compute the control signal
at each time step.

0 2 4 6 8 10 12

0

10

20

Figure 4. Control inputs yielded by different controllers.

4.2. Planar Quadrotor

A planar quadrotor system is borrowed from [16]. The state vector is defined as
x = [px, pz, φ, vx, vz, φ̇]>, where px and pz are the positions in x and z directions, respec-
tively, vx and vz are the slip velocity (lateral) and the velocity along the thrust axis in the
body frame of the vehicle, φ is the angle between the x direction of the body frame and
the x direction of the inertia frame. The input vector u = [u1, u2] contains the thrust force
produced by each of the two propellers. The dynamics of the vehicle are given by

ẋ =



˙px
˙pz
φ̇

˙vx
˙vz
φ̈


=



vx cos(φ)− vz sin(φ)
vx sin(φ) + vz cos(φ)

φ̇
vzφ̇− g sin(φ)
−vxφ̇− g cos(φ)

0


+



0 0
0 0
0 0
0 0
1
m

1
m

l
J −

l
J


(u + d(t, x)),

where m and J denote the mass and moment of inertia about the out-of-plane axis, and l is
the distance between each of the propellers and the vehicle center, and d(t, x) denotes the
unknown disturbances exerted on the propellers. The parameters were set as m = 0.486 kg,
J = 0.00383 Kg m2, and l = 0.25 m. The uncertainty d(t, x) was set to be d(t, x) =
0.15(v2

x + v2
z)[−1+ 0.3 sin(2t);−1+ 0.3 cos(2t)]. We imposed the following constraints: x ∈

X , [0, 10]× [0, 10]× [−π
3 , π

3 ]× [−2, 2]× [−1,−1]× [−π
3 , π

3 ], u ∈ U , [0, 3
2 mg]× [0, 3

2 mg].
When searching for CCM, we parameterized the CCM W by φ and vx and imposed

the constraint W ≥ 0.01I. The convergence rate λ was chosen to be 0.8. More details about
synthesizing the CCM can be found in [17]. For estimating the disturbance using (18) to (20),
we set a = 10. It is easy to verify that Ld = 1.23, ld = 0.64, bd = 1.38, and LB = 0 (due to
the fact that B is constant) satisfy (2). By gridding the space X , the constant φ in (23) can be
determined as φ = 584.6. According to (21), if we want to achieve an EEB δ(t, T) = 0.1 for
all t ≥ T, then the estimation sampling time needs to satisfy T ≤ 6.42× 10−7 s. However,
as noted in Remark 5, the EEB computed according to (21) could be overly conservative.
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In the simulations, we found that the estimation sampling time of 0.002 s was more than
enough to ensure the desired EEB and therefore simply set T = 0.002 s.

We consider the task of navigation from (2, 0) to (8, 8) while avoiding three obstacles
depicted by black circles in Figure 5. A nominal trajectory (x?(·), u?(·)) was generated
using OptimTraj [29] to minimize the cost J =

∫ Ta
0

∥∥u(t)
∥∥2 dt + 5Ta, where Ta is the arrival

time. OPTI [31] and Matlab fmincon solvers were used to solve the geodesic optimization
problem (see Section 2). The actual start point was set to be (0, 0), which was different from
the planned start point, to reveal the trajectory convergence pattern.

0 2 4 6 8
0

1

2

3

4

5

6

7

8

Figure 5. Trajectory tracking performance of different controllers.

