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Abstract: To ensure the efficient operation of large-scale networks, the flow scheduling in the software
defined network (SDN) requires the matching time and memory overhead of rule matching to be as
low as possible. To meet the requirement, we solve the rule matching problem by integrating machine
learning methods, including recurrent neural networks, reinforcement learning, and decision trees.
We first describe the SDN rule matching problem and transform it into a heterogeneous integrated
learning problem. Then, we design and implement an SDN flow forwarding rule matching algorithm
based on heterogeneous integrated learning, referred to as RMHIL. Finally, we compare RMHIL with
two existing algorithms, and the comparative experimental results show that RMHIL has advantages
in matching time and memory overhead.
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1. Introduction

With the continuous expansion of network scale and the rapidly changing business
environment of the Internet, the drawbacks of traditional networks have gradually become
apparent. First of all, the flexibility and agility of the network urgently need to be im-
proved [1]. Secondly, network delays and operational costs pose challenges to the efficiency
of network operations [2].

In 2006, SDN was born in the Clean Slate project of Stanford University in the United
States. To effectively solve the shortcomings of traditional IP networks in maintenance,
expansion, and experimental innovation, the team led by Professor Nick McKeown pro-
posed to bring programmable features to the network based on Openflow, and the software
defined network (SDN) came into being [3]. In 2009, Professor Mckeown formally proposed
SDN, a new network architecture in reference [4], breaking the traditional closed mode of
software and hardware integration and separating the control level of network equipment
from the data forwarding level.

Compared with traditional networks, SDN has the following advantages: (1) Flexi-
bility; as it solves the problems caused by manual equipment configuration in traditional
networks and allows the configuration of network equipment to be dynamically adjusted
according to needs. SDN separates the control rights of network equipment and manages
them by a centralized controller. There is no need to rely on the underlying network
equipment, and the differences from the underlying network equipment are shielded. The
equipment configuration can be flexibly implemented at the control layer. (2) Scalabil-
ity; the decoupling of hardware and business in SDN provides scalability for SDN [5].
Compared with traditional networks, the correlation between hardware and business in
SDN is greatly weakened. Users can customize any network routing and transmission
strategy they want to meet their business requirements [6], while the network hardware
only needs to process and forward data as usual. SDN can carry customizable business
requirements, meaning it is scalable. (3) High efficiency; the introduction of centralized
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controllers provides a global-oriented strategy deployment for the network. At the same
time, the network can realize automatic deployment, operation, maintenance [7], and
fault diagnosis, which reduces the delay of network management and the cost of network
operation and maintenance to some extent.

Carrying out flow scheduling in SDN can provide a real-time global network view [8]
and flexible control methods [9] for network measurement and management, which have
outstanding research significance.

SDN flow scheduling is divided into the control layer and data layer. We focus on data
layer flow scheduling. Data layer flow scheduling means that flows are forwarded between
data layer switches (that is, switches that only have the forwarding function) according
to the rules issued by the control layer. The specific process is as follows: when a flow
reaches a switch in SDN, if the flow matches a rule in the flow table of the switch, it will
be forwarded according to the matched rule; if the flow does not match any rule in the
flow table of the switch, its first packet will be sent by the switch to the SDN control layer.
After receiving the data packet, the control layer calculates the forwarding path of the
corresponding flow in the network and issues new rules to each switch on the forwarding
path. The switch updates its own flow table accordingly. Subsequent packets of this flow
and all other flows that can match this rule are forwarded according to this rule without
the intervention of the control layer [9].

In data layer flow scheduling, rule matching occupies an important position. The
matching performance directly affects the forwarding efficiency of the flow, which affects
the overall flow scheduling efficiency. The flow forwarding time is an important evaluation
indicator for flow scheduling [10]. In the face of large-scale networks, huge traffic pressure
puts forward higher requirements on the flow forwarding time. If the time overhead of
rule matching can be reduced, the overall flow forwarding time will be greatly reduced.
At the same time, in the process of flow forwarding, rule matching is a necessary step
executed multiple times. If the memory overhead of rule matching can be reduced, the
storage pressure on overall flow scheduling will be greatly reduced.

Therefore, this article will research the rule matching algorithm for SDN flow forward-
ing to reduce matching time and memory overhead.

The existing solution to the matching problem of forwarding rules relies on artificially
adjusted heuristic algorithms to build decision trees. This type of solution has limitations.

