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Abstract: This study proposes a simple convolutional neural network (CNN)-based model for vehicle
classification in low resolution surveillance images collected by a standard security camera installed
distant from a traffic scene. In order to evaluate its effectiveness, the proposed model is tested on
a new dataset containing tiny (100 × 100 pixels) and low resolution (96 dpi) vehicle images. The
proposed model is then compared with well-known VGG16-based CNN models in terms of accuracy
and complexity. Results indicate that although the well-known models provide higher accuracy, the
proposed method offers an acceptable accuracy (92.9%) as well as a simple and lightweight solution
for vehicle classification in low quality images. Thus, it is believed that this study might provide
useful perception and understanding for further research on the use of standard low-cost cameras to
enhance the ability of the intelligent systems such as intelligent transportation system applications.

Keywords: vehicle classification; convolutional neural network; deep learning; low resolution;
low quality

1. Introduction

The classification of road vehicles is one of the important challenges in the Intel-
ligent Transportation System (ITS) applications such as roadway tolling, road surveil-
lance/planning, traffic safety, autonomous driving, and parking lot management sys-
tems [1–3]. Over the years, numerous studies have been proposed in the literature to ease
this challenge. Mainly, vehicle classification systems can be grouped into two categories,
namely sensor-based methods [4–8] and vison-based methods [9]. In sensor-based methods,
typically, the different types of sensors such as magnetic sensors [4,5], microwave radar
sensors [6], and Anisotropic Magnetoresistive Sensors (AMR) [7,8] are used to classify the
vehicles. However, the methods based on these sensor technologies have some limitations
and difficulties regarding costs, deployment, and accuracy. On the other hand, vision-based
methods rely on the use of image sequences of traffic scenes obtained by a camera [9].
Vison-based systems provide several advantages when compared with sensor-based meth-
ods. One of the important advantages is related to the ease of camera installation, which
significantly reduces the cost and difficulties in the system design, deployment, and mainte-
nance. Moreover, reliable data collected by the automated system can lead to more efficient
classification performance.
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In recent years, developing vision-based vehicle classification methods using machine
learning (ML) has attracted many researchers, as it offers an efficient and adaptable ap-
proach that can fulfil the requirements of growing ITS applications. In this context, a large
number of works that apply ML methods for vision-based vehicle classification have been
proposed so far [10–25]. In [10], a method for vehicle image classification using neural
network (NN) with conditional adaptive distance is presented. The vehicle classification
method based on the use of multi-class support vector machine (SVM) is proposed in [11].
In [12], another a vehicle classification method that adopts fuzzy support vector machine
is provided. In [13], AdaBoost method is used for vehicle classification. Another classifi-
cation method using semisupervised convolutional neural network (CNN) is presented
in [14]. In [15], a progressive CNN architecture is used for vehicle classification. Similarly,
a CNN-based vehicle type classification system is proposed in [16]. Moreover, a vehicle
classification from the CNN pre-trained dataset is presented in [17]. Additionally, a simple
algorithm in which a deep CNN model is represented for vehicle classification is provided
in [18]. In [19], a framework for vehicle classification using deep learning neural network
(Inception-v3 model) is presented. Another study that uses CNN for vehicle classification
is proposed in [20]. Furthermore, a real-time vehicle type classification system based on
Faster Region-convolutional neural networks (Faster R-CNN) is presented in [21]. Apart
from this, an improved Faster R-CNN method-based vehicle classification is also presented
in [22]. In [23], a vehicle classification and counting method based on CNN models is
proposed. In [24], vehicle classification by stacking ensemble of three deep neural networks
is presented. A deep learning-based object detection algorithm (SSD: Single Shot MultiBox
Detector) is also proposed for vehicle classification in [25]. It is important to note that
although various classifiers have been used in these works, CNN retains its popularity due
to its superior performance on the large-scale image datasets.