For comparison, we also designed a standard CCM controller by completely ignoring
the uncertainty and two adaptive CCM (Ad-CCM) controllers following the approach
in [14]. To apply the approach in [14] which can only handle parametric uncertainties, we
parameterized the uncertainty as

d(t, x) =

[
v2

x(−1 + 0.3 sin(2t)) v2
z(−1 + 0.3 sin(2t))

v2
x(−1 + 0.3 cos(2t)) v2

z(−1 + 0.3 cos(2t))

]
︸ ︷︷ ︸

∆(t,x)

[
0.15
0.15

]
︸ ︷︷ ︸

θ

, (33)

where ∆(t, x) is the basis function that is assumed to be known, and θ is th vector of
unknown parameters. With the parametric structure (33), we designed two adaptive CCM
controllers using Γ = 10 and Γ = 100, respectively, where Γ denotes the adaptive gain.
Figure 5 shows the planned and actual trajectories under the CCM, Ad-CCM, and our
proposed controller based on the RRE condition and disturbance estimation, denoted as
DE-CCM, while Figures 6 and 7 show the control inputs and Riemannian energy. One can
see that the actual trajectories yielded by the CCM controller deviated quite a lot from the
planned ones and collided with one obstacle. On the other hand, the actual trajectories
yielded by the DE-CCM controller converged to the desired trajectory as expected and
almost overlapped with it afterward. In fact, the slight deviations of actual trajectories from
the desired ones under the DE-CCM controller were due to the finite step size associated
with the ODE solver used for the simulations (see Remark 6). Table 2 shows the MSE for
state trajectory tracking defined in (32). We observe that DE-CCM outperforms CCM and
Ad-CCM in terms of MSE by 46% and 14%, respectively.
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Figure 6. Riemannian energy under different controllers. E0 , E(x?(0), x(0)).
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Figure 7. Control inputs yielded by different controllers.

Table 2. MSE for state trajectory tracking for the planar quadrotor example. For Ad-CCM, only the
result for Γ = 100, which corresponds to better tracking performance compared to Γ = 10, is included.

CCM Ad-CCM (Γ = 100) DE-CCM

MSE 1.175 0.738 0.634

From Figure 6, one can see that the magnitude of E(x?, x) under the RD-CCM controller
decreased exponentially, and the magnitude was bounded by the curve E(x?(0), x(0))e−2λt

from above except at the very end when the energy is close to zero. In comparison, Ad-
CCM with Γ = 100 yielded similar tracking performance to DE-CCM, while the tracking
performance of Ad-CCM with Γ = 10 was relatively worse and characterized by larger
oscillations. Additionally, from Figure 7, one can see that the control inputs generated
by both of the Ad-CCM controllers have high-frequency oscillations before 3 s, which
is undesired for practical deployment. Finally, Figure 8 shows the actual and estimated
disturbances as well as the estimation error. One can see that the estimated disturbance is
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quite close to the actual one for both channels, and the EEB of 0.1 is respected throughout
the simulation.

0 1 2 3 4 5 6 7 8 9 10

0

0 1 2 3 4 5 6 7 8 9 10
0

0.02

0.04

0.06

0.08

0.1

Figure 8. Actual and estimated disturbances (top) and the estimation error (bottom). Note that di

and d̂i (i = 1, 2) represent the ith element of d (actual disturbance) and d̂ (estimated disturbance),
respectively. The blue dashed line in the bottom plot denotes the EEB used in computing the control
inputs.

5. Conclusions

This paper presents a robust trajectory tracking controller with exponential conver-
gence for uncertain nonlinear systems based on control contraction metrics (CCM) and
disturbance estimation. The controller uses a disturbance estimator to estimate the point-
wise value of the uncertainty with a pre-computable estimation error bound (EEB). The es-
timated disturbance and the EEB are then incorporated into a robust Riemannian energy
condition, which guarantees exponential convergence of actual trajectories to desired ones.
The efficacy of the proposed controller is validated in simulations. In particular, the pro-
posed controller outperforms an existing adaptive CCM controller in terms of tracking
performance by 2% for the aircraft example and 14% for the planar quadrotor example,
while not needing to know the basis functions to parameterize the uncertainties that are
needed by the adaptive CCM controller.