(1) It faces the trade-off between algorithm performance and overhead. References [11–13]
adopt the most intuitive solution, which is to traverse the rules. Reference [11] proposes the
recursive and non-recursive algorithms for traversing binary trees. Reference [12] proposes
a graph depth-first search traversal algorithm. Reference [13] proposes a rule matching
algorithm based on post-root skip traversal. Such “dumb” traversal algorithms have no
advantage in time or cost. References [14,15] propose building decision trees for rule sets.
Reference [14] proposes an intelligent hierarchical decision tree construction algorithm.
Reference [15] proposes an algorithm called HyperCuts; it shows that the existence of range
rules makes the rules in the rule set may overlap each other in certain domains. Such
algorithms take relatively little time but require significant overhead. When building a
decision tree, there will inevitably be a problem of rule overlap, which will cause serious
storage space consumption and some time loss.

(2) The existing algorithms [11–18] do not directly optimize the global goal. The local
goal of each step is poorly related to the global goal, making it difficult to obtain the optimal
decision tree for the global goal. A good rule matching algorithm should reduce matching
time and memory overhead as the global goal. References [16–18] solve the overlapping
rule problem, but they are difficult to guarantee the global optimality of the final solution.
Reference [16] proposes a rule matching algorithm, EffiCuts, that non-uniformly partitions
the rule space. Reference [17] proposes a rule matching algorithm CutSplit that combines
Cutting and Splitting. Reference [18] proposes an algorithm called CutTSS. Even though
CutTSS is presently one of the best performing algorithms, it is still necessary to use greedy
strategies when building decision trees.
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(3) Facing the large-scale flow table of SDN, the number of flow table entries and
fields used for rule matching is huge, making it difficult for such schemes to effectively
construct a decision tree. An architectural approach based on Ternary Content Addressable
Memory (TCAM) has been the dominant implementation of rule matching in the industry.
With the deployment of SDN-based applications, the number of rule fields has increased
dramatically, outpacing the evolution of TCAM capacity. For example, OpenFlow1.3 Switch
checks more than 40 fields to complete rule matching, a number expected to grow in the
future [19].

Machine learning methods can effectively solve the above limitations. There are two
ways to apply machine learning to the forwarding rule matching problem. The first method
is direct application [20–23], replacing the decision tree with a neural network. Inputting
a flow packet will output matching rules. Although this end-to-end solution is attractive
and the matching speed may be greatly improved, it has two major shortcomings: Firstly, it
cannot guarantee that the correct rules will always be matched. Secondly, a large rule set
requires a corresponding large neural network model, which may be difficult to complete
under general experimental conditions. The second method is heterogeneous integration,
which combines heterogeneous learners such as deep learning, reinforcement learning, and
decision trees to complete the rule matching task of flow forwarding. We use deep learning
and reinforcement learning to build decision trees and search for rules that match the flow
according to the constructed decision trees. Deep learning is suitable for large rule sets [24],
ensuring good matching results. Reinforcement learning is a method for solving problems
with global goals. Deep learning and reinforcement learning are used to build decision
trees, and the decision tree for rule matching provides perfect accuracy.

The rule matching problem for SDN flow forwarding requires that the matching results
have one hundred percent accuracy. Therefore, we adopt the second method.

We find that the heterogeneous integrated learning algorithm can be applied to the
rule matching problem in the process of SDN flow forwarding. Through the integration
of machine learning methods such as recurrent neural network (a type of deep learning
algorithm), reinforcement learning, and decision tree, a decision tree dedicated to rule
matching problems is constructed. Such a decision tree can meet the one hundred percent
accuracy [25] required by the SDN flow forwarding rule matching problem and the low
matching time and low memory overhead required by large-scale flow tables.

The main research work is as follows: (1) We describe the SDN flow forwarding rule
matching problem and transform it into a heterogeneous integrated learning problem.
That is, through the integration of recurrent neural networks, reinforcement learning, and
decision tree to learn to construct a decision tree for rule matching. (2) We design and
implement an SDN rule matching algorithm based on heterogeneous integrated learn-
ing, referred to as RMHIL. (3) We compare RMHIL with two existing algorithms, and
analyze the experimental results using the matching time and memory overhead as the
benchmark metrics.

