
����������
�������

Citation: Khanh, T.T.; Hai, T.H.;

Hossain, M.D.; Huh, E.-N.

Fuzzy-Assisted Mobile Edge

Orchestrator and SARSA Learning

for Flexible Offloading in

Heterogeneous IoT Environment.

Sensors 2022, 22, 4727. https://

doi.org/10.3390/s22134727

Academic Editor: Christian Haubelt

Received: 16 May 2022

Accepted: 20 June 2022

Published: 23 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Fuzzy-Assisted Mobile Edge Orchestrator and SARSA Learning
for Flexible Offloading in Heterogeneous IoT Environment
Tran Trong Khanh 1 , Tran Hoang Hai 2 , Md. Delowar Hossain 1 and Eui-Nam Huh 1,∗

1 Department of Computer Science and Engineering, Kyung Hee University, Yongin 17104, Korea;
khanhtrannnn@khu.ac.kr (T.T.K.); delowar@khu.ac.kr (M.D.H.)

2 School of Information and Communication Technology, Hanoi University of Science and Technology,
Hanoi 100000, Vietnam; haith@soict.hust.edu.vn

* Correspondence: johnhuh@khu.ac.kr; Tel.: +82-31-201-3778

Abstract: In the era of heterogeneous 5G networks, Internet of Things (IoT) devices have significantly
altered our daily life by providing innovative applications and services. However, these devices
process large amounts of data traffic and their application requires an extremely fast response time
and a massive amount of computational resources, leading to a high failure rate for task offloading
and considerable latency due to congestion. To improve the quality of services (QoS) and performance
due to the dynamic flow of requests from devices, numerous task offloading strategies in the area
of multi-access edge computing (MEC) have been proposed in previous studies. Nevertheless, the
neighboring edge servers, where computational resources are in excess, have not been considered,
leading to unbalanced loads among edge servers in the same network tier. Therefore, in this paper,
we propose a collaboration algorithm between a fuzzy-logic-based mobile edge orchestrator (MEO)
and state-action-reward-state-action (SARSA) reinforcement learning, which we call the Fu-SARSA
algorithm. We aim to minimize the failure rate and service time of tasks and decide on the optimal
resource allocation for offloading, such as a local edge server, cloud server, or the best neighboring
edge server in the MEC network. Four typical application types, healthcare, AR, infotainment, and
compute-intensive applications, were used for the simulation. The performance results demonstrate
that our proposed Fu-SARSA framework outperformed other algorithms in terms of service time and
the task failure rate, especially when the system was overloaded.

Keywords: Internet of Things; multi-access edge computing; task offloading; mobile edge orchestra-
tor; fuzzy logic; SARSA

1. Introduction

In recent years, the development of heterogeneous fifth-generation (5G) networks has
led to the rapid evolution of modern high technologies and has changed people’s daily lives
by providing various high-demand and intensive applications (e.g., virtual/augmented
reality (VR/AR), the internet of vehicles, mobile healthcare, cloud gaming, face/fingerprint
recognition, industrial robotics, video streaming analysis, and autonomous driving) [1–3].
These applications generate a vast amount of data and require a fast response time and large
resource capacities. Consequently, there is a significant burden on resource-constrained IoT
devices to handle these heavy computational demands and to accomplish requests quickly.
However, these devices are insubstantial with regard to their battery life, computing
capabilities, and storage capacity, and are ineffectual when performing a high number of
intensive tasks [4]. Therefore, it is crucial to offload the tasks to other powerful remote
computing infrastructures.

In conventional cloud computing, mobile cloud computing (MCC) is a prominent
model, supporting computational offloading for mobile devices [5]. By taking advantage
of the enormous computing capabilities of MCC over a wide area network (WAN), user de-
vices can send requests to powerful global cloud servers to utilize their rich computational

Sensors 2022, 22, 4727. https://doi.org/10.3390/s22134727 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22134727
https://doi.org/10.3390/s22134727
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-2329-5385
https://orcid.org/0000-0002-7671-4451
https://orcid.org/0000-0002-6080-9720
https://orcid.org/0000-0003-0184-6975
https://doi.org/10.3390/s22134727
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22134727?type=check_update&version=1

Sensors 2022, 22, 4727 2 of 29

resources for task processing. However, the long distance between the devices and core
network in the MCC network not only causes high transmission delays, data losses, and sig-
nificant energy consumption, it also limits the context-awareness of applications [6]. As a
result, MCC is unable to meet the standard requirements of delay-sensitive and real-time
applications in heterogeneous IoT environments.

To cope with these challenges, multi-access edge computing (MEC) [7], formerly
mobile edge computing, is a European Telecommunications Standards Institute (ETSI)-
proposed network architecture that brings the servers with cloud computing properties
closer to the IoT devices and deploys them at the edge of the network [8]. Unlike the
centralized nature of MCC, MEC deploys a dense and decentralized peer-to-peer network
where the edge servers are allocated in a distributed manner. MEC provides ultra-low
latency and a high-bandwidth environment which can be leveraged by IoT applications.
Moreover, MEC enhances the quality of experience (QoE) and meets the requirements of
the quality of services (QoS); for example, it provides a low execution time and reasonable
energy consumption. Additionally, MEC supports modern 5G applications and mitigates
traffic burdens, as well as lowering bottlenecks in backhaul networks. As a result, MEC
efficiently supports IoT devices in task offloading, particularly for heavy and latency-
sensitive tasks [9,10].

In spite of the substantial characteristics and potential of MEC, there have been sev-
eral issues and challenges in relation to the MEC network, as follows. First, the storage
capacities of edge servers are limited. This causes unbalanced loads and congestion among
edge servers when numerous requests from IoT devices arrive. Second, because of the
randomness and changeability of the networks, along with the long execution time of
intensive applications in edge servers, the task failure rate due to offloading significantly
rises [11,12]. Third, assigning resource allocations for task offloading, as well as developing
effective and accurate offloading decision methods, are critical challenges in MEC. Fur-
thermore, in heterogeneous IoT environments, the incoming streams of offloaded tasks
from delay-sensitive and intensive applications need to be flexibly processed. Several
approaches to resolving these issues are discussed below.

One such approach is known as the mobile edge orchestrator (MEO), which is an
orchestration embedded in MEC and which has been defined by ETSI [13]. The MEO has a
broad perspective of the edge computing system and manages the available computing
resources, network conditions, and the properties of the application [14,15]. Moreover,
the MEO selects the appropriate mobile edge hosts for processing the applications based
on constraints such as latency and inspects the available capacities of virtualization in-
frastructures for resource allocation [14]. Specifically, the MEO takes responsibility as a
decision-maker in the network. Therefore, the target servers (e.g., the local edge server,
the cloud server, and the remote edge server) for task offloading are efficiently decided by
the MEO. The flow of offloaded tasks through an MEO and a dispatcher is illustrated in
Figure 1. By achieving the topology of the network and analyzing the constraints, the MEO
chooses the suitable target servers to execute tasks in the virtual machines (VMs) of the
corresponding edge servers.

Recently, fuzzy logic has emerged as a reasonable alternative to handle orchestration
issues such as task offloading and resource allocation in edge computing networks. Edge
computing networks, such as fog computing and cloudlet computing in general, and the
MEC network in particular, are types of swiftly changing uncertain networks. Fuzzy logic
is appropriate to cope with changes of parameters, for instance, central unit processing
(CPU) utilization on a VM, which regularly changes based on the number of tasks being
executed or the bandwidth fluctuations that frequently occur when the number of users
increases [16,17]. The reasons for this are briefly described as follows. First, because the
fuzzy-logic-based approach has a lower computational complexity than other decision-
making algorithms, it is effective for solving online and real-time problems without the
need for detailed mathematical models [18]. Second, to support the heterogeneity of devices
and the unpredictability of environments, fuzzy logic sets the rules, which are based on

Sensors 2022, 22, 4727 3 of 29

well-understood principles and the use of imprecise information provided in a high-level
human-understandable format [16], and takes multiple network parameters of the network
(e.g., task size, network latency, and server computational resources) into consideration [19].
Third, fuzzy logic considers multi-criteria decision analysis to determine the suitable
servers at which IoT devices should offload the tasks [20]. Therefore, fuzzy-assisted MEO
usefully supports task offloading by deciding where to offload the incoming requests from
clients. There have been considerable works studying task offloading using the fuzzy logic
approach. The authors of [21] proposed a cooperative fuzzy-based task offloading scheme
for mobile devices, edge servers, and a cloud server in the MEC network. The authors of [22]
proposed a fuzzy-based multi-criteria decision-making problem regarding the appropriate
selection of security services. A novel fuzzy-logic-based task offloading collaboration
among user devices, edge servers, and a centralized cloud server for an MEC small-cell
network was studied in [23]. Nevertheless, these studies did not study how to find the
best neighboring edge server to which the user device should offload the task, particularly
when the network is crowded with a lot of IoT devices sending requests.