In ITS applications, surveillance or monitoring cameras, which provide high quality
videos/images in terms of frame rate or resolution, are mostly preferred for real-time
monitoring. The camera view is set to the region of interest (ROI) such as a traffic scene, a
road, or a highway. However, the system cost is one of the major concerns in the deployment
of ITS applications. On the other hand, apart from high level ITS applications, typical low-
cost traffic surveillance cameras can be employed in low-cost traffic monitoring systems, as
they are mostly used in third world countries. Nevertheless, this type of cameras usually
provides lower image resolution quality, which leads to less pattern information because
of low signal-to-noise ratio (SNR). Particularly, when the images of distant vehicles are
concerned, the classification becomes quite difficult, as such types of images are tiny and
often low resolution.

1.1. Related Work

In order to deal with the aforementioned challenges, researchers have started to
investigate the implementation of deep learning approaches based on CNN in recent
years [26–28]. In [26], a CNN-based vehicle detection and classification system using a low
quality real-time monitoring camera is proposed. To evaluate the applicability of CNN
in real-time applications, detection and classification execution time are comparatively
assessed by using both the CPU and GPU. The study presented in [27] proposes another
method based on Faster R-CNN architecture to detect and classify the distant vehicles in
real-time applications. The performance of the design proposed in the study is assessed
under different weather conditions. Moreover, in [28], the problem of low resolution in
classifying tiny objects is investigated. To solve this problem, a method that employs
generative adversarial network (GAN) with two CNNs is proposed. In the proposed
method, high resolution images from low resolution images are generated to provide more
correct images for the classifier.

As can be deduced from the brief discussion above, only a few studies exist on the
development of deep learning-based vehicle classification methods for low quality images.
It is worth noting that the data used in these studies are collected by monitoring cameras
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with a depression angle view and/or dashcam view, where the camera view is set to
ROI. Additionally, in the studies, the cameras are not distant enough from the ROI. In
this context, to the best of the authors’ knowledge, there has been no published work
regarding deep learning-based vehicle classification for low quality images collected by a
low resolution surveillance camera with a wide angle view, which is installed distant from
the ROI and used for security purposes rather than traffic monitoring.

1.2. Contributions

This article is devoted to address a concern regarding how standard cameras, which
are deployed in any place and used for different purposes rather than traffic monitoring, can
be utilized to increase the capabilities of intelligent systems such as ITS applications. In this
context, the main idea is to extract meaningful insights from the recordings of a particular
location. Thus, as a case study, we aimed at developing a simple but accurate CNN-based
model for vehicle classification in low resolution surveillance images (96 dpi) collected by
a standard security camera installed distant from the ROI. To this end, firstly, a dataset
containing low resolution vehicle images (4800 images) cropped from the surveillance
video frames is created [29]. In order to classify the vehicles, a CNN-based model built
from scratch is proposed. The performance of the proposed model is then compared
with the well-known and efficient models such as the VGG16 pre-trained model and the
VGG16 pre-trained fine-tuning model in terms of the accuracy and complexity. From
the comparison results, it is reported that the VGG16 fine-tuning model provides higher
accuracy (99.2%) in vehicle classification for low quality images. However, although the
proposed model provides an acceptable accuracy (92.9%), it is simple and lightweight
due to the lesser number of layers (nine layers) and parameters (around 17 k) used in its
architecture. Moreover, the proposed model provides faster training time (6 min). These
advantages make the proposed model as energy efficient as the other well-known VGG16
models in practice. Therefore, in a broad sense, it is shown that vehicle classification is
possible even with a small dataset containing low resolution surveillance images collected
by a standard surveillance camera. Additionally, the proposed model is a good candidate
for the classification of vehicles with low quality images in terms of size and resolution.

As a summary, the main contributions of this study are listed as follows:

(a) A new dataset containing tiny and low quality vehicle images collected by a standard
security camera, which is installed distant from the ROI, is created (imperfections on
the camera and its installation are introduced together as per typical ITS application).

(b) A novel CNN model is developed for the classification of low quality vehicle images,
and its accuracy is compared with well-known CNN models.

(c) The proposed model is shown to achieve an acceptable accuracy with its lightweight
solution even if a small dataset containing low resolution surveillance images is used.

The rest of the paper is organized as follows. In the following section, the proposed
model and other models used for the performance comparison are presented. In Section 3,
experiments carried out within the context of the study are described. Experimental results
and discussions are provided in Section 4. Finally, the paper concludes in Section 5.

2. Models for Classifying Low Quality Vehicle Images
2.1. The Proposed Model

The architecture of the proposed model is shown in Figure 1. As shown in the figure,
in the first stage of the architecture, which corresponds to the feature extraction network,
two convolutional layers (Conv2D) and four max pooling layers (MaxPool2D) are used.
Each of the Conv2d layers has 16 filters with 5 × 5 filter size, and both layers utilize Rectifier
Linear Unit (ReLU) as the activation function. Each of the MaxPool2D layers, on the other
hand, has 2 × 2 filter size and a stride value of 2.



Sensors 2022, 22, 4740 4 of 12

Sensors 2022, 22, x FOR PEER REVIEW 4 of 12 
 

 

is used to randomly drop out the nodes, where the dropout rate is set to be 0.3 (30%). It 
should be noted that the main motivation to select the parameters both in fully connected 
layer and dropout layer is to prevent the model from overfitting. In the last stage of the 
architecture, there is a final fully connected layer that consists of six nodes (classes) for 
classification using Softmax activation. 

 
Figure 1. Architecture of the proposed model. 

2.2. VGG16 Pre-Trained Model 
The VGG16 is a well-known CNN architecture and widely used in many deep learn-

ing image classification techniques [30]. Due to its ease of implementation, the VGG16 
retains its popularity in learning applications. Basically, a VGG16 network is trained on a 
dataset called as ImageNet, which contains more than 14 million images. It is then obvious 
that the use of this pre-trained network could be an efficient means to improve the accu-
racy of the proposed model. 

In the first stage of the model architecture, a convolutional base of the VGG16 net-
work consisting of five blocks, each of which has own convolutional and max pooling 
layers, is used as shown in Figure 2. Similar to the proposed model, the remaining stage 
of the architecture consists of the flatten layer, a fully connected layer, a dropout layer, 
and a final fully connected layer. Here, the only difference is that there are 128 hidden 
units in the fully connected layer. It is important to note that the convolutional base is 
frozen during the training process so that the pre-trained weights could remain unaltered. 

Figure 1. Architecture of the proposed model.

In the second stage of the architecture, there is a flatten operation, which is applied to
convert the feature map into a column vector. This is followed by a fully connected layer
consisting of 16 hidden units, where a L2 regularizer is applied at a rate of 0.008 (to prevent
overfitting) and ReLU is utilized as the activation function. Then, a dropout layer is used
to randomly drop out the nodes, where the dropout rate is set to be 0.3 (30%). It should be
noted that the main motivation to select the parameters both in fully connected layer and
dropout layer is to prevent the model from overfitting. In the last stage of the architecture,
there is a final fully connected layer that consists of six nodes (classes) for classification
using Softmax activation.

2.2. VGG16 Pre-Trained Model

The VGG16 is a well-known CNN architecture and widely used in many deep learning
image classification techniques [30]. Due to its ease of implementation, the VGG16 retains
its popularity in learning applications. Basically, a VGG16 network is trained on a dataset
called as ImageNet, which contains more than 14 million images. It is then obvious that the
use of this pre-trained network could be an efficient means to improve the accuracy of the
proposed model.

In the first stage of the model architecture, a convolutional base of the VGG16 network
consisting of five blocks, each of which has own convolutional and max pooling layers,
is used as shown in Figure 2. Similar to the proposed model, the remaining stage of the
architecture consists of the flatten layer, a fully connected layer, a dropout layer, and a final
fully connected layer. Here, the only difference is that there are 128 hidden units in the
fully connected layer. It is important to note that the convolutional base is frozen during
the training process so that the pre-trained weights could remain unaltered.

2.3. VGG16 Fine-Tuning Pre-Trained Model

Fine-tuning is a method that is used to unfreeze a few of the top layers of a frozen
model base. In general, it jointly trains both the last layers of the base model and the added
classifier layers. In this way, the feature representations in the base model become more
appropriate for a given specific task. This suggests that it might be possible to achieve
better accuracy by applying the fine-tuning method to VGG16 pre-trained model. Thus, in
this model, fine-tuning is applied to the convolutional base of the pre-trained model shown
in Figure 2. To this end, the convolution layers in the last block of the convolutional base
are unfrozen during the training process.
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3. Experiments
3.1. Dataset and Preprocessing

In this study, a new dataset containing low quality vehicle images was created [29].
To do this, firstly, we gathered a set of video recordings captured by a standard surveil-
lance camera monitoring a particular square in Konya city, Turkey, for security purposes.
Figure 3a shows the position of the camera, which was placed on one of the minarets of a
mosque located in Konya. From Figure 3b, it can be easily seen that the camera has a wide
view, and it is distant from the traffic scene, which is considered as the ROI in this study.
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After gathering the recordings, the ROI was zoomed-in to obtain more visible, clear
images to be used in the network. Then, the images with 96 dpi resolution were cropped
from the zoomed video frames. The vehicles in the images were grouped into six classes:
bike, car, juggernaut, minibus, pickup, and truck. For each class, 800 vehicle images were
collected. Thus, a dataset containing 4800 vehicle images was created. As an example,
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Figure 4 shows the different samples of vehicles after manually cropping the images from
the video frames.
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The next step after determining the classes, the data were preprocessed before it was
fed into the networks during training. The flowchart representing the stages involved in
the data preprocessing is shown in Figure 5. As shown in the figure, firstly, the data were
encoded by indexing each class. All data were then resized to 100 × 100 pixels. Next, the
features and labels were separated from each other, followed by the feature normalization.
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3.2. Parameters and Training Details

Before the experiments, the dataset prepared for the network was separated into the
train, validation, and test set. Here, the train set was used to train the model whereas the
validation and test sets were used to evaluate model forecasting performance on never-seen
data. More precisely, the validation set was used to tune the network hyperparameters
except for parameters and learnable values (weights and biases), while the test set was
used to see how the trained model could generalize its results on other new data. In the
experiments, both the test set and validation set consisted of 480 vehicle images (10% for
both), while the train set consisted of the remaining 3840 vehicle images (80%).

In order to train the models, RMSprop optimizer was used. This is because more
stable training performance was achieved in initial experiments when compared to SGD
and Adam optimizers. The training of the proposed model was completed in 40 epochs
where the batch size was 32 and the learning rate of the optimizer was set to 0.001. On
the other hand, the training of other models was completed in 25 epochs where the batch
size was 32 and the learning rate of the optimizer was set to 0.0001. The metric used was
accuracy, and sparse categorical cross-entropy was used to calculate the validation loss.

The algorithms were realized with Python 3.8 using TensorFlow, Keras, and Sklearn
libraries. All networks were trained and tested on a PC server, the specifications of which
are listed in Table 1.

Table 1. The specifications of the server used in the study.

CPU Intel Core i7-7500U @3.5 GHz

GPU NVIDIA GeForce 920M

Memory (RAM) 8 GB

Operating System Windows 10 (64 bits)

3.3. Results

The CNN-based models presented in Section 2 were tested on the created dataset in
order to assess their effectiveness. Figure 6a shows the training and validation accuracy,
and Figure 6b shows the training and validation loss of the proposed model. The diagrams
indicate that there is no overfitting problem and the test accuracy is acceptable, where the
accuracy is found to be 92.9% and the loss is found to be 30.3%.

Sensors 2022, 22, x FOR PEER REVIEW 8 of 12 
 

 

  
(a) (b) 

Figure 6. For the proposed model: (a) training and validation accuracy, and (b) training and valida-
tion loss. 

For the VGG16 pre-trained model, the training and validation accuracy and loss dia-
grams are shown in Figure 7a and Figure 7b, respectively. The diagrams show that the 
model is well-trained and overfitting is not observed in the results. In comparison to the 
proposed model, the improved accuracy and reduced loss with successive epochs can also 
be observed for the VGG16 pre-trained model, where the maximum accuracy is found to 
be 96% while the minimum loss is found to be 24.7%. 

  
(a) (b) 

Figure 7. For the VGG16 pre-trained model: (a) training and validation accuracy, and (b) training 
and validation loss. 

On the other hand, for the VGG16 fine-tuning pre-trained model, the training and 
validation accuracy and loss diagrams are shown in Figure 8a and Figure 8b, respectively. 
The improvement on the accuracy and the reduction on the loss with successive epochs 
can be clearly observed from the results. More specifically, when compared to other mod-
els, the VGG16 fine-tuning pre-trained model achieves higher test accuracy with 99.2% 
while it achieves smaller loss found to be 7.7%. 

Table 2 shows the comparative performances of the CNN-based models. Obviously, the 
VGG16 fine-tuning pre-trained model demonstrated the highest accuracy. It is followed by 
the VGG16 pre-trained model, which performed as the second most efficient network with an 
accuracy of 96%. With an accuracy of 92.9%, the performance of the proposed model was the 
least efficient network. However, it is important to note that there is a trade-off that needs to 
be taken into account, which is the complexity of the models versus their accuracies. It is al-
ready known that the design space is increased when the number of parameters of a CNN 

Figure 6. For the proposed model: (a) training and validation accuracy, and (b) training and
validation loss.

For the VGG16 pre-trained model, the training and validation accuracy and loss
diagrams are shown in Figures 7a and 7b, respectively. The diagrams show that the



Sensors 2022, 22, 4740 8 of 12

model is well-trained and overfitting is not observed in the results. In comparison to the
proposed model, the improved accuracy and reduced loss with successive epochs can also
be observed for the VGG16 pre-trained model, where the maximum accuracy is found to
be 96% while the minimum loss is found to be 24.7%.
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Figure 7. For the VGG16 pre-trained model: (a) training and validation accuracy, and (b) training
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On the other hand, for the VGG16 fine-tuning pre-trained model, the training and
validation accuracy and loss diagrams are shown in Figures 8a and 8b, respectively. The
improvement on the accuracy and the reduction on the loss with successive epochs can be
clearly observed from the results. More specifically, when compared to other models, the
VGG16 fine-tuning pre-trained model achieves higher test accuracy with 99.2% while it
achieves smaller loss found to be 7.7%.
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Table 2 shows the comparative performances of the CNN-based models. Obviously,
the VGG16 fine-tuning pre-trained model demonstrated the highest accuracy. It is followed
by the VGG16 pre-trained model, which performed as the second most efficient network
with an accuracy of 96%. With an accuracy of 92.9%, the performance of the proposed
model was the least efficient network. However, it is important to note that there is a
trade-off that needs to be taken into account, which is the complexity of the models versus
their accuracies. It is already known that the design space is increased when the number
of parameters of a CNN model is increased [31]. In this case, the number of design points
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is also increased, which provides more efficient solution, and hence, the learning process
of the network is simplified. In practice, however, when the energy consumption and
hardware limitations are concerned, the complexity reduction is certainly required at the
expense of accuracy degradation. This can be clearly observed from the results listed in
Table 2. Apparently, although the proposed method seems to be less efficient, it is fast,
simple, and lightweight when compared to other models in terms of the training time, the
number of layers, and the parameters.

Table 2. Comparison of the test accuracy and loss for the CNN-based models.

CNN Models Accuracy (%) Loss (%) # Layers # Parameters Training Time (Minutes)

Proposed Model 92.9 30.3 9 ~17 k ~6
VGG16 Pre-trained Model 96 24.7 21 ~15.3 M ~28

VGG16 Fine-tuning Pre-trained Model 99.2 7.7 21 ~15.3 M ~15

Furthermore, the emerging era of big data has resulted in complex data that requires
fast and effective decision making. The small datasets, however, lead to difficulties in
decision making and data analysis. Therefore, the use of small datasets is mostly avoided,
as it is inadequate to build an efficient prediction model. In this context, as discussed in [32],
it is difficult to achieve higher accuracy rates (typically, over 85%) by a model built from
scratch with a small dataset. However, the results listed in Table 2 show that the acceptable
accuracy can be achieved by the proposed model (92.9%) even when a smaller dataset
(containing 4800 images) is used.

Overall, the results achieved from the experiments prove that the accuracy of the
proposed model is acceptable even when a small dataset is used, and it could be a simple
and lightweight alternative for the classification of low quality vehicle images. The results
also suggest that it is possible to classify vehicles in low resolution surveillance images
collected by a standard security camera installed distant from the ROI.

4. Further Discussions and Future Work

The use of a robust vehicle detection method has an important role in a traffic monitor-
ing system to provide an efficient vehicle classification. In this study, an automated vehicle
detection method was not used, due to the fact that the main efforts are concentrated on
the classification of low quality vehicle images in a simple but accurate way. Instead, the
vehicle images were manually cropped from the video frames, and then stored in a dataset.
Therefore, the detection of the vehicles could be an open issue that might be resolved by
integrating an effective vehicle detection algorithm to the presented classification schemes.

On the other hand, as is known, the datasets are very important for solving object
classification problems by using machine learning. For this reason, several open source
datasets have been presented to assist many researchers working on the development of
vision-based classification methods [33,34]. However, these datasets contain high quality
images. For this reason, these datasets were not utilized to test the effectiveness of the
models presented in this study. As an additional note, the dataset created in this study will
be open for the research community in the near future.

Another open issue can be linked to the classification accuracy of the presented models
under the common challenges of the vision-based classification systems that adversely
affect their performance, such as various lighting conditions, different weather conditions,
and image blurring. In order to address these challenges, the authors are currently working
on the development of a simple deep learning-based model. In this context, a new dataset
containing 4800 low quality vehicle images with 100 × 100 pixels and 96 dpi resolution
under different weather conditions is expected to be created. To do this, the data collection
system used in this study will be applied. Then, a simple CNN-based model to be an
alternative to well-known CNN models in terms of short training time, the small number
of layers along with the parameters, is expected to be developed.
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It is also important to note that although the VGG16 might be considered as a relatively
old pre-trained network, it is still widely used in the benchmarking of such model devel-
opment, and researchers are more familiar with VGG16 [35]. On the other hand, in this
work, our focus is not the performance of VGG16 but our simple model for such unstudied
classification problems considering low quality vehicle images captured by imperfectly
positioned standard cameras.

5. Conclusions

In this study, the purpose was to classify the vehicles in low resolution surveillance
images which were collected by a standard camera installed distant from the ROI such as
a traffic scene, a road, or a highway. To this end, a novel CNN model built from scratch
along with well-known CNN models based on VGG16 were proposed, and their accuracy
was evaluated on a new dataset containing tiny and low quality vehicle images. According
to the test results, the VGG16 fine-tuning pre-trained model demonstrated the highest
accuracy with 99.2%. This is followed by VGG16 pre-trained model, which performed with
an accuracy of 96%. The proposed model, on the other hand, provided acceptable accuracy,
which was found to be 92.9%. Apparently, results show the efficiency of the VGG16-based
CNN models; however, the proposed method offers significant advantages over the VGG16
fine-tuning and VGG16 pre-trained models. One of them is that the proposed model is
simple and lightweight due to the number of layers used in its architecture which consists
of only 9 layers while the other models use 21 layers. Thus, at the expense of accuracy
degradation, the complexity is reduced, where the number of parameters is around 17 k
whereas the number of parameters used in other models is around 15.3 M. Therefore, as
another significant advantage, the proposed method could be a reasonable option when
the energy consumption and hardware limitations are concerned. Additionally, when
compared to other models in terms of the training time, the proposed method seems to
be fast enough. For the created dataset containing 4800 images, the elapsed training time
of the proposed model was observed to be around 6 min while the training time of the
VGG16 fine-tuning model and the VGG16 pre-trained model was around 15 min and
28 min, respectively. Moreover, results show that the proposed model provides acceptable
accuracy without the need for a large dataset.

From a broader perspective, this study proves that vehicle classification is possible
with low resolution surveillance images collected by a standard camera used for security
purposes rather than traffic monitoring. In this context, we believe that the results achieved
from this study will pave the way for further research on the use of standard security
cameras to increase the capability of intelligent systems such as ITS applications.
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