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Abstract: Ad hoc vehicular networks have been identified as a suitable technology for intelligent com-
munication amongst smart city stakeholders as the intelligent transportation system has progressed.
However, in a highly mobile area, the growing usage of wireless technologies creates a challenging
context. To increase communication reliability in this environment, it is necessary to use intelligent
tools to solve the routing problem to create a more stable communication system. Reinforcement
Learning (RL) is an excellent tool to solve this problem. We propose creating a complex objective
space with geo-positioning information of vehicles, propagation signal strength, and environmental
path loss with obstacles (city map, with buildings) to train our model and get the best route based on
route stability and hop number. The obtained results show significant improvement in the routes’
strength compared with traditional communication protocols and even with other RL tools when
only one parameter is used for decision making.

Keywords: advanced vehicular ad-hoc network; routing network; reinforcement learning

1. Introduction

A vehicular ad-hoc network (VANET) allows cars and roadside devices to connect
with one another [1]. Even if they have no prior knowledge of other vehicles in the re-
gion, automobiles are viewed as nodes in a self-organizing network for communication
reasons [2]. This means that there is no preexisting infrastructure required for this decen-
tralized wireless ad-hoc network. Each node acts as a host as well as a router, delivering
and receiving data between nodes. To communicate between devices, dedicated short-
range communication radios (DSRC) are employed [3]. DSRC is a wireless communication
system based on the IEEE 802.11p standard that allows automobiles to communicate di-
rectly at high speeds and with high security without the need for cellular infrastructure.
Also, the 5.9 GHz frequency is used by DSRC to allow low-latency information sharing
between automobiles.

This architecture is in charge of delivering and receiving safety alerts, as well as
maintaining passenger and pedestrian safety [4]. It also improves the flow of traffic and the
effectiveness of the traffic management system. An onboard unit (OBU) has several sensors
such as a GPS, accelerometer, resource command processor, user interface, and read/write
storage for storing data. Over an IEEE 802.11p wireless connection, OBUs are in charge of
communicating between surrounding devices [5]. The most difficult component of VANET
is managing and routing the data required for optimum connectivity.

The data broadcasted and received by vehicular units in ad-hoc vehicular networks
comprise information on the telemetry of the related cars. When information is transmitted
over the air, it is very sensitive to interference, which can result in a network outage,
putting the lives of drivers and anyone near to them in danger. Because there is no large
infrastructure involved in a shared wireless medium, there is a high risk of car-to-car
communication failure. In multi-hop communication, nodes or vehicular units function as
hosts and routers, forwarding and receiving data from other nodes [6].
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As a result, nodes are chosen based on their connectivity, so the routing algorithm
selected is a sensitive issue that must be handled carefully in this type of system. Routing
protocols developed for legacy networks may not adequately serve vehicular networks
in the near future. Therefore, new alternatives must be developed to solve the routing
problem in these complex networks.

We provide techniques for improving the performance of the methodology we have
developed, such as:

(i) Choosing the best path based on signal strength between adjacent nodes and avoid-
ing hosts with high Path Loss to avoid retransmissions;

(ii) Using a reward feature that assesses the path loss between hosts, choose the route
with the longest lifespan;

(iii) Analyzing performance parameters like route lifetime, number of reconnects, and
hop counts.

The following are the article’s primary contributions:

• We improve the Reinforcement Learning environment where an agent can learn to
find the path with the most extended lifetime. A procedure determines the chosen
path based on signal power between the nodes, and as a reward, the path’s lifespan is
connected.

• The impacts of existing procedures were compared to the novel paradigm suggested
in this work utilizing computer-based simulation tools.

• And, we compare the results with two legacy routing algorithms, to prove the effi-
ciency of the proposed work.

The following is how the remainder of this research paper is organized: The Section 2
looks into the related work. The environment model is discussed in Section 3. Then, in
Section 4, the outcomes and discussion are defined. The conclusion in Section 5 brings the
paper to a close.