Figure 1. The flow of offloaded tasks through a mobile edge orchestrator.

On the other hand, machine learning (ML) methods have been extensively integrated
into heterogeneous 5G networks [24]. Among the ML-based approaches, such as supervised
learning, unsupervised learning, and reinforcement learning, the algorithm of reinforce-
ment learning is highly appropriate for handling problems with dynamically changing
systems in a wireless network [25]. Moreover, reinforcement learning has lately become a
promising technique for making offloading decisions [26], as well as performing resource
allocations [27], in real-time. Reinforcement learning supports the MEO in the selection of
suitable resources for applications by means of its useful features, such as its ability to learn
without input knowledge and sequential decision-making within an up-to-date environ-

Sensors 2022, 22, 4727 4 of 29

ment [28]. Additionally, Q-Learning and state-action-reward-state-action (SARSA) are two
commonly used model-free reinforcement learning techniques with different exploration
policies and similar exploitation policies [29]. A comparison of learning algorithms, such
as GQ, R learning, actor-critic, Q-learning, and SARSA, on the arcade learning environ-
ment in [30] has shown that SARSA performs the most effectively in gaining the reward
in comparison to other learning algorithms. Furthermore, a number of studies [31–34]
on task offloading using the Q-Learning and SARSA techniques have been conducted
to enhance the overall performance of the system (i.e., latency and energy consumption
minimization, utility and resource optimization). However, these studies did not take
advantage of the benefits of using neighboring edge nodes to serve offloaded tasks when
the local edge servers have run out of computational resources. In this work, we model an
MEC environment as a multi-tier system corresponding to the communication networks at
different capacities, such as a WAN, a metropolitan area network (MAN), and a local area
network (LAN). The system comprises thousands of IoT devices that continuously send
a dynamic flow of requests for offloading. The main novelty of our work is to consider
the best neighboring edge servers in which computational resources are excess for task
offloading. We take advantage of learning through the experiences of SARSA to find the
best neighboring edge servers. As a result, the load balancing among the edge servers is
balanced, and the number of failed tasks is significantly reduced when the system receives
the dynamic flow of requests from IoT devices. Moreover, we consider the use of an MEO
as a decision-maker for task offloading in our system. In SARSA learning, the MEO takes
responsibility as an agent, which decides the action. The key contributions of this paper are
summarized as follows:

• We aim to improve the rate of successfully executing offloaded tasks and to minimize
the processing latency by determining the server at which the task should be offloaded,
such as a cloud server, local edge server, or the best neighboring edge server, via a
decision-maker.

• We define the MEO as a decision-maker for flexible task offloading in the system.
The MEO manages the topology of the network and decides where the task will be
executed. The MEO performs allocations in the MAN of the network.

• A collaboration algorithm between the fuzzy logic and SARSA techniques is proposed
for optimizing the offloading decisions, which we call the Fu-SARSA algorithm. Fu-
SARSA includes two phases: (i) the fuzzy logic phase and (ii) the SARSA phase. The
fuzzy logic phase determines whether the task should be offloaded to a cloud server,
local edge server, or neighboring edge server. If the MEO chooses the neighboring
edge server to execute that task, the choice of the best neighboring edge server is
considered in the SARSA phase.

• To model the incoming task requests, we consider four groups of applications: health-
care, AR, infotainment, and compute-intensive applications. They have dissimilar
characteristics, such as their task length, delay sensitivity, and resource consumption.
We compare and evaluate the results with four opponent algorithms, considering
typical performance aspects such as the rate of task failure, service time, and VM
utilization.

• Performance evaluations demonstrate the effectiveness of Fu-SARSA, which showed
better results compared to the other algorithms.

We have organized the rest of this paper as follows. Section 2 lists the related work
on task offloading. In Section 3, we introduce the model of our proposed system and an
overview of the Fu-SARSA algorithm. We briefly describe the first and second phases of
the Fu-SARSA algorithm (i.e., the fuzzy logic phase in Section 4 and the SARSA phase in
Section 5), respectively. Section 6 shows the simulation results of our proposal. Finally, we
conclude the paper and discuss the future research approaches in Section 7.

Sensors 2022, 22, 4727 5 of 29

2. Related Work

Task offloading and resource allocation are the key features in heterogeneous IoT
networks. Based on the previous studies, the offloading decision can be classified into three
main goals: minimizing the latency [35,36], minimizing the energy consumption [35,37–40],
and maximizing the utility of the system [41–43]. The authors of [35] proposed an MEC-
assisted task offloading technique to enhance latency and energy consumption by applying
a hybrid approach: the grey wolf optimizer (GWO) and particle swarm optimization
(PSO). Sub-carriers, power, and bandwidth were taken into consideration for offloading
to minimize energy consumption. Shu et al. [36] introduced an efficient task offloading
scheme to decrease the total completion time for processing IoT applications by jointly
considering the dependency of sub-tasks and the contention between edge devices. In a
study by Kuang et al. [37], using partial offloading scheduling and resource allocation, the
energy consumption and total execution delay were optimized, while alsoconsidering the
transmission power constraints in the MEC network. The offloading scheduling and task
offloading decision issues were settled using the flow shop scheduling theory, whereas
the suboptimal power allocation with partial offloading was achieved by applying the
convex optimization method. Huynh et al. [38] formulated an optimization problem as a
mixed-integer nonlinear program problem of NP-hard complexity to minimize the total
energy consumption and task processing time in the MEC network. The original problem
can be split into two subproblems: decisions of resource allocation and computation of-
floading, solved using a particle swarm optimization approach. By considering the total
energy of both file transmission and task computing, the authors of [39] introduced an
optimization problem for efficient task offloading to optimize the energy consumption in
the MEC-enabled heterogeneous 5G network. Incorporating the various characteristics of
the 5G heterogeneous network, an energy-efficient collaborative algorithm between radio
resource allocation and computing offloading was designed. Khorsand et al. [40] formu-
lated an efficient task offloading algorithm using the Technique for Order of Preference by
Similarity to Ideal Solution (TOPSIS) and best-worst method (MWM) methodologies in
order to determine the important cloud scheduling decision. The authors of [41] proposed
joint task offloading and load balancing as a mixed-integer nonlinear optimization problem
to maximize the system utility in a vehicular edge computing (VEC) environment. The op-
timization problem was divided into two subproblems—the VEC server selection problem,
as well as the issues of the offloading ratio and computation resources. Lyu et al. [42] jointly
optimized the heuristic offloading decision, communication resources, and computational
resources to maximize the system utility while satisfying the QoS of the system. The
study of Tran et al. [43] combined the resource allocation and task offloading decisions to
maximize the system utility in the MEC network. To solve the task offloading problem,
a novel heuristic algorithm was introduced to obtain the suboptimal solution in the polyno-
mial time, whereas the convex and quasi-convex optimization methods were applied to
handle the resource allocation problem. The task length for offloading can be classified into
two categories: binary or full offloading [35,38–40,42,43] and partial offloading [36,37,41].
The tasks were either processed locally themselves or offloaded to the servers in a full
offloading, whereas in partial offloading, a part of the task was locally processed and the
other parts could be offloaded to the edge servers or a cloud server for execution.