2. Problem Description and Transformation
2.1. Problem Description

A flow is defined as a unidirectional packet flow transmitted between a source IP
address and a destination IP address. All packets have a common transport layer source
and destination port number [26]. The SDN switch maintains a local flow table for storing
rule sets. When the first packet of a flow arrives at the switch, if it can find a matching
rule in the switch’s rule set, the rule will be output and the corresponding action will be
performed. If not, the packet is sent to the controller. The controller calculates the new
rules and sends them to the switch. All subsequent packets of this flow can be matched
with the rules in the switch.

This problem can be simplified. Input a packet of a flow, match it with the rule set in
the SDN switch (the matching method used in this article is to construct a decision tree
of the rule set, and then query the data packet according to the constructed decision tree),
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output matching rules or negative values (a negative value means that no matching rules
were found).

Figure 1 shows the information contained in a flow table, including match fields,
instructions set, counters, priority, timeout, cookie, and other information. Among them,
40 match fields are used for rule matching. Generally, the fields used for the rule matching
of the SDN switch include 5 match fields, including source and destination IP/IPv6 address,
TCP/UDP source and destination port number, and protocol. A packet matches a rule if
and only if all packet information matches the matching domain information in the rule.
Since a packet may match multiple rules, we stipulate that in this case, the packet matches
the rule with the highest priority.
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Figure 1. OpenFlow1.3 flow table structure.

For example, Table 1 gives a simple example of a rule set. A rule includes source
IP/IPv6 address, destination IP/IPv6 address, TCP/UDP source port number, TCP/UDP
destination port number, protocol, instructions set, counters, priority, timeout, cookie,
and other fields. We have a packet [source IP/IPv6 address, destination IP/IPv6 address,
TCP/UDP source port number, TCP/UDP destination port number, protocol] = [1.0.0.2/32,
1.0.1.2/32, 0, 20, TCP]. In the rule set, two rules with priorities 1 and 2 are successfully
matched, and the third rule with the highest priority is taken as the matching result of the
given packet.

Table 1. This is a simple example of rule set, where * represents a null value.

Source
IP/IPv6
Address

Destination
IP/IPv6
Address

TCP/UDP
Source Port

Number

TCP/UDP
Destination

Port Number
Protocol Instructions

Set Counters Priority Timeout Cookie

1.0.0.0/32 1.0.1.0/32 * * TCP drop 3 0 00:50 A
* * 0 20 TCP add 5 1 00:39 B
* * * * TCP change 4 2 00:27 C

2.2. Problem Transformation

The goal of SDN flow forwarding rule matching is to find the rules that match the flow
packet. The step of using heterogeneous integrated learning to solve the rule matching
problem is to construct a decision tree based on reinforcement learning and recurrent
neural networks, and then search for rules matching the flow according to the constructed
decision tree. The following demonstrates that reinforcement learning and recurrent
neural networks are suitable for decision tree construction and complete the integrated
construction of heterogeneous learners.



Sensors 2022, 22, 4739 5 of 14

Two characteristics of reinforcement learning are very suitable for the decision tree
construction problem of the rule set. One is that the return is sparse [27], and there is not
necessarily a return every time an action is executed. The goal of reinforcement learning is
to optimize the return and not care about the impact of intermediate actions on the return.
Similarly, the decision tree of the rule set cares only about the final matching time and
memory overhead, not necessarily knowing the impact of intermediate nodes on the final
performance. The other is that the rewards of reinforcement learning can be delayed [27].
It would be best to wait for learning to end to understand the rewards and then give
feedback. Similarly, the decision tree needs to be constructed before the matching time, and
memory overhead can be reported. In addition, as a deep learning algorithm, a recurrent
neural network requires many samples. The samples here need to know a series of actions,
construction time, and cost for building a decision tree. Since we can use existing software
in parallel to build the decision tree of the rule set, we can generate a large number of
samples efficiently at low cost.

The above characteristics prove that the decision tree construction of the rule set is
suitable for reinforcement learning and recurrent neural network. The following construc-
tion transforms the SDN stream forwarding rule matching problem into a heterogeneous
integrated learning problem.