2. Related Work

As related work, we will address the two traditional routing protocols widely used
in ad-hoc networks, DSR and DSDV. These protocols were used in the comparative per-
formance of the planned method. We will also address solutions related to routing path
lifetime where current machine learning research is applied in VANET. Lastly, the two
Reinforcement Learning algorithms used in our proposed approach were PPO and A2C.

VANETs (vehicular ad hoc networks) have become a prominent research topic in recent
years. VANETs are confronted with new development patterns as new technologies arise.
Advanced VANETs, which integrate regular VANETs with these upcoming technologies,
can increase transportation safety and efficiency while also improving automobile owner
experiences. Advanced VANETs, on the other hand, have additional obstacles. To overcome
these, new architectures, procedures, and protocols must be devised [7]. This work proposes
a new methodology to find routes in this dynamic environment, so we believe that this
work is part of the new approach called Advanced Vehicular Networks.

Owing to stochastic node movements, interference, multipath propagation, and path
loss, wireless ad-hoc mobile networks lack a consistent topology due to the absence of
physical links between nodes. Many routing protocols have been suggested and are
continuously being researched in order to reduce the possibility of communication failures
with this technology.

VANETs are currently confronting new development trends as a result of the advent of
new technologies such as 5G, cloud/fog computing, blockchain, and machine learning [8,9].
Advanced VANETs, which combine standard VANETs with these future technologies, have
the potential to boost efficiency dramatically. Advanced VANETs, on the other hand, have
new obstacles. To overcome them, new architectures, procedures, and protocols must be
developed, as proposed by the journal [10].
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Reinforcement Learning

Reinforcement learning (RL) is the process of determining what actions to take to
enhance a quantitative reward value. The learner is not taught which actions to perform;
rather, he is encouraged to try them all and see which ones provide the greatest outcomes.
Actions can have an influence not only on the immediate, but also on a problem, a class of
problem-solving techniques that successfully act on the problem, and the field that analyzes
the problem and its answers, under the most intriguing and difficult situations [11].

Reinforcement learning is distinct from supervised learning, which is the focus of
the majority of contemporary machine learning research. Learning from a set of labeled
examples given by an expert external supervisor is known as supervised learning. Each
example is a description of a scenario followed by a specification—the label—of the proper
reaction the system should take in response to that condition, which is frequently to identify
a category to which the situation belongs. The goal of this sort of learning is for the system
to be able to generalize its responses to situations outside of the training set. While this is an
important sort of learning, it falls short of what is required for learning through interaction.
It is difficult to conceive of examples of desired conduct that are both correct and indicative
of all the scenarios in which the agent must respond to interactive concerns. An agent must
be able to learn from its own experience in an uncharted territory where learning would be
most helpful [12].

RL is also separate from unsupervised learning, which is focused on detecting structure
in vast volumes of unlabeled data, as defined by machine learning specialists. The terms
supervised and unsupervised learning appear to categorize machine learning paradigms
entirely, but they do not. While it is easy to mistake reinforcement learning for unsupervised
learning, rather than discovering a hidden structure, the goal of reinforcement learning is
to maximize a cumulative reward. While studying the structure of an agent’s experience
can help with reinforcement learning, it doesn’t address the problem of maximizing a
reward value.

The trade-off between exploration and exploitation is one of the issues that occur in
reinforcement learning but not in other types of learning. To obtain a large number of
rewards, a reinforcement learning agent must select activities that it has previously done
and found to be useful in terms of reward provision. He must, however, do actions he has
never performed before in order to uncover such acts. In order to receive a reward, the
agent must not only examine what it has already experienced but also discover how to
make better future action options. The issue is that neither exploration nor exploitation
can be carried out merely for the purpose of achieving success. Before favoring the actions
that appear to be the most successful, the agent must test a number of them. To get a
reliable estimate of an action’s anticipated reward, it must be tried multiple times on a
stochastic task, as seen in the flowchart in Figure 1. Reinforcement learning also has the
advantage of being able to handle any issue involving a goal-directed agent interacting
with an unknown environment.

Reinforcement learning begins with a fully functional, interactive, goal-seeking agent.
All reinforcement learning agents have specified goals, are able to monitor parts of their
surroundings, and may influence their environments by taking actions [13]. Furthermore,
it is customary to anticipate that the agent will have to function in an environment with a
great deal of uncertainty from the start.