To handle unpredictable environments with multi-criteria decision-making in IoT
heterogeneous environments, fuzzy logic has been applied in recent research [21,23,44] to
solve problems. Hossain et al. [23] proposed the fuzzy-assisted task offloading scheme
among user devices, edge servers, and a cloud server in the MEC network, using one fuzzy
logic stage with five fuzzy input variables. The authors of [21] proposed the cooperative
task offloading mechanism among mobile devices, edge servers, and a cloud server, using
eight fuzzy input parameters to achieve better performance with respect to processing
time, VM utilization, WAN delay, and WLAN delay. Basic et al. [44] proposed an edge
offloading and optimal node selection algorithm, applying fuzzy handoff control and
considering several fuzzy crisp inputs, such as processor speed, bandwidth, and latency

Sensors 2022, 22, 4727 6 of 29

capabilities. To maximize the QoE of the system, An et al. [28] leveraged the advantages of
both fuzzy logic and deep reinforcement learning Q-learning mechanisms for efficient task
offloading in the vehicular fog computing environment. Moreover, deep learning methods,
for example, in [28,29,45–49], have emerged as a potential means of efficient task offloading
in modern networks. The authors of [45] formulated the computation offloading problem
by jointly applying the reinforcement learning Q-learning approach and a deep neural
network (DNN) to obtain the optimal policy and value functions for applications in the
MEC network. Tang et al. [46] proposed a full task offloading scheme for delay-sensitive ap-
plications to minimize the expected long-term cost by combining three techniques, dueling
deep Q-network (DQN), long short-term memory (LSTM), and double-DQN. The authors
of [47] proposed a task offloading algorithm with low-latency communications, using the
deep reinforcement learning technique to optimize the throughput of the user vehicles in
highly dynamic vehicular networks. Jeong et al. [48] proposed a flexible task offloading
decision method and took the time-varying channel into consideration to minimize the
total latency of the application among edge servers in the MEC environment. To optimize
the total processing time, a Markov decision process (MDP) technique was applied, and to
handle the MDP problem, they designed a model-free reinforcement learning algorithm.
To block the attacks from privacy attackers with prior knowledge, the authors of [49]
proposed an offloading and privacy model to evaluate the energy and time consumption
and privacy losses for intelligent autonomous transport systems. Taking the risk related
to location privacy into consideration, a deep reinforcement learning method was ap-
plied and a privacy-oriented offloading policy was formalized to solve these problems.
Alfakih et al. [29] applied the SARSA-based reinforcement learning method for task offload-
ing and resource allocation to optimize the energy consumption and processing time of
user devices in an MEC network. However, most of these studies did not consider the best
neighboring edge server for task offloading in cases that all VMs in the local edge node
are being used. Moreover, to ensure the QoS and QoE of the system, the task throw rate is
considered in our study.

3. System Model and Overview of the Fu-SARSA Algorithm
3.1. System Model

We propose an MEC network with three tiers: the IoT devices tier, the edges tier,
and the centralized cloud tier. We depict the proposed system in Figure 2. The IoT devices
represent the first tier, in which they send requests to edge servers for task offloading.
The edge servers, together with a decision-maker, the MEO, are built in the second tier
of the network. Devices connect to the edge servers via a wireless local area network
(WLAN), whereas the edge servers are associated with an MAN. Moreover, the MEO is
deployed as a decision-controller in the network center to handle applications’ offloading
decisions. In this mechanism, a user can transfer the request to (i) a local edge server,
which is the nearest edge server to the device (ii); a global cloud server, which has vast
computation capabilities in the highest tier of the network; and (iii) a neighboring edge
server (a.k.a., a remote edge server). In our scenario, the MEO chooses the best neighboring
edge server to accomplish the application. Finally, the centralized global cloud server is
involved in the third tier, which can be accessed through the WAN. We assume that the
system includes N IoT devices and each device generates certain tasks. The task can be
represented as Di , (κi, ci, Tmax

i), where κi denotes the size of the computation input data,
ci is the computational resource requirement for task processing (i.e., the number of CPU
cycles needed to compute one bit of the whole task), and Tmax

i denotes the maximum
tolerable latency that is allowed to accomplish the task. Multiple processing tasks that
exceed the limitation Tmax

i could lead to the congestion of the whole network. We assume
that each MEC server owns a host, which runs a specific number of VMs. On the other
hand, the storage capacity and computing resources in a centralized global cloud are much
more powerful than those in an MEC server. The main goal of this research was to design
an effective task offloading and resource allocation scheme in the MEC to reduce the overall

Sensors 2022, 22, 4727 7 of 29

latency and task failure rate. In this respect, we propose the Fu-SARSA algorithm, which is
a task offloading decision algorithm, combining the fuzzy logic and SARSA techniques.
We discuss Fu-SARSA in detail in Section 3.2 below.

Figure 2. Proposed multi-tier MEC system architecture.

3.2. Overview of Fu-SARSA Algorithm

In our study, we propose a flexible offloading decision algorithm, Fu-SARSA, the
architecture of which is described in Figure 3. Fu-SARSA is divided into two phases: a
fuzzy logic phase and SARSA phase. The fuzzy logic phase selects the server on which
the task should be offloaded, such as a cloud server, local edge server, or neighboring
edge server. If the MEO chooses the neighboring edge server to execute that task, the best
neighboring edge server will be considered in the SARSA phase.

3.2.1. Fuzzy Logic Phase

Due to the rapidly changing, uncertain nature of the MEC system, it is challenging
to formulate accurate mathematical models [17,50]. Moreover, satisfying the multiple
constraints of an optimization problem is not a straightforward problem in mathematical
models; normally, a robust model cannot be detected because of the difficulty of the task [20].
Accordingly, it is not reasonable to apply the conventional offline optimization techniques
since the number of incoming requests is not known in advance [20,23]. To settle these issues
in unpredictable environments, the fuzzy-logic-enabled technique is a promising alternative.
The main reason for this is that it easily handles the multi-criteria decision-making issue
by analyzing multiple parameters under the same network [51,52]. The objective of our
proposed two-stage fuzzy-based algorithm is to identify a target server for task offloading
by examining different factors, for example, MAN delay, WAN bandwidth, length of the
task, local edge VM utilization, remote edge VM utilization, and delay sensitivity.

Sensors 2022, 22, 4727 8 of 29

Figure 3. Fu-SARSA algorithm architecture.

To concisely describe how the first phase of Fu-SARSA works, we first explain the
global fuzzy logic system (FLS). It is apparent that our proposed two-stage fuzzy-logic-
based algorithm involves two FLSs. Both FLSs go through three main steps, fuzzification,
fuzzy inference, and defuzzification, as shown in Figure 3. Specifically, a collection of
reasonable IF-AND-THEN rules, followed by conclusions, is used to create the fuzzy rule
set. In general, FLS maps the uncertain crisp input variables to a single value, the crisp
output [53]. In the simple FLS, the crisp input variables have to go through three main
operations: fuzzification, inference, and defuzzification. In our work, the crisp variables
are properties of the network at a certain time, such as WAN bandwidth, task sensitivity,
and average VM utilization, whereas the offloading decision is determined based on the
value of the crisp output. We summarize the steps of the FLS as follows [20,53–56]:

1. In the fuzzification step, the crisp input set is transformed into fuzzified sets. The crisp
variable is mapped to the linguistic variable. The linguistic variable can be split into
linguistic terms. The membership functions are used to determine each linguistic
term’s value.

2. In the fuzzy inference step, the inference engine interprets the fuzzy input set based
on the fuzzy rule collection to create the fuzzy output set.

3. In the final step, defuzzification obtains a single value from the fuzzy inference results.
This process may be carried out by applying any defuzzification method.

Any type of crisp input variable can be considered in the fuzzy-logic-based system.
In our study, we define the crisp variables that have significant impacts on the performance
of the system. Therefore, these variables play a decisive role in the task offloading process.
Each task will go through the FLS(s) to find a suitable place for offloading. According to the
profile of the applications that create the demands, in the first FLS, we take the MAN delay,
WLAN delay, local-edge VM utilization, and remote-edge VM utilization into consideration
as the crisp input variables. Based on their parameters, the offloading decision for a task
will be either the local edge server or the neighboring edge server. If the task decision
opts for the local edge server, that task does not have to go through the second FLS step.
Otherwise, the MEO can decide to offload the task to the cloud server or neighboring edge

Sensors 2022, 22, 4727 9 of 29

server in the second FLS step. First, we represent the importance of crisp input variables in
the first FLS to the offloading decision, as follows [20]:

• WLAN delay: The parameter of WLAN delay needs to be considered, since the first
tier of the network is covered by WLAN.

• MAN delay: To decide whether the task should be offloaded to the local edge server
or the remote edge server, the parameter of MAN delay needs to be considered. If the
MAN resources are packed due to the numerous requests to edge servers, the local
edge server is more advantageous for offloading.

• Local edge VM utilization: The shortage of computational resources in the local edge
server may cause offloading failure; therefore, local edge VM utilization is taken into
account. Since the generated tasks are not evenly distributed, there must be some edge
servers with excess resources, whereas the others have no resource capability for task
processing. If the MAN capacity is comfortable, distributing the requests between the
edge servers absolutely enhances the performance of the system.

• Remote edge VM utilization: If neighboring edge VM utilization is available and the
local edge server capacity is used up, the neighboring edge sever should be the target
server for offloading the task if the MAN delay is low.