This paper considers only matched uncertainties, which are added to the system
through the same channels as control inputs. In the future, we would like to address
unmatched uncertainties that widely exist in practical systems. Additionally, we would
like to experimentally validate the proposed controller on real hardware.
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Appendix A

Proof of Lemma 4: Hereafter, we use the notations Zi and Zn
1 to denote the integer sets

{i, i + 1, i + 2, · · · } and {1, 2, · · · , n}, respectively. Additionally, for notation brevity, we
define σ(t) , B(x(t))d(x(t)). From (1) and (18), the prediction error dynamics are obtained
as

˙̃x(t) = −ax̃(t) + σ̂(t)− σ(t), x̃(0) = 0. (A1)

Note that σ̂(t) = 0 (and thus d̂(t) = 0 due to (20)) for any t ∈ [0, T) according to (19).
Further considering the bound on d(t, x) in (4), we have∥∥∥d̂(t)− d(t, x(t))

∥∥∥ ≤ bd, ∀t ∈ [0, T). (A2)

We next derive the bound on
∥∥σ̂(t)− σ(t)

∥∥ for t ≥ T. For any t ∈ [iT, (i + 1)T)
(i ∈ Z0), we have

x̃(t) = e−a(t−iT) x̃(iT) +
∫ t

iT
e−a(t−τ)(σ̂(τ)− σ(τ))dτ.

Since x̃(t) is continuous, the preceding equation implies

x̃((i + 1)T) = e−aT x̃(iT) +
∫ (i+1)T

iT
e−a((i+1)T−τ)dτσ̂(iT)−

∫ (i+1)T

iT
e−a((i+1)T−τ)σ(τ)dτ

= e−aT x̃(iT)+
1− e−aT

a
σ̂(iT)−

∫ (i+1)T

iT
e−a((i+1)T−τ)σ(τ)dτ

= −
∫ (i+1)T

iT
e−a((i+1)T−τ)σ(τ)dτ, (A3)

where the first and last equalities are due to the estimation law (19).
Since x(t) is continuous, σ(t) (= B(x)d(x)) is also continuous given Assumption 1.

Furthermore, considering that e−a((i+1)T−τ) is always positive, we can apply the first mean
value theorem in an element-wise manner (Note that the mean value theorem for definite
integrals only holds for scalar valued functions) to (A3), which leads to

x̃((i + 1)T) =−
∫ (i+1)T

iT
e−a((i+1)T−τ)dτ[σj(τ

∗
j )] = −

1
a
(1− e−aT)[σj(τ

∗
j )], (A4)

for some τ∗j ∈ (iT, (i + 1)T) with j ∈ Zn
1 and i ∈ Z0, where σj(t) is the j-th element of

σ(t), and
[σj(τ

∗
j )] , [σ1(τ

∗
1 ), · · · , σn(τ

∗
n )]
>.

The estimation law (19) indicates that for any t in [(i + 1)T, (i + 2)T), we have σ̂(t) =
− a

eaT−1 x̃((i + 1)T). The preceding equality and (A4) imply that for any t in [(i + 1)T, (i +
2)T) with i ∈ Z0, there exist τ∗j ∈ (iT, (i + 1)T) (j ∈ Zn

1 ) such that

σ̂(t) = e−aT[σj(τ
∗
j )]. (A5)

Note that∥∥∥σ(t)−[σj(τ
∗
j )]
∥∥∥≤√n

∥∥∥σ(t)−[σj(τ
∗
j )]
∥∥∥

∞
=
√

n
∣∣∣σj̄t(t)−σj̄t(τ

∗
j̄t
)
∣∣∣ ≤√n

∥∥∥σ(t)−σ(τ∗j̄t )
∥∥∥ , (A6)
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where j̄t = arg maxj∈Zn
1

∣∣∣σj(t)− σj(τ
∗
j )
∣∣∣. Similarly,

∥∥∥[σj(τ
∗
j )]
∥∥∥ ≤√n

∥∥∥[σj(τ
∗
j )]
∥∥∥

∞
=
√

n
∣∣∣∣σĵ(τ

∗
ĵ )

∣∣∣∣ ≤ √n
∥∥∥∥σ(τ∗ĵ )