One of the most exciting aspects of today’s reinforcement learning is how successfully
integrates with different technological and scientific domains. Reinforcement learning is
part of a long-standing trend in AI and machine learning to combine statistics, optimization,
and other mathematical subjects. The ability of some reinforcement learning algorithms
to train using parameterized approximates, for example, tackles a long-standing problem
in operations research and control theory: dimensionality. Reinforcement learning, in
particular, has had a fruitful collaboration with psychology and neuroscience, with consid-
erable benefits for both sides. Many of the best reinforcement learning algorithms were
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influenced by biological learning systems. Reinforcement learning is the closest sort of
machine learning to the kind of learning that humans and other animals do.

Therefore RL has been recognized as one of the most effective optimization tools in
solving complex problems. Existing RL-based systems, on the other hand, suffer from
sluggish convergence for optimum communication due to the improper design of RL
elements (i.e., reward and state) for complicated traffic dynamics.

model
learning

control

updateRL update

Experience

Policy

Simulated

Environment Model

Figure 1. Reinforcement Learning (RL) flowchart.

Meanwhile, most optimization approaches assume that the network communication
environment’s phase length is constant to simplify RL modeling, which severely limits the
RL’s ability to seek up network route management policies with a reduced average number
of hops and better communication time stability [14].

In this paper, we assess and examine the efficacy of two legacy VANET routing algo-
rithms, DSR and DSDV, and compared them with our suggested RL-based methodology.
As this is an ad-hoc type of communication that will be widely used in vehicular networks
in the future, routing algorithms for ad-hoc vehicular networks should be improved when
traffic congestion worsens. A traffic control network failure of even a millisecond can be
devastating [15].

As a consequence, we present an RL-based method for determining the intensity and
length of the communication range between vehicles in order to optimize communication
routing. Inspired by the prior work approach used in the transportation business, we
established a new concept called intensity, which ensures that our incentive design and
state representation accurately reflect the condition of vehicles [16]. Our method allows
us to change the communication phase between all hosts involved in the route to adapt to
changing traffic conditions while taking into account the coordination of nearby vehicles,
the signal strength, noise, and interference of the route loss. Comprehensive experimental
findings in artificial and real-world traffic scenarios reveal that this unique method achieves
improved average route active duration time and converges to optimal solutions faster
than state-of-the-art RL systems [17]. As a result, this method helps to select the most
reliable route rather than the shortest way, as most existing routing protocols do, depending
on the position of origin, destination, and intermediate nodes that make up the route for
information to travel.

While reinforcement learning has had a significant influence in other fields, we believe
that its promise in networking has yet to be completely realized.

Therefore, OpenAI Gym [18] is a research toolkit for reinforcement learning that
attempts to bring together the finest features of prior benchmark sets in a software package
that is both easy and accessible. It consists of a broad set of jobs (called environments)
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with a common interface, which will continue to expand over time. The environments
are versioned in such a way that when the program is updated, the findings will stay
meaningful and reproducible.

We hope that by providing an OpenAI Gym environment, researchers will be encour-
aged to investigate solutions that apply reinforcement learning in network communication
systems.

3. Environment Model

Instead of considering only the distance between nodes, this work proposes a routing
method that considers the signal strength between nodes, taking into account the physical
obstacles that degrade the communication. This interferes with the lifetime of the cho-
sen path, until one or more nodes on the path leave the signal range, making the route
invalid. Traditional ad hoc routing systems such as DSDV and DSR [19,20] choose a route
depending on the number of hops. Although the selected path contains a limited number
of intermediate nodes between the source and the destination, the distance between each
pair is usually high. If intermediate nodes with shorter distances between them are selected,
the chance of path longevity increases.