After the first FLS is completed, any tasks with offloading decisions with regard to the
neighboring edge server have to go through the next FLS for a decision to made as to their
execution at either a cloud server or any neighboring edge server. In addition, the WAN
bandwidth, the VM resources of edge servers, and the characteristics of resource-intensive
computational tasks play an important role in offloading decisions. Therefore, we consider
four input variables for the second FLS: WAN bandwidth, the length of the task, the average
VM utilization among edge servers, and the delay sensitivity of the task, which are briefly
described as follows:

• WAN bandwidth: To decide whether the task should be offloaded to the cloud server
or not, the WAN bandwidth is a key variable that has to be considered. If the WAN
communication delay is higher than the QoS requirement of the task or the network is
too overloaded to cause data losses, the offloading decision should send the task to an
edge server, rather than to the cloud server.

• Average VM utilization: This variable represents the mean utilization of all VMs
running on servers in the network. Therefore, the remaining computational resources
among edge servers can be calculated. If the utilization is above a certain threshold,
the edge servers are considered packed due to the high number of offloaded tasks.
Consequently, there is no better server than the powerful cloud server for offloading
the task.

• Size of the task: The service time is determined based on the length of the tasks.
The task length needs to be analyzed as a metric for offloading decisions. A heavy
task should be transferred to a powerful cloud server to mitigate the resource burden
among edge servers. In our work, the task length depends on the type of application.
In the majority of cases, a 30 giga instructions (GI) compute-intensive application
should be processed in a cloud server, whereas a 6 GI healthcare application is likely
to be executed in an edge server.

• Delay sensitivity of the task: This variable refers to the tolerance of the task as it may
take a longer time to execute due to network congestion or server utilization levels.
The delay sensitivity of the request is determined by the application parameters.

We briefly explain the two-stage fuzzy-logic-based task offloading algorithm in
Section 4.

3.2.2. SARSA Phase

Reinforcement learning is one of three broad categories of machine learning, which
takes appropriate actions to maximize the total cumulative reward of the agent in certain

Sensors 2022, 22, 4727 10 of 29

states. Unlike supervised learning, instead of learning from a training set with answer keys,
the model is trained to yield the desired output, whereas the reinforcement learning agent
decides on a suitable action to perform the requests. In other words, the agent manages to
learn from its experience without the training dataset [57]. Reinforcement learning uses
reward and punishment as signs of positive and negative actions. Reinforcement learning
consists of two main entities: the agent and the environment. The agent determines the
appropriate action at a specific state of the environment, whereas the environment is the
specific world with which the agent interacts. Based on the action obtained from the policy,
the environment rewards the agent for the action performed and generates the next state.

Q-learning and SARSA are two common temporal difference (TD) reinforcement
learning algorithms. The Q-value functions of the Q-learning and SARSA algorithms are
formulated in Formulas (1) and (2), respectively.

Q(st, at)← Q(st, at) + α[rt + γ max
a

Q(st+1, a)−Q(st, at)] (1)

Q(st, at)← Q(st, at) + α[rt + γQ(st+1, at+1)−Q(st, at)] (2)

where st and at are the state and action at the time t, st+1 and at+1 are the state and action
at the time t + 1, rt is the reward value, α is the learning rate, and γ is the discount factor.

Q-learning is an off-policy technique, whereas SARSA is an on-policy technique. Policy
π specifies an action a that is taken in a state s. More precisely, π is a probability π(at | st)
that an action a is taken in a state s. In off-policy learning, the Q-value function is achieved
through performing actions (e.g., random actions). The Q-Learning algorithm chooses the
best action a among a set of actions, whereas the action in the SARSA algorithm is taken
according to policy π, for example, the epsilon-greedy (ε-greedy) policy. Since the learning
is dependent on the current action by the current policy, SARSA is considered an on-policy
learning technique. A comparison of Q-Learning and SARSA is briefly represented in
Table 1.

Reinforcement learning supports the software agents in intelligently deciding upon the
best action in a particular state of the environment, in order to maximize their performance.
Therefore, in this phase of our proposed algorithm, we determine the best neighboring
edge server for task offloading using one of the reinforcement learning-based methods,
that is, SARSA learning. The agent–environment interaction in our system is described in
Figure 4. The MEO takes responsibility as a decision-maker in the MEC network. When
the MEO receives the request from a task for an offloading decision, it is considered an
agent which needs to choose the best offloading action for that task. The task offloading
scenario occurs in the IoT heterogeneous MEC network; therefore, the parameters in the
MEC refer to the environment for the agent. We precisely describe the SARSA-supported
task offloading algorithm in Section 5.

Figure 4. Agent–environment interaction in the network.

Sensors 2022, 22, 4727 11 of 29

Table 1. Q-Learning and SARSA comparison.

Q-Learning SARSA

Learning type Off-Policy On-Policy

Next action decision Next action is determined based on
the best action in a set of actions a

Next action is determined based on
policy π (e.g., ε-greedy policy)

Q-table update rule Updated based on the greedy
policy from the Q-table

Updated based on the current state,
current action, obtained reward,

next state, and next action

Convergent

Converged to an optimal solution
under the assumption that,

after generating experience and
training, the system switches over

to the greedy policy

Converged to an optimal solution
under the assumption that the

system keeps following the same
policy that is used to achieve

the experience

Application cases

Preferable in situations where the
agent’s performance is not

considered during the training
process, but switches to learn an
optimal greedy policy eventually

Preferable in situations where an
agent’s performance is taken into

consideration during the process of
learning and generating

the experience

Popularity More popular Less popular

4. Two-Stage Fuzzy-Logic-Based Task Offloading Algorithm

In this section, we briefly present the three main steps of the fuzzy reasoning mecha-
nism: fuzzification, inference, and defuzzification. In an FLS, an inference engine works
with fuzzy rules. An FLS maps crisp input variables to a crisp output using the theory
of fuzzy sets [58]. In our work, we use the remote edge VM utilization, local edge VM
utilization, WLAN delay, and MAN delay as crisp input variables for the first FLS, whereas
the WAN bandwidth, average VM utilization among edge servers, task size, and delay
sensitivity of the incoming task are the crisp input variables used for the second FLS. Based
on the crisp outputs in both FLSs, the MEO chooses a suitable server, either a local edge
server, a global cloud server, or the best remote edge server for an incoming task.

4.1. Fuzzification

Fuzzification is the conversion procedure that maps a crisp input value to a fuzzy
value using the membership functions. Both FLSs in our work follow the same fuzzy logic
steps, with four crisp input variables. We operate on input variables in the first and second
FLS, defined as follows:

F1 = {ρ, η, δ, ϕ} (3)

where ρ is the WLAN delay, η is the MAN delay, δ is the local edge VM utilization, and ϕ is
the neighboring edge VM utilization.

F2 = {σ, υ, κ, τ} (4)

where σ is the WAN bandwidth, υ denotes the amount of VM resources that are being used
on the edge server, κ is the length of the incoming task, and τ is the delay sensitivity of the
incoming task.

An FLS uses non-numerical linguistic variables originating from natural language,
rather than using numerical values. Linguistic variables use different linguistic values for
each indicator. We use low (L), medium (M), and high (H) as linguistic values for crisp
input variables ρ, η, δ, ϕ, σ, υ, and τ. For the length of the incoming task κ, we define light
(L), normal (N), and heavy (H) as linguistic values. The delay sensitivity of the task τ is
evaluated by any real number from 0 to 1; therefore, this crisp input variable does not have
the base unit. We describe the crisp input variables of both FLSs in Tables 2 and 3.

Sensors 2022, 22, 4727 12 of 29

Table 2. Related parameters in the fuzzification of the first FLS.

Input Variable Notation Linguistic Value Membership
Function Type Range

WLAN Delay (ms) ρ
low left-shoulder 0, 1, 4

medium triangular 2, 7, 12
high right-shoulder 10, 13, >13

MAN Delay (ms) η
low left-shoulder 0, 1, 4

medium triangular 2, 7, 12
high right-shoulder 10, 13, >13

Local edge
VM utilization (%) δ

low left-shoulder 0, 20, 40
medium triangular 30, 50, 70

high right-shoulder 60, 80, >80

Remote edge
VM utilization (%) ϕ

low left-shoulder 0, 20, 40
medium triangular 30, 50, 70

high right-shoulder 60, 80, >80

Table 3. Related parameters in the fuzzification of the second FLS.

Input Variable Notation Linguistic Value Membership
Function Type Range

WAN bandwidth
(Mbps) σ

low left-shoulder 0, 2, 4
medium triangular 3, 5, 7

high right-shoulder 6, 8, >8

Average VM
utilization (%) υ

low left-shoulder 0, 20, 40
medium triangular 30, 50, 70

high right-shoulder 60, 80, >80

Task Length
(GI) κ

light left-shoulder 0, 4, 8
normal triangular 6, 12, 18
heavy right-shoulder 16, 20, >20

Delay sensitivity of
the task τ

low left-shoulder 0, 0.2, 0.4
medium triangular 0.3, 0.5, 0.7

high right-shoulder 0.6, 0.8, 1

During both the fuzzification and defuzzification FLS steps, membership functions
are utilized. A set of membership functions for each variable is defined to fuzzify the crisp
input into fuzzy linguistic terms. The membership function can be presented in a variety
of forms, such as trapezoidal, left/right-shoulder, Gaussian, piecewise linear, triangular,
singleton, and sigmoid forms [53]. In our study, we use the combination of triangular
and left/right shoulder forms to represent the membership functions. The value of the
membership function could be any real number between 0 and 1. We define the formulas
of each type of membership function as follows:

µtriangular(x) =

0 i f x 6 a
x−a
b−a i f a < x 6 b
c−x
c−b i f b < x < c
0 i f x > c

(5)

µle f t−shoulder(x) =

1 i f x < a
b−x
b−a i f a < x < b
0 i f x > b

(6)

Sensors 2022, 22, 4727 13 of 29

µright−shoulder(x) =

0 i f x 6 a
x−a
b−a i f a < x < b
1 i f x > b

(7)

By using a set of membership functions, the fuzzifier determines the fuzzy terms for
each input variable (WAN bandwidth, average VM utilization, length of the task, and delay
sensitivity of the task), given as follows.

Fσ(x) = [µL
σ(x), µM

σ (x), µH
σ (x)] (8)

Fυ(x) = [µL
υ(x), µM

υ (x), µH
υ (x)] (9)

Fκ(x) = [µL
κ (x), µN

κ (x), µH
κ (x)] (10)

Fτ(x) = [µL
τ(x), µM

τ (x), µH
τ (x)] (11)

An example of a linguistic variable with linguistic values and a set of membership
functions—specifically, the variable of MAN delay—is depicted in Figure 5. As an example,
we assume that the crisp input parameter of MAN delay η is 3 ms. The value of the
left-shoulder membership function is µL

η(x) = 4−3
4−1 = 1

3 . To calculate the value of µL
η(x),

we determine the range value of crisp variables based on the range column in Table 2 and
apply the Formula (6). Therefore, the values of a, x, and b will be 1, 3, and 4, respectively.
As a < x < b, the value of µL

η(x) is equal to b−x
b−a . Similarly, the values of a, x, and b for the

right-shoulder membership function are 10, 3, and 13. Since x < a, µH
η (x) = 0. The last

membership function µM
η (x) has a triangular shape. We use the values of x, a, b, and c (i.e.,

3, 2, 7, and 12) to calculate the value of µM
η (x), which is equal to 0.2. As a result, the values

of membership functions with corresponding low, normal, and high linguistic values are
calculated, which are 1

3 , 0.2, 0, respectively, and Fη(x) = [1
3 , 0.2, 0]. We define the set of

membership functions as each input variable of the first and second FLSs in Figures 6 and 7.

Figure 5. Example of a linguistic variable and its related components.

Sensors 2022, 22, 4727 14 of 29

(a) (b)

(c) (d)
Figure 6. Set of membership functions for each input variable in the first FLS: (a) WLAN delay.
(b) MAN delay. (c) Local edge VM utilization. (d) Remote edge VM utilization.

(a) (b)

(c) (d)
Figure 7. Set of membership functions for each input variable in the second FLS: (a) WAN bandwidth.
(b) Average VM utilization. (c) Task length. (d) Delay sensitivity of the task.

4.2. Fuzzy Inference

Fuzzy inference is an important process that maps the fuzzified inputs to fuzzy outputs
using a set of fuzzy logic rules. The fuzzy rule base contains a series of IF-AND-THEN
rules, followed by the conclusions [53]. Different linguistic variables are involved in each
fuzzy rule. For instance, IF the average VM utilization is low AND the delay sensitivity of
the task is low, THEN the task is offloaded to a remote edge server. To determine the fuzzy

Sensors 2022, 22, 4727 15 of 29

rules, we vary and use empirically fuzzy rule sets and choose the best rule combinations
via computational experiments [20,23]. The number of fuzzy rules is n = 34 = 81, since
there are four crisp input variables with three linguistic values in each FLS of our proposed
system. Therefore, a total of 162 rules are applied to the fuzzy inference system of the whole
system. Table 4 shows an example of empirically fuzzy rules for the placement problem.
Since both FLSs work in the same manner, we take the second FLS as an example.

Table 4. Example of fuzzy rules for the second FLS.

Rule Index σ υ κ τ Decision

R1 medium high normal high cloud
R2 high medium heavy low cloud
R3 high high heavy high cloud
R4 low low light high remote edge
R5 low medium light high remote edge

Normally, in inference steps, the activation, aggregation, and accumulation methods
are applied. In the aggregation step (a.k.a., the combination step), we apply minimum and
maximum functions for AND and OR operators [20,59]. The activation step determines how
the evaluated result of the IF part is utilized to the THEN part. Among the most commonly
used activation operators, such as minimum and product, we chose the minimum function
in our work [20,60,61]. Lastly, the accumulation method defines the combination of the
multiple rules in a set of rules [60] by using maximum or minimum functions. In our work,
we use the maximum function. In sum, the fuzzy inference system maps fuzzy input values
to a fuzzy output value through steps using three different methods (i.e., aggregation,
activation, and accumulation). The fuzzy output values µcloud and µremoteedge for offloading
decisions, defined using the maximum function in the accumulation method, are given
as follows.

µcloud = max
{

µR1
cloud, µR2

cloud, ..., µRn
cloud

}
(12)

µremoteedge = max
{

µR1
remoteedge, µR2

remoteedge, ..., µRn
remoteedge

}
(13)

The general formula of the minimum function in the aggregation and activation
methods is given as follows.

µRn
i = min

{
µLσ

σ (p), µLυ
υ (q), µLκ

κ (r), µLτ
τ (s)

}
(14)

where i refers to offloading decisions either to the cloud server or the remote edge server.
The variables p, q, r, and s represent the crisp input parameters of crisp input variables σ, υ,
κ, and τ, respectively. Lσ, Lυ, Lκ , and Lτ are linguistic values of σ, υ , κ, and τ in the rule
Rn, respectively.

We explain the fuzzy inference process by using an example. We assume that only
five rules are defined, as shown in Table 4 and the values of the WAN bandwidth, average
VM utilization, task length, and delay sensitivity of the task values are 8 Mbps, 70%, 17 GI,
and 0.9, respectively. We analyze the fuzzy output µcloud in this example, so rules from R1
to R3 are considered. The minimum functions utilized in the aggregation and activation
steps are as follows:

µR1
cloud = min

{
µM

σ (8), µH
υ (70), µN

κ (17), µH
τ (0.9)

}
µR2

cloud = min
{

µH
σ (8), µM

υ (70), µH
κ (17), µL

τ(0.9)
}

µR3
cloud = min

{
µH

σ (8), µH
υ (70), µH

κ (17), µH
τ (0.9)

}

Sensors 2022, 22, 4727 16 of 29

We can then obtain the value of fuzzy output µcloud based on µR1
cloud, µR2

cloud, µR3
cloud using

the maximum function:

µR1
cloud = min{0, 0.5, 0.167, 1} = 0

µR2
cloud = min{1, 0, 0.25, 0} = 0

µR3
cloud = min{1, 0.5, 0.25, 1} = 0.25

µcloud = max
{

µR1
cloud, µR2

cloud, µR3
cloud

}
= max{0, 0, 0.25} = 0.25

4.3. Defuzzification

The last step in FLS is the defuzzification step, which converts the fuzzy output
obtained by the fuzzy inference system to a single crisp value. Centroid defuzzification
is applied in the defuzzification step, which determines the center of the inferred fuzzy
outputs. Several methods are utilized for centroid calculation, such as the weighted
fuzzy mean (WFM), mean of maximum (MOM), fuzzy clustering defuzzification (FCD),
and center of gravity (COG) methods [62]. In our work, we use the COG method, which
returns the center of gravity under the curve [53]. Mathematically, it is obtained as follows:

ω =

∫
xµ(x)dx
µ(x)dx

(15)

After the calculation is complete, the crisp output value ω is obtained, which has a
value between 0 and 100. Since our proposed algorithm has two FLSs, we define the impact
of two crisp outputs ω1 and ω2 on offloading decisions as follows.

Decision1 =

{
local edge server, ω1 < 50
candidate edge server, otherwise

(16)

Decision2 =

{
remote edge server, ω2 < 50
cloud server, otherwise

(17)

The membership function for offloading decisions is shown in Figure 8a. We assume
that the values of inferred fuzzy outputs µcloud and µremoteedge are 0.5 and 0.2. Applying
Equation (15), the result of crisp output ω2 will be approximately 57, as shown in Figure 8b.
Based on the value of the output result, the MEO decides to send the task to the cloud.

(a) (b)
Figure 8. Defuzzification: (a) Membership functions of fuzzy outputs. (b) Crisp output calculation
using COG.

Sensors 2022, 22, 4727 17 of 29

In conclusion, we briefly represent the first phase of our proposed algorithm Fu-
SARSA, which is the two-stage fuzzy-logic-based task offloading algorithm in Algorithm 1
with the time complexity O(1) and space complexity O(1).

Algorithm 1 Two-Stage Fuzzy-Logic-Based Task Offloading Algorithm

Input: The incoming task, T

Output: Offloading decision target, O

1: The first FLS starts;
2: MEO reads the network topology (ρ, η, δ, ϕ);
3: Calculate the crisp output ω1 ← Equation (15);
4: if ω1 < 50 then
5: O← Local edge server;
6: The first FLS ends;
7: else
8: The first FLS ends; the second FLS starts;
9: MEO reads the network topology (σ, υ, κ, τ);

10: Calculate the crisp output ω2 ← Equation (15);
11: if ω2 < 50 then
12: O← Neighboring edge server;
13: else
14: O← Cloud server;
15: end if
16: The second FLS ends;
17: end if
18: return O;

5. SARSA-Supported Task Offloading Algorithm

In the second phase of our proposed algorithm, Fu-SARSA, we apply the SARSA
reinforcement learning algorithm to find the best neighboring edge servers for task offload-
ing. The MEO decides on the edge server used for processing a task by considering the
environment of the network, based on the MAN parameters. We define the transmission
model and computation model in Section 5.1 and apply the SARSA-based reinforcement
learning algorithm to support the task offloading in Section 5.1.

5.1. Communication Model and Computation Model

We define tjk
i as representing the time it takes to transmit the requested task from the

local edge server j connecting to the IoT device i to the neighboring edge server k. The task
transmission time tjk

i is formulated as follows:

tjk
i =

κi
RMAN

+ tjk
MAN (18)

where κi is the size of the input data and RMAN is the transmission rate in the MAN.
The MAN propagation delay is defined as follows:

tjk
MAN =

djk

sMAN
(19)

Sensors 2022, 22, 4727 18 of 29

where sMAN is the wave propagation speed and djk is the distance between the edge servers

j and k and is calculated as
√
(xj − xk)2 + (yj − yk)2. (xj; yj) and (xk; yk) are the coordinates

of edge servers j and k, respectively.
Let ti

k denote the computation time of the task that was requested from IoT device i in
the edge server k. ti

k is formulated as follows:

tk
i =

ci

f k
i

(20)

where ci is the computational resources required for task processing (i.e., the number
of CPU cycles needed to compute one bit of the whole task), and f i

k is the amount of
computational resources that the edge server k assigns to the IoT device i.

In our model, the MEO will determine whether the tasks will be executed on the
edge server, cloud server, or neighboring edge server. However, the best neighboring edge
server is considered to minimize the latency of the task and to balance the load balancing
among edge servers. The total processing delay of a task generated from the IoT device i is
as follows:

T jk
i = tjk

i + tk
i (21)

We aim to minimize the latency of each task while guaranteeing a stable balance
among the edge servers, which are managed by the MEO. Define x = {xjk

i } as the vector
of the neighboring server selection decision and f = { fij} as the computational resource
vector. In the MEC network scenario, M edge servers serve the offloading needs of N IoT
devices. We formulate the optimization problem as follows:

max
x,f

N

∑
i=1

Ti (21)

s.t. Ti ≤ Tmax
i (22a)

M

∑
j=0

xij = 1 (22b)

0 ≤
N

∑
i=1

f k
i xjk

i ≤ Fk (22c)

RMAN ≥ Rmin
i (22d)

xjk
i ∈ {0, 1} (22e)

The first Constraint (22a) guarantees that the processing time for a task cannot exceed
the tolerable latency allowed to accomplish the task, Tmax

i . Constraints (22b) and (22e) state

that each device can offload the task to only one edge server. If the value of xjk
i equals

zero, the task cannot be offloaded to the edge server k. Constraint (22c) ensures that the
total computational resources assigned to all tasks on edge server k do not exceed the total
computation resources of this server. Constraint (22d) ensures that the transmission rate of
the IoT device i is greater than the minimum requirement of the task transmission rate.

The integer constraint xjk
i makes the optimization problem a mixed-integer, nonlinear

programming problem, which is in general non-convex and NP-hard. Solving this problem
using traditional algorithms has become challenging for high-complexity networks and
the algorithms’ performance is closer to the bottleneck [63]. Therefore, we apply the
SARSA-based reinforcement learning algorithm to settle the problem.

Sensors 2022, 22, 4727 19 of 29

5.2. SARSA-Supported Offloading Decision

The term SARSA represents a quintuple (st, at, r, st+1, at+1), in which new actions and
states are sequentially updated. In our system, the MEO receives the requests for task
offloading. By reading and considering several important parameters of network topology
at the current state st, the MEO agent decides on the best offloading action at for the request.
In SARSA, an ε-greedy policy is implemented to decide the action of the agent. The ε-greedy
policy is a simple method to balance exploration and exploitation by randomly choosing
between exploration and exploitation. Normally, the agent exploits most of the time in the
case that ε is selected as a small number, close to zero. Therefore, in our work, the agent
chooses the best action with a probability of 1− ε. As soon as an action is completed,
the reward is achieved based on the reward function, and the new Q-value is updated. The
Q-value is iteratively updated for each state–action pair using the Bellman equation until
the Q-function converges to the optimal Q-function, Q∗. The Bellman Optimality equation
is defined as below:

Q∗(s, a) = E[rt + γ q∗(st+1, at+1)] (23)

To ensure that the Q-value converges to an optimal Q-value Q∗, for the given state-
action pair, the value of Q should be near the right-hand side of the Bellman equation.
The new Q-value for the state–action pair at a certain time is defined as follows:

Q∗(s, a) = (1− α)q(s, a) + α(rt + γq(st+1, at+1)) (24)

The state, action, and reward function of the SARSA-supported task offloading process
are given below:

(1) State
At the beginning of the state transition, the properties of the environment are observed

by the agent. The state of the environment is defined as follows:

si(t) , (κi, η, υ, ϕM
k , (xM

k ; yM
k)) (25)

where κi is the size of the task, η is the MAN delay, υ is the average VM utilization of the
edge servers, ϕM

k represents the set of the neighboring VM utilization of each edge server
k ∈ M, (xM

k ; yM
k) contains the set of coordinates of each edge server k ∈ M.

(2) Action
For each time step t, the MEO decides on the task offloading action according to the

ε-greedy policy. If the MEO chooses an action using the exploiting method, the task will
be offloaded to the nearest neighboring edge server with excess computational resources.
If the MEO chooses an action using the exploring method, the task is offloaded to the edge
server with the lowest VM utilization. We define the actions as follows:

a = {φ1, φ2} (26)

where the action φ1 offloads the task to the nearest neighboring edge server with the lowest
VM utilization, and φ2 offloads the task to the edge server with the lowest VM utilization.
In our study, we consider that the action φ1 is the best action. The agent uses a probability
of 1− ε to select the best action.

(3) Design of the reward function
Following the agent-environment interaction during the state t, the agent receives

feedback from the environment, that is, reward r, which reflects how effectively the agent
learns from the environment. In a reinforcement learning algorithm, the reward function
is normally designed based on the objectives of the system. We design a negative reward
function to match the goals of our proposed system model, such as minimizing the task
failure rate and the processing time of the task. The aim of the reward function is to evaluate
the effectiveness of the actions of the agent. In fact, the value of the reward reaches the
state of convergence after a certain episode. The faster the values of reward converge,

Sensors 2022, 22, 4727 20 of 29

the more effectively the agent learns from the environment. The values of the reward vary
for different actions, defined as follows:

rt(st, at) = −λφ(dr + Ti
jk)− ρ (27)

where dr is the distance reward when the task is offloaded from the local edge server j
to the neighboring edge server k, and Ti

jk is the task processing delay. λφ denotes the
satisfactory variable, which has a higher value if the agent chooses the best action. ρ is
the penalty variable applied when the task is unsuccessfully offloaded. Let djk denote the
distance between edge servers j and k. As the edge servers are uniformly distributed in the
network, we can calculate the distance between the two furthest edge servers, that is, dmax.
The distance reward is formulated as follows:

dr = (
djk

dmax
)

1
2 (28)

In this paper, we propose the SARSA-supported task offloading algorithm to obtain
the best neighboring edge server for task offloading. The algorithm’s process is shown in
the Algorithm 2 with time complexity O(T) and space complexity O(SAH), where T is the
total number of steps performed by the agent, S is the number of states, A is the number of
actions, and H is the number of steps per episode [64].

Algorithm 2 SARSA-Supported Task Offloading Algorithm

Input: The incoming tasks for offloading
Output: Efficient offloading decision with latency minimization

1: Initialize the network parameters← Equation (25);
2: Initialize the Q-value. Set Q-value to 0;
3: for episode = 1 do until convergence
4: MEO reads the current network state s;
5: Observe the state s;
6: for each step in episode do
7: Select action a = {φ1, φ2} for task i using ε-greedy policy;
8: Take action a, calculate reward rt;
9: rt ← Equation (27);

10: Observe next state st+1;
11: st+1 ←MEO reads the new state;
12: Update Q-value: qnew(s, a) = (1− α)q(s, a) + α(rt + γq(st+1, at+1));
13: endfor
14: endfor

6. Performance Evaluation

For the network simulation, we used a realistic simulation that enabled multi-tier edge
computing, named EdgeCloudSim [65]. To attain a more realistic simulation environment,
EdgeCloudSim was used to perform an empirical study for the WLAN and WAN using
real-life properties. Furthermore, the MAN delay was achieved using a single server queue
model with Markov-modulated Poisson Process (MMPP) arrivals. The VM numbers per
edge and cloud server were 8 and 4, respectively. The simulation parameters for the MEC
network are briefly presented in Table 5.

Sensors 2022, 22, 4727 21 of 29

Table 5. Simulation parameters [65].

Parameter Value

Simulation time/warm-up period 33/3 min
Minimum/maximum number of IoT devices 250/2500
Step size of IoT device count 250
Number of edge/cloud servers 14/1
Number of VMs per edge/cloud server 8/4
Number of cores per edge/cloud VM CPU 2/4
VM CPU speed per edge/cloud 10/100 GIPS
Mobility model Random way point
MAN bandwidth MMPP/M/1 model
WAN/WLAN bandwidth Empirical
LAN propagation delay 5 ms
Learning rate 0.001
Epsilon 0.1
Discount factor 0.5

To evaluate this proposal, we studied numerous scenarios with different numbers of
IoT devices. Specifically, the minimum and the maximum number of IoT devices were 250
and 2500, respectively. The difference in IoT devices between the two consecutive scenarios
was 250 devices. In a real-world generic edge computing environment, IoT devices generate
various types of applications. However, to decide on the application types, we considered
the most studied edge computing use cases in the recent research. We used four typical
types of applications for more realistic simulations: healthcare, augmented reality (AR),
infotainment, and compute-intensive applications. Specifically, first, a health application
that uses a foot-mounted inertial sensor was studied to analyze users’ walking patterns
in [66]. Second, the authors of [67] proposed an AR application on Google Glass, which
is a head-mounted intelligent device that can be worn as wearable computing eyewear.
Third, Guo et al. [68] proposed vehicular infotainment systems for driving safety, privacy
protection, and security. Finally, to optimize the delay and energy consumption, compute-
intensive services were proposed in [69]. The characteristics of these application types are
described in Table 6. The use percentage of the application shows the portion of IoT devices
generating this application. The incoming tasks were distributed over time based on the
task interval indicator; for example, the MEO would receive a request for a healthcare
application every 3 s. The delay sensitivity indicator measured the delay sensitivity of the
task. The AR application was assumed to be a delay-sensitive application since its delay
sensitivity value was 0.9, whereas the compute-intensive case was delay-tolerant with a
very low delay sensitivity value of 0.15. The IoT devices implemented applications during
the active period and rested during the idle period. The percentage of VM utilization on
edge or cloud servers was subject to the length of the task.

Table 6. Parameters of application types [65].

Healthcare AR Infotainment Compute-
Intensive

Usage percentage (%) 20 30 30 20
Task interval (sec) 3 2 7 4
Delay sensitivity 0.6 0.9 0.4 0.15
Active/Idle period (sec) 45/90 40/20 30/45 60/120
Upload/Download data (KB) 20/1250 1500/25 25/1000 2500/200
Task length (GI) 6 9 15 30
VM utilization on edge (%) 4 6 10 20
VM utilization on cloud (%) 0.4 0.6 1 2

To verify its performance, we compared our proposal with other task-offloading
approaches: utilization, online workload balancing (OWB), a fuzzy-based competitor, and

Sensors 2022, 22, 4727 22 of 29

a hybrid approach. The utilization approach depended on the local VM utilization threshold
in the decision as to whether a task should be offloaded to either the remote edge server
or a centralized cloud. By considering the lowest VM utilization of any edge server in the
network, the OWB approach preferred to offload the task to these servers. The fuzzy-based
competitor [70] utilized four crisp input variables (i.e., task length, network demand, delay
sensitivity, and VM utilization) and one FLS process. In this approach, the task could be
offloaded to one of the following three server types: a local edge server, a neighboring edge
server, or a cloud server. Finally, the hybrid approach analyzed the WAN bandwidth and
local VM utilization to offload the task to either the local edge server or a cloud server. In our
work, we evaluated several criteria, such as the task failure rate, the percentages of VM
utilization, the service time required for accomplishing the applications, and the network
delay, in the results of our simulation. The utilization, OWB, fuzzy-based competitor,
and hybrid approaches are abbreviated as util, owb, fu-comp, and hybrid, respectively, in
the evaluation figures. We compared them to our proposal algorithm, Fu-SARSA, and study
their performance. The performance of the main criteria in terms of the average results
of all applications are compared in Figure 9. Moreover, the comparison of the task failure
rate between the approaches with four different application types is depicted in Figure 10,
whereas the comparison of service time for the different application types is represented in
Figure 11. In this paper, we study each criterion on the basis of the simulation results.

The main aim of our proposed algorithm Fu-SARSA was to reduce the rate of task
failure. The average percentage of failed tasks for all applications is presented in Figure 9a.
The performances of all approaches were similar when the number of IoT devices was
below 1500. The network became congested at 1750 IoT devices and reached the peak
congestion between 2000 and 2500 devices. Compared to the other competitors, our
proposal, Fu-SARSA, showed the best efficiency when the network was overloaded. Due
to the network losses on MAN resources, many tasks were not successfully offloaded in
the other approaches. The utilization and hybrid approaches exhibited the worst results
because these techniques only consider the threshold of the MAN bandwidth or VM
utilization. In the real-world 5G environment, applications need to adapt to flexible changes
in network parameters. During the comparison with different application types, the failed
task percentage of Fu-SARSA was much lower than that of any other algorithm. Particularly,
Fu-SARSA worked best for healthcare and AR applications, as shown in Figure 10a,b,
because these applications required a small CPU capacity to ensure that the load balancing
among servers was stable when the Fu-SARSA algorithm was operated in the network.
For the heavy tasks, such as the compute-intensive and infotainment applications, both
Fu-SARSA and fuzzy-based competitor approaches showed good performance in reducing
the task failure rate, as depicted in Figure 10c,d, especially for the scenario with 2500 IoT
devices. Figure 9d represents the average VM utilization of edge servers. As many heavy
tasks from 2500 devices were successfully offloaded using the Fu-SARSA approach, a larger
amount of CPU resources was used to process the tasks.

Sensors 2022, 22, 4727 23 of 29

500 1000 1500 2000 2500

Number of IoT Devices

0

5

10

15

20

25

30

35

40

45

A
ve

ra
ge

 F
ai

le
d

T
as

ks
 (

%
)

(a)

500 1000 1500 2000 2500

Number of IoT Devices

0

0.2

0.4

0.6

0.8

1

1.2

A
ve

ra
ge

 N
et

w
or

k
D

el
ay

 (
se

c)

(b)

500 1000 1500 2000 2500

Number of IoT Devices

0

10

20

30

40

50

60

70

80

A
ve

ra
ge

 V
M

 U
ti

liz
at

io
n

(%
)

(c)

500 1000 1500 2000 2500

Number of IoT Devices

0

1

2

3

4

5

6

7

A
ve

ra
ge

 S
er

vi
ce

 T
im

e
(s

ec
)

(d)
Figure 9. Comparative evaluations in terms of all application types: (a) Average task failure rate.
(b) Average service time. (c) Average network delay. (d) Average VM utilization.

Service time is an important criterion to evaluate the effectiveness of the system. In the
heterogeneous 5G network, the service time required to accomplish the application should
be as short as possible to satisfy the QoS of the system. Figure 9b represents the average
service time for the tasks in terms of all types of applications. The service time of the task is
the sum of the processing time and the network delay. Our proposal, Fu-SARSA, provided
the best results in terms of the service time in comparison with the other approaches,
because it took the network conditions and properties of the incoming task into account;
hence, the best decisions, such as the choice of the best neighboring edge server, were
made. When the system load was high and the number of IoT devices was more than
1250, the utilization and hybrid approaches showed poor performance. In the worst-case
scenario, approximately 6 s were needed to accomplish the task. The OWB approach
preferred to offload the task to the VM with the lowest resource capacity and the fuzzy-
based competitor approach considered the network parameters for an offloading decision;
therefore, they showed better results and processed the task faster. As a result, the average
network delay of these algorithms was higher than that of other algorithms when the MAN
and WAN resources became congested, as depicted in Figure 9c. Concerning the average
service time required with different application types, Fu-SARSA worked well for heavy
computational tasks, as shown in Figure 11c,d. However, more service time was needed for
the healthcare and AR applications in cases with many IoT devices, for instance, from 2000
to 2500 devices. As explained above, Fu-SARSA worked the best for healthcare and AR
applications, since it provided a significantly lower task failure rate, especially when the

Sensors 2022, 22, 4727 24 of 29

network was overloaded. The network delay for these applications was longer; therefore,
the average service time was higher, as illustrated in Figure 11a,b.

500 1000 1500 2000 2500

Number of IoT Devices

0

10

20

30

40

50

60

F
ai

le
d

T
as

ks
 f

or
 H

ea
lt

hc
ar

e
A

pp
 (

%
)

(a)

500 1000 1500 2000 2500

Number of IoT Devices

0

5

10

15

20

25

30

35

40

F
ai

le
d

T
as

ks
 f

or
A

ug
m

en
te

d
R

ea
lit

y
A

pp
 (

%
)

(b)

500 1000 1500 2000 2500

Number of IoT Devices

0

10

20

30

40

50

F
ai

le
d

T
as

ks
 f

or

In
fo

ta
in

m
en

t
A

pp
 (

%
)

(c)

500 1000 1500 2000 2500

Number of IoT Devices

0

10

20

30

40

50
F

ai
le

d
T

as
ks

 f
or

C
om

pu
te

-i
nt

en
si

ve
 A

pp
 (

%
)

(d)
Figure 10. Comparison of task failure rate with different application types: (a) Healthcare application.
(b) AR application. (c) Infotainment application. (d) Compute-intensive application.

As the Fu-SARSA applies SARSA-based reinforcement learning, we investigated the
convergence of the algorithm at some typical learning rates, abbreviated as lr in Figure 12a.
The reward of the system was evaluated with respect to the order of episodes. Four learning
rate values were taken into account: 0.01, 0.005, 0.001, and 0.0001. The algorithm worked
best with a learning rate of 0.001, achieving the fastest convergence state in comparison
to the other learning rates. When the learning rate was greater than 0.001, more episodes
needed to be converged. As the learning rate decreased (i.e., lr = 0.0001), the performance
worsened, with a longer time needed to reach stable values. On the other hand, to attain
better offloading decisions with the on-policy reinforcement learning technique, the value
of the epsilon variable should be considered. Since the agent chose the best action with
a probability of 1− ε, epsilon was selected as a small number, close to 0. For this reason,
we investigated five epsilon values of 0.1, 0.2, 0.3, 0.4, and 0.5 in terms of the average
task failure percentage when the network was overloaded. Three scenarios, involving
2000, 2250, and 2500 IoT devices, were studied to evaluate the different epsilon values,
as depicted in Figure 12b. Compared to other values, the epsilon value of 0.1 was the
most effective in terms of the task offloading performance and was demonstrated to be
compatible with the ε-greedy policy.

Sensors 2022, 22, 4727 25 of 29

500 1000 1500 2000 2500

Number of IoT Devices

0

0.5

1

1.5

2

2.5

Se
rv

ic
e

T
im

e
fo

r
H

ea
lt

hc
ar

e
A

pp
 (

se
c)

(a)

500 1000 1500 2000 2500

Number of IoT Devices

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Se
rv

ic
e

T
im

e
fo

r
A

ug
m

en
te

d
R

ea
lit

y
A

pp
 (

se
c)

(b)

500 1000 1500 2000 2500

Number of IoT Devices

0

1

2

3

4

5

6

7

Se
rv

ic
e

T
im

e
fo

r
In

fo
ta

in
m

en
t

A
pp

 (
se

c)

(c)

500 1000 1500 2000 2500

Number of IoT Devices

0

2

4

6

8

10

12

Se
rv

ic
e

T
im

e
fo

r
C

om
pu

te
-i

nt
en

si
ve

 A
pp

 (
se

c)

(d)
Figure 11. Comparison of service time with different application types: (a) Healthcare application.
(b) AR application. (c) Infotainment application. (d) Compute-intensive application.

0 50 100 150 200

Episode

-800

-700

-600

-500

-400

-300

-200

R
ew

ar
d

(a)

2000 2250 2500

Number of IoT Devices

0

5

10

15

20

25

30

A
ve

ra
ge

 F
ai

le
d

T
as

ks
 (

%
)

(b)
Figure 12. Study of variables in SARSA reinforcement learning: (a) Reward value through each
episode with different learning rates. (b) Average task failure percentage with different epsilon values.

7. Conclusions

In this paper, we aimed to improve the service time and minimize the task failure rate
in a heterogeneous MEC network by using an algorithm based on collaboration between

Sensors 2022, 22, 4727 26 of 29

fuzzy logic and SARSA learning. The IoT device offloads the task to an edge server,
global cloud server, or best neighboring edge server under the management of an MEO
decision-maker. To obtain more realistic results, we simulated the network using four
typical applications—healthcare, AR, infotainment, and compute-intensive applications.
Our proposed Fu-SARSA algorithm provided better results in comparison with other
algorithms. Fu-SARSA worked best for healthcare and AR applications in terms of the
failed task rate and service time, particularly in cases where the network was congested with
numerous IoT devices. In the future, we will apply deep learning for efficient offloading to
enhance system performance.

Author Contributions: Conceptualization, T.T.K.; methodology, T.T.K., T.H.H. and E.-N.H.; software,
T.T.K. and M.D.H.; investigation, T.T.K., T.H.H., M.D.H. and E.-N.H.; simulation result analysis,
T.T.K., T.H.H. and M.D.H.; writing—original draft, T.T.K.; writing—review and editing, T.T.K., T.H.H.,
M.D.H. and E.-N.H.; supervision, E.-N.H. All authors have read and agreed to the published version
of the manuscript.

Funding: This work was supported by Institute of Information communications Technology Plan-
ning Evaluation (IITP) grant funded by the Korea government (MSIT) (No.2021-0-02068, Artificial
Intelligence Innovation Hub). This work was also supported by Institute of Information & commu-
nications Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT)
(No.2202-0-00047, Development of Microservices Development/Operation Platform Technology that
Supports Application Service Operation Intelligence).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

5G Fifth generation
AR Augmented reality
BWM Best-worst method
COG Center of gravity
CPU Central unit processing
DNN Deep neural network
ETSI European Telecommunications Standards Institute
FCD Fuzzy clustering defuzzification
FLS Fuzzy logic system
GWO Grey wolf optimizer
IoT Internet of Things
LAN Local area network
LSTM Long short-term memory
MAN Metropolitan area network
MCC Mobile cloud computing
MDP Markov decision process
MEC Multi-access edge computing
MEO Mobile edge orchestrator
ML Machine learning
MOM Mean of maximum
PSO Particle swarm optimization
QoE Quality of experience
QoS Quality of Services
SARSA State-action-reward-state-action
TOPSIS Technique for Order of Preference by Similarity to Ideal Solution

Sensors 2022, 22, 4727 27 of 29

VEC Vehicular edge computing
VM Virtual machine
WAN Wide area network
WFM Weighted fuzzy mean
WLAN Wireless local area network

References
1. Yu, W.; Liang, F.; He, X.; Hatcher, W.G.; Lu, C.; Lin, J.; Yang, X. A survey on the edge computing for the Internet of Things. IEEE

Access 2017, 6, 6900–6919. [CrossRef]
2. Khurpade, J.M.; Rao, D.; Sanghavi, P.D. A Survey on IOT and 5G Network. In Proceedings of the 2018 International Conference

on Smart City and Emerging Technology (ICSCET), Mumbai, India, 5