∥∥∥∥ ≤ √nbd max
x∈X

∥∥B(x)
∥∥ , (A7)

where ĵ = arg maxj∈Zn
1

∣∣∣σj(τ
∗
j )
∣∣∣, and the last inequality is due to the fact

∥∥B(x)d(t, x)
∥∥ ≤∥∥B(x)

∥∥∥∥d(t, x)
∥∥ and (4). Therefore, for any t ∈ [(i + 1)T, (i + 2)T) (i ∈ Z0), we have∥∥σ(t)−σ̂(t)

∥∥ =
∥∥∥σ(t)−e−aT [σj(τ

∗
j )]
∥∥∥ ≤∥∥∥σ(t)−[σj(τ

∗
j )]
∥∥∥+(1−e−aT)

∥∥∥[σj(τ
∗
j )]
∥∥∥

≤
√

n
∥∥∥σ(t)−σ(τ∗j̄t )

∥∥∥+(1−e−aT)
√

nbd max
x∈X

∥∥B(x)
∥∥ , (A8)

for some τ∗j̄t
∈ (iT, (i + 1)T), where the equality is due to (A5), and the last inequality is

due to (A6) and (A7). The dynamics in (1) indicates that

‖ẋ‖ ≤
∥∥ f (x) + B(x)u

∥∥+∥∥B(x)
∥∥∥∥d(t, x)

∥∥ ≤ φ, (A9)

where φ is defined in (23). As a result, the inequality (A9) implies that∥∥∥x(t)− x(τ∗j̄t )
∥∥∥ ≤ ∫ t

τ∗j̄t

∥∥ẋ(τ)
∥∥ dτ ≤

∫ t

τ∗j̄t

φdτ = φ(t− τ∗j̄t ) ≤ 2φT, (A10)

where the last inequality is due to the fact that

t ∈ [(i + 1)T, (i + 2)T) and τ∗j̄t ∈ (iT, (i + 1)T) (A11)

Therefore, we have∥∥∥σ(t)−σ(τ∗j̄t )
∥∥∥ =

∥∥∥B(x(t))
(

d(t, x(t))−d(τ∗j̄t , x(τ∗j̄t ))
)
+
(

B(x(t))−B(x(τ∗j̄t ))
)

d(τ∗j̄t , x(τ∗j̄t ))
∥∥∥

≤
∥∥B(x(t))

∥∥∥∥∥d(t, x(t))−d(τ∗j̄t , x(τ∗j̄t ))
∥∥∥+ ∥∥∥B(x(t))− B(x(τ∗j̄t ))

∥∥∥∥∥∥d(τ∗j̄t , x(τ∗j̄t ))
∥∥∥

≤
(

Ld

∥∥∥x(t)− x(τ∗j̄t )
∥∥∥+ ld(t− τ∗j̄t )

)
max
x∈X

∥∥B(x)
∥∥+ LB

∥∥∥x(t)− x(τ∗j̄t )
∥∥∥bd

≤ 2T
(
(Ldφ + ld)max

x∈X

∥∥B(x)
∥∥+ LBbd

)
, (A12)

where the second inequality is due to Assumption 1 and the last inequality is due to (A10)
and (A11). Finally, plugging (A12) into (A8) leads to

∥∥σ(t)−σ̂(t)
∥∥ ≤ 2

√
nT
(
(Ldφ + ld)max

x∈X

∥∥B(x)
∥∥+ LBbd

)
+(1−e−aT)

√
nbd max

x∈X

∥∥B(x)
∥∥

=
(

2
√

nT(Ldφ + ld) + (1−e−aT)
√

nbd

)
max
x∈X

∥∥B(x)
∥∥+ 2

√
nTLBbd (A13)

= α(T), (A14)

for any t ≥ T. From (A2) and (A14) and the relation between σ̂(t) and d̂(t) in (20), we
arrive at (21). Considering Assumption 1 and the assumption that X and U are compact,
the constants involved in the definition of α(T) in (22) are all finite. As a result, we have
limT→0 α(T) = 0, which further indicates that limT→0 δ(t, T) = 0, for any t ≥ T. The proof
is complete. �
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