In the proposed task offloading structure, the agent manages the route table between
vehicles. Vehicles in range signal coverage are considered connected and learn the vehicle
states in real-time. The state contains the current position, speed, and id of each vehicle.
The environment is formed as follows:

The state-space S, consists of the current state of the graph (in terms of a multidimen-
sional output of a pro-based pairwise signal strength model) and a multifaceted observation;
The action space A, which consists of the next hop of the graph; Transitions between states,
governed by the deterministic process-based model and the distance sequence; The reward
r encourages the lifetime of the path.

Observation space: In order to not violate Markov’s property [13], that is, we do not
know where the vehicles are moving, the alternative is to save some observations from
the past and use them as a state. After receiving the vehicle states, the agent feeds the
position matrix, keeping the last four previous positions and updating the current position.
We propose to keep together four successive locations and observe each state; thus, this
preprocessing stacks four rows, resulting in the final state space in the column array. That
is, it is composed of a matrix that has the combination of all possible communication pairs
(links) based on the signal strength between the vehicles. The matrix is exemplified in
Equation (1).

S =




RSSIt(id0, id1) ... RSSIt(id0, idn)

RSSIt−1(id0, id1) ... RSSIt−1(id0, idn)
RSSIt−2(id0, id1) ... RSSIt−2(id0, idn)
RSSIt−3(id0, id1) ... RSSIt−3(id0, idn)


...[

RSSIt(id0, id1) ... RSSIt(id0, idn)
Dt−3(0, 1) ... Dt−3((n − 1), n)

]


(1)

where RSSI means the Received Signal Strength Indicator between the hosts, the meaning
is described in the Table 1. The t is the current timestamp, id is the identification number of
vehicles in a given area, and the number of columns of the matrix is the combination of the
pairs of hosts.

In this work, we consider that less than −70 dBm of RSSI signal, we do not consider
that the vehicles are connected.
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Table 1. RSSI table.

Signal Strength Meaning

<−67 dBm Very Good
<−70 dBm Good
>−70 dBm Not Good

Action space: In this case, the action space is discrete and determined by the number
of cars in a certain place, such as downtown. It is made up of automobiles that can serve as
origin, destination, or intermediate nodes along the path.

Reward: There are three zones in which the reward function is specified. The package’s
destination is represented by the target. When the chosen S state may be part of the route,
the viability zone is identified. When the specified state does not exist or cannot be a part
of the path (due to the RSSI between the current node and the next-hop being weak),
the reward function will get the reward value if it reaches the success zone, that means,
the target.

The lightest life route of dynamic graphs will be discovered using reinforcement
learning methods. Lifetime, Reset, Observation, and Step are the algorithm’s four primary
functions. The Lifetime function determines how long the specified path will take to
complete. When the route loops, the Reset function is executed. The RSSI is calculated
using the Cartesian location of each vehicle, and the current signal value, as well as the
previous four readings, are stored between the vehicles via the Observation function. The
step function is the algorithm’s fundamental function, in which reinforcement learning
algorithms learn to seek the largest reward, i.e., a prolonged lifespan of the chosen path,
depending on the observation space after each action. Four different test conditions are
available for the Step function. The first is if there is a connection between the present
location and the action’s next node. Proceed to the next tests; otherwise, the algorithm
will have to choose another node to join the route. To eliminate loops, we require the
actioninpath test condition; if the selected action is already part of the path, it signifies that
a certain node has already been picked to be part of the path to end a loop. This causes the
route to becoming stuck in a loop, which is undesirable in any routing scheme. It is for this
reason that the Reset function is used.

Following the first condition, it will be determined whether the selected action is
equivalent to the goal; if it is, the path has arrived at its final destination, the lifetime of
that path can be calculated and the algorithm for that path can be completed. This is an
appropriate action that can be selected if the chosen action is not yet part of the route. The
payoff, on the other hand, is still zero, and the process isn’t complete. One more node that
might be part of the route path was discovered. The Observation function returns the four
standard variables of the OpenAI Gym environment at the end of the condition testing (obs,
reward, done, in f o).

The NetworkX tool is a package of the Python programming language, which creates
and manipulates the dynamic structure of complex networks [21]. This tool was used to
build the connection of a weighted directed graph between vehicles based on the RSSI
signal. The two main functions, H.has_edge, are to check if the link between the current
property and the next node is still active, and H.has_path to check how long the route
remains active, making it possible to calculate the route lifetime.