As shown in Figure 2, a reinforcement learning system consists of an agent and a con-
stantly interacting environment. The agent obtains the state t provided by the environment,
takes the tentative action t that may change the state (that is, state t + 1) of the environment,
and then receives feedback (that is, reward t) from the environment. The agent’s goal is
to optimize the return, and the final output is the optimal mapping strategy from state
to action.
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The description of reinforcement learning tasks usually uses Markov Decision Process
(MDP) quadruples E = < X, A, P, R >, where E is the environment, X is the state space, A
is the action space, P is the probability of the environment transferring from the current
state to another state X×A× X→ (0, 1) , and R is the return.

The environment of the reinforcement learning system is constructed as a rule set
and a decision tree. The state x of the environment is the current decision tree. The action
a is to divide the node (the node is divided into several sub-nodes along the matching
domain fields of the rule set). The reward r is a combination of matching time and memory
overhead. By constantly trying to execute actions, we get the strategy π (a series of actions
to build a decision tree), and we can know the actions to be executed a = π (x) in the state
x. The pros and cons of the strategy depend on the cumulative return obtained after the
long-term execution. Finally, the agent selects the strategy with the best cumulative return.
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We set the agent as a recurrent neural network model. As shown in Figure 3, parame-
ters are passed between the cyclic units, and the adjusted parameters of the previous unit
act on the next unit. In each cyclic unit, we need to input sample (x,y), and the parameters
are adjusted by the output ŷ of sample x in the neural network. In the agent, sample x is
the decision tree state and action, the sample y is the return, and the output ŷ of sample
x in the model is the return provided by the environment. When the model training is
completed (model parameters are determined), the agent (model) can give the optimal
mapping strategy from the current decision tree state to the partition nodes.
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At this point, the matching problem of SDN flow forwarding rules has been trans-
formed into a heterogeneous integrated learning problem.

3. Algorithm Design and Implementation
3.1. Algorithm Design

The algorithm in this paper is designed to construct a decision tree of rule sets based on
reinforcement learning and recurrent neural networks, and then search for rules matching
the flow according to the constructed decision tree. Input a flow packet, a set of rules, and
several targets (matching time and memory overhead), learn to build a decision tree for the
rule set to minimize the target, and finally output the rules that match the flow packet.

The learning framework proposed in Section 2.2 is formalized as a learning task
E = < X, A, P, R >. At each step t, the current state is xt ∈ X (i.e., the current node of
the decision tree), the agent executes action a ∈ A (i.e., divide nodes) and gets a reward
rt ∈ R (i.e., matching time and memory overhead). The state transition function P defines
that the environment transitions from the current state xt to the next state xt+1 (i.e., the
updated node of the decision tree) with a certain probability. The goal of the agent is to
maximize the cumulative return [∑+∞

t=0 γ
trt+1|x0 = x], where γ is the discount parameter

(set as 1 in this article), the initial state x0 ∈ X is a random decision tree composed of a
single node.

For the division of nodes involved in the method, we adopt the approach of most
existing algorithms: split the nodes in the decision tree along one or more dimensions. The
root node contains all the rules, and the nodes are divided iteratively from the root until
each leaf node contains rules fewer than the predefined number.

The problem that needs to be addressed is how to deal with sparse and delayed returns
in gradually constructing a decision tree. In theory, rewards can only be given after each
tree is constructed, but in fact, we need to provide feedback at every step. Therefore, the
node state value function reflecting the cumulative return is designed as follows.
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Given a tree node n, tn and mn respectively represent the matching time and memory
overhead of node n, Tn and Mn respectively represent the matching time and memory
overhead of the subtree rooted at n.

Tn = tn + max
i∈children(n)

Ti (1)

Mn = mn + ∑i∈children(n) Mi (2)

Vn is a value function used to judge the pros and cons of a decision, which represents
the cumulative return from the tree node n. It is defined as Equation (3).

Vn = λ·Tn + (1− λ)·Mn (3)

In formula (3), λ is the trade-off coefficient between matching time and memory
overhead, λ ∈ [0, 1].

The action a ∈ A on this node only needs to make the best decision to optimize the
matching time and memory overhead of the subtree rooted at this node. We obtain the
action a when Vn = λ·Tn + (1− λ)·Mn is minimized. The return maximization in this
section is the minimization of matching time and memory overhead.

The values of the above formulas need to be generated after the construction of the
decision tree is completed.

The flow of the learning decision tree construction strategy is shown in Algorithm 1
(hereinafter referred to as DTC).