RSSI signal: The RSSI is determined by the Radio Tracer multipath engine, which
tracks rays for multipath radio wave propagation. The core ray tracing engine is written in
the Python C++ extension, and we use a Python package. The route loss calculator is also
included in the package. The main engine reads the obj files, which contain the city’s 3D
map, and processes the triangles between source and destination in the engine. The list
of tracked pathways is the end result. The first tuple position denotes the route types of
direct, diffracted, and reflected light. Path Loss must be calculated. The tracer determines
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the overall route loss based on theoretical propagation models as the potential pathways
are traced from the motor. The scene’s material is considered concrete in our work.

The calculation of the least Aggregate Path Loss, as illustrated in Equation (2) [22], is a
crucial aspect of choosing the optimum route. Path loss is an attenuation that occurs as an
electromagnetic wave travels through a channel, reducing its power density. Path loss can
take several forms, ranging from natural radio wave propagation to diffraction path loss
caused by interference, to saturation path loss caused by the presence of a signal that is not
transparent to electromagnetic waves [23]. Between communication hops, we use the sum
of all path losses. The wavelength of free space is defined as the ratio between the speed of
light in meters per second and the carrier frequency in Hz, as indicated in Equations (2)
and (3). The work [24] is the foundation for the equations.

PathLoss =
e

∑
0

(
10.log10(16.π.r2.D2

e
λ2

)
(2)

where;

λ =
c
fc

(3)

This is how the RSSI is calculated in Equation (4). Were the communication devices
can act as both an access point (AP) and a wireless client/station (STA) simultaneously.
With this setup, you may use a single wireless device to build an AP that acts as a “wireless
repeater” for an existing network. The AP-STA and STA-AP channels are assumed to be
reciprocal. As a result, in both directions, PathLoss plus ShadowLoss is the same.

RSSI = Tx_Power − (PathLoss + ShadowLoss) (4)

Simulation

We employ computer-based simulations to test and confirm our scientific results and
evaluate the efficacy of the technique suggested in this paper since they are more adaptable
and low-cost when compared with real-world implementation. Because both the OpenAI
Gym [18] tool and the Python programming language are computationally efficient and
useful for simulation, we integrate both.

For this simulation, we established a one-hour time constraint and used Urban Mobility
Simulation (SUMO) [25] to generate a realistic scenario. The open-source SUMO software
allows for the simulation of land transport modes. It creates a network simulation using
autos as nodes. It is a collection of technologies that work together to create the scenario
we employed in our experiment [26].

Figure 2 depicts the configuration project for our simulation environment, which re-
quires multiple stages to complete. To begin, we import the city map into the OpenStreetMap
application. This map was used by Sumo to replicate random automobile journeys, and by
Map3D to create a representation of the city. The output of Sumo and the Map3D feed the
proposed OpenAI Gym algorithm and the other two routing algorithm implementations
used in current VANETs, the DSR and DSDV routing protocols.

Figure 3 shows a city with a three-dimensional grid layout. This model uses a grid
road design to mimic the movement pattern of mobile nodes in metropolitan situations.
Horizontal and vertical streets are included in this mobility model, as well as randomly
positioned nodes on the map at the start of the simulation and the ability to change
lanes [27]. In our proposed model, the third dimension is important, to better calculate the
RSSI and Path Loss due to interference from urban buildings and constructions.
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Environment
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SUMO

Map3D
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Routing Algorithms

Results

Figure 2. Simulation diagram.

Figure 3. Three-dimensional map of the city.

4. Results and Discussion

The DSR and DSDV procedures, as well as our suggested reinforcement learning
method, were compared. As mentioned in the simulation chapter, each protocol was tested
using evenly dispersed cars and random displacement to produce traffic. The suggested
methods were also put to the test using three distinct communication paths: direct path,
diffracted path, and reflected path.

The following measures were utilized to assess the suggested protocol’s effectiveness:
The average path lifespan, that is, the path that connects the same source and destination.
During the simulation time, the number of connection transitions, or route alterations
between the source and destination paths, was counted. And there’s the average path
length, which is the amount of hops the routes have on average.

Six different simulations were compared: GPPO: uses the RL PPO algorithm and is fed
with pathLoss. DPPO: uses the RL PPO algorithm, but only takes into account the distance
between vehicles. GA2C: uses the RL A2C algorithm, fed with pathLoss. DA2C: A2C
algorithm, with vehicle distance only. DSDV and DSR: Legacy network routing algorithms,
are still used nowadays.

As shown in Figure 4, PPO and A2C agents obtain a higher normalized average
lifetime of the path, than standard DSR and DSDV communication protocols. In other
words, the route paths chosen by reinforcement learning agents have a longer life span.
The confidence interval of the obtained data can also be seen. The difference between the



Sensors 2022, 22, 4732 9 of 12

path chosen by the PPO agent compared to DSR or DSDV algorithms doubles the lifetime
of the route path on average, during the simulation time.

GPPO DPPO GA2C DA2C DSDV DSR
0

2

4

6

8

10

Lif
et

im
e

LifeTime Mean

Figure 4. Path life time.

This evaluation is critical in data communication, especially in mobile vehicular net-
works, increasing the route’s lifetime, consequently decreasing the number of reconnections
and overheads of the protocol, as shown in Figure 5. We achieved fewer connection transi-
tions with the proposed methodology GPPO and GA2C than DPPO and DA2C and DSR or
DSDV. It means that we can have less or even the same amount of reconnections, but with
a longer lifetime route.

GPPO DPPO GA2C DA2C DSDV DSR
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Figure 5. Number of reconnections.

Although both artificial intelligence agents are superior to conventional protocols in
all the simulations carried out, the PPO agent had a slight advantage compared to the A2C
agent, either in the lifetime of the path or in the number of transitions. As the lifetime of the
chosen route paths is significantly longer, this does not mean that the selected route is the
shortest; that is, it has fewer hops. As seen in Figure 6, the paths chosen by intelligent agents
have an equal or more significant number of leaps, as expected. Even if the number of hops
is greater than the short path algorithm, the difference is not significantly more prominent.
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Figure 6. Hop number of the chosen path.

Two other figures were used with the same metric but exposed differently to visualize
the lifespan gain compared to the path length. Data normalization, which is a method for
structuring data attributes to improve the cohesion of entity types within a data model, was
used. Our goal is to reduce data duplication, which is crucial for visualizing the differences
in behavior between the protocols.

In Figure 7, we can see that our proposed algorithm achieved greater communication
distance (measured in meters), compared to the other protocols. This was not an expected
feature, but it was recognized in the results. The confidence interval of the obtained data is
also shown.
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Figure 7. Normalized maximum distance reach of the path.

On the other hand, the Figure 8 shows the Probability Mass Function (PMF) of the
width of the path length measured in hops. Here we can see the difference in behavior
between the algorithms. Another observed consequence of the application of our developed
algorithm, it was possible to measure a lower level of signal loss of the chosen path, as can
be seen in Figure 9. The data’s confidence interval is displayed.
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Figure 8. Histogram length of the path.
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Figure 9. Maximum Path Loss normalized.

5. Conclusions

We discussed the environment design process and showed how to use an OpenAI
Gym environment to research VANET network routing algorithms. As a starting point for
future exploration and research, we implemented a reactive agent, a standard process, and
an agent trained in PPO and A2C. The agent obtained higher reward strategies, implying
that reinforcement learning agents can recognize different route paths. PathLoss can be
reduced, data can be sent over longer distances, and the number of connections between
source and destination can be reduced using intelligent learning algorithms that apply
reinforcement learning. It was also possible to make the chosen path last longer by choosing
one with a longer lifespan. That is, as compared to other traditional algorithms in use today,
such as DSDC and DSR, they greatly improved the metrics analyzed. Complex networks
with high mobility and specialized requirements, such as VANETs, should not be bound by
traditional routing algorithms, but rather expand their horizons. An alternative is to adapt
to the future of data transfer by using new techniques.
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