Algorithm 1: Decision Tree Construction Algorithm (DTC)

1: Input: initial root node x0.
2: Initialize parameters (θ,ω, λ), λ ∈ [0, 1];
3: For (n = 0; n < N; n ++)
// N is the maximum number of iterations.
4: get π(x|a, θ) ;
5: x = x0;
6: while f(x) 6= 0
// f(x) = 0 if and only if x is a leaf node.
7: a = π(x|a, θ);
8: x = NextNode(x, a);
// NextNode(x,a) is to select the next non-leaf node in depth-first traversal order.
9: NandA(x0)← x, a ;
// NandA(x0) is used to record all pairs (x, a).
10: End while
11: dθ = 0, dω = 0;
12: get Vn(x,ω) according to formula (3);
13: For each(x, a) ∈ NandA(x0)
14: get R from environment;
15: dω = dω+ ∂(Vn(x,ω)− R)2/∂ω;
16: dθ = dθ+ (∂(π(x|a, θ)/∂θ)·(∂(Vn(x,ω)− R)/∂π(x|a, θ)) ;
17: End for
18: θ = θ+ dθ,ω = ω+ dω;
19: End for
20: Output: strategy π(x|a, θ) , value function Vn(x,ω)

The input of DTC is the initial root node. After initializing the parameters, in each
round of iteration, by performing an action (given a node x ∈ X, get a division action
a ∈ A according to the strategy) on each non-terminal leaf node (a terminal leaf node is a
node whose number of rules is less than the given threshold, the threshold is described in
Section 3.2) according to the current strategy π(x|a, θ) , build the decision tree step by step
in the depth-first traversal order. When the decision tree is constructed, R is the cumulative
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return obtained in the agent, Vn(x,ω) is the cumulative return in the sample. Adjust the
model parameters by R and Vn(x,ω). After multiple rounds of iterations, finally determine
the parameters θ andω, output the strategy π(x|a, θ) and value function Vn(x,ω).

The flow of the rule matching algorithm based on heterogeneous integrated learning
is shown in Algorithm 2 (hereinafter referred to as RMHIL).

Algorithm 2: Rule Matching Algorithm based on Heterogeneous Integrated Learning
(RMHIL)

1: Input: a flow packet and a set of rules
2: Call Algorithm 1 (DTC) to get strategy π (x|a, θ);
3: Construct a decision tree of the rule set according to the optimal strategy;
4: Traverse the decision tree to select the highest priority rule.
5: Output: the rule matching the flow packet

3.2. Algorithm Implementation

The algorithm is implemented according to Algorithm 2. The algorithm implementa-
tion language is Python, and the editor used is pycharm-community-2019.1.1.

The important step in the implementation process is to determine the data structure of
the rule and decision tree. We create class “rule”, class “node”, and class “decision tree”.

In class “rule”, we fix the rule fields and define priority and field value range. The
field value range includes the value range of all rule fields. For example, if the rule field is
the source/destination IP and the data input is 1.0.0.0/24, the calculation method of the
field value range is to convert it to a 32-bit binary code and then reserve (32-24)-bit network
bits. The left end of the value range is the value that all 24-bit host bits are 0. The right
end of the value range is the value that all 24-bit host bits are 1; that is, the value range is
[1.0.0.0, 1.255.255.255]. If the rule field is the source/destination port number and the data
input is 20, the field value range is [20, 20]. If the rule field is protocol and the data input is
0x06/0xFF (representing protocol 06 TCP), the field value range is [06, 06].

In class “node”, we define attributes such as node ID, value range, including rules,
depth in the tree, and children node. Given d rule fields, we use 4d values to encode the
value range of a tree node, including the value range of the left and right branches of the
node on each field.

Since the tree depth can only be determined after the decision tree is constructed, we
should consider how to encode the state of the decision tree with dynamic tree depth. A
fixed-length state representation needs to be designed. Since the environment constructs
a decision tree node by node, and the rules of each node are included in the rules of its
parent node, we only need to encode the current tree node state and use it as the input of
the agent.

In class “decision tree”, we define attributes such as rule set, root node, tree depth,
node number, leaf node threshold, current node, and nodes to be divided.

In addition, the division action a is expressed as [division dimension, division value].
Introducing field value range and leaf node threshold alleviates the problem of

rule overlap.

4. Comparative Experimental and Performance Verification

The rule matching algorithm we propose (RMHIL) and the existing efficient rule
matching algorithms (HyperCuts [15] and CutTSS [18]) are based on decision trees. These
three rule matching algorithms generate a decision tree from the rules and then traverse the
decision tree to find the matching rules. In the rule matching algorithm based on decision
trees, the quality of the constructed decision tree directly determines the performance of the
algorithm. The better the performance of the decision tree building algorithm, the better
the performance of the rule matching algorithm.

Therefore, we compare the performance of RMHIL, HyperCuts, and CutTSS by con-
ducting comparative experiments on the decision tree construction algorithms of the three



Sensors 2022, 22, 4739 9 of 14

algorithms. The decision tree building algorithms of RMHIL are otherwise named DTC.
For the convenience of description, the decision tree construction algorithms of the three
algorithms are referred to as DTC, HyperCuts, and CutTSS.

The metrics used are matching time and memory overhead, which are the focus of
general rule matching algorithms. Since we use the same underlying tree data structure for
all algorithms, a lower tree depth can ensure faster matching. The shallower the tree, the
fewer nodes need to go to find the matching rule, and the matching time is naturally shorter.
So, we use the tree depth to measure the matching time. Similarly, we use a quotient to
measure the memory overhead. This quotient is the result of dividing the number of rules
for all nodes by the number of records in the rule set. The smaller the quotient is, the
smaller the average number of repeated occurrences of each rule in the decision tree is, and
the less memory is occupied.

Generally, only the 5 fields of source IP, destination IP, source port number, destination
port number, and protocol are matched in the rule. And the most widely used sample at
present is the 5-field sample. So this section measures the matching time and memory usage
on 5-field data sets of different magnitudes based on different values (0,1) of variable λ.

The rule data set used in the experiment is the public data set published in refer-
ence [25]. Since only 5 fields are used for rule matching, we do a simple preprocessing after
importing the data set (only the required fields are used in the rule set). The experiment
in this section uses a total of 30 data sets. The number of rules and their magnitudes (the
number of digits to which the number of rules belongs) are shown in Table 2 (arranged in
ascending order of the number of rules).

Table 2. The information of the rule data set.

Data Set The Number
Of Rules Magnitude Data Set The Number

of Rules Magnitude Data Set The Number
of Rules Magnitude

1 799 1000 11 7298 10,000 21 75,100 100,000
2 846 1000 12 8772 10,000 22 83,752 100,000
3 857 1000 13 8833 10,000 23 83,797 100,000
4 863 1000 14 9039 10,000 24 83,966 100,000
5 934 1000 15 9377 10,000 25 88,081 100,000
6 942 1000 16 9418 10,000 26 96,078 100,000
7 961 1000 17 9476 10,000 27 98,180 100,000
8 970 1000 18 9591 10,000 28 99,052 100,000
9 990 1000 19 9655 10,000 29 99,318 100,000
10 990 1000 20 9774 10,000 30 99,480 100,000

4.1. Matching Time

When λ is 1, that is Vn = Tn, the experimental results of the three algorithms on
different magnitude data sets are shown in Figure 4.

It can be seen from Figure 4 that the depth of the decision tree (representing matching
time) constructed by DTC is not higher than that of the decision tree constructed by
HyperCuts and CutTSS. Therefore, DTC has obvious advantages in matching time.

In order to better observe the experimental results, we analyze the experimental results
separately from three magnitudes.

As is shown in Figure 5, when the magnitude of the data set is 1000, DTC has the
least matching time and little fluctuation. The matching time of algorithm CutTSS does
not fluctuate greatly and is shorter than algorithm HyperCuts in most cases. The matching
time of algorithm HyperCuts fluctuates greatly and takes a long time. HyperCuts does not
consider the problem of rule overlap, so its matching time is very easily affected by the
content of the data set. The content of the data set varies for each test, resulting in different
degrees of rule overlap. As a result, the loss time of HyperCuts is different, and eventually,
the matching time of HyperCuts fluctuates greatly. Both DTC and CutTSS alleviate this
problem, and the fluctuation of matching time is small.
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Figure 4. The experimental result when V = T (matching time).

As is shown in Figure 6, when the magnitude of the data set is 10,000, DTC has the
least matching time and little fluctuation. The matching time of algorithm HyperCuts
fluctuates greatly, but it is shorter than algorithm CutTSS in most cases. The matching time
of algorithm CutTSS has no major fluctuations but is the longest. The fluctuation of the
matching time of the three algorithms is consistent with the situation when the magnitude
is 1000. We guess that the overlap problem in these data sets may be lighter, making the
matching time of algorithm HyperCuts shorter.
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Figure 6. The experimental result when V = T and the data magnitude is 10,000.

As is shown in Figure 7, when the magnitude of the data set is 100,000, the matching
time of DTC is the least and slightly fluctuates. The matching time of algorithm CutTSS does
not fluctuate greatly and is longer than DTC. The matching time of algorithm HyperCuts
fluctuates greatly. When the matching time is too long, we mark T = 100 and no longer
test. By comparing the content of data set 22–25 with other data sets, we find that the port
number of data set 22–25 has more field values, which confirms that the matching time of
algorithm HyperCuts is very sensitive to the content of the data set. The disadvantage of
algorithm HyperCuts is that it does not consider the problem of rule overlap appearing here.

Among the three algorithms, only the matching time of HyperCuts fluctuates greatly
because only it does not consider the overlapping rule problem.

The above analysis shows that the matching time of DTC is shorter than that of
algorithms HyperCuts and CutTSS.
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4.2. Memory Overhead

When λ is 0, that is Vn = Mn, the experimental results of the three algorithms on
different magnitude data sets are shown in Figure 8.
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We have 30 data sets. It can be seen from Figure 8 that in 26 data sets, the memory
overhead of the decision tree constructed by DTC is not more than that of algorithms
HyperCuts and CutTSS. In 4 data sets (21, 23, 25, 28), the memory overhead of the decision
tree constructed by DTC is slightly more than that of the algorithms HyperCuts or CutTSS.
Generally speaking, compared with the algorithms HyperCuts and CutTSS, DTC has a
slight advantage in memory overhead.

In summary, compared with algorithms HyperCuts and CutTSS, DTC has obvious
and stable advantages in matching time and has a slight advantage in memory overhead.
Therefore, RMHIL, which uses DTC, has advantages in matching time and memory overhead.

5. Conclusions

Based on heterogeneous integrated learning, we solve the rule matching problem
of SDN flow forwarding. We describe and transform the problem. We design and im-
plement RMHIL, a rule matching algorithm based on reinforcement learning, recurrent
neural network, and decision tree. Through comparative experiments with the algorithms
HyperCuts and CutTSS, it is shown that RMHIL has advantages in matching time and
memory overhead.

During the experiment, we find that there are still shortcomings, which will be further
improved in the follow-up work:

(1) With the continuous expansion of network scale and the continuous increase of SDN
functional requirements, the most commonly used 5-field matching method will be
difficult to meet the demand. Therefore, we must consider the 40-field rule matching.
Although the sample construction method is simple and the software is ready, the
strategy generation and value function calculation of a large number of 40-field real
samples take a lot of time. It is planned to be completed in the next step, and then the
algorithm performance test is performed based on the sample.

(2) The algorithm proposed in this paper does not have obvious advantages in memory
usage. We consider fusing as the means of reducing the rule overlap problem in
the CutTSS algorithm (first dividing the rule set and then constructing the decision
tree in parallel) or designing efficient and feasible solutions for the characteristics of
the algorithm.

(3) We do not use the countdown in the traditional sense when measuring the match-
ing time.

(4) A custom standard is used to facilitate comparative experiments. To further opti-
mize the matching time of the algorithm proposed in this paper, we consider using
GPU version TensorFlow, AWS cloud computing service platform, and other accelera-
tion methods.

In addition, our proposed rule matching method applies not only to SDN but also
to sensor networks. In SDN, a data transmission path must be established between the
source switch and the destination switch. After receiving the data packet transmitted by
the source switch, the intermediate node checks whether it matches an entry in the current
rule set. The implementation environment of RMHIL in SDN is an OpenFlow switch, the
input is a data packet and a rule set, and the output is an entry that matches the data
packet in the rule set. In a sensor network, a data transmission path must be established
between the source sensor node and the sink node. After receiving the interest information
published by the sink node, the intermediate nodes check whether it matches an entry in
the local interest list. The implementation environment of RMHIL in the sensor network is
the sensor node, the input is the interest information and the interest list, and the output is
an entry in the interest list that matches the interest information. Therefore, it is convenient
and easy to apply RMHIL to sensor networks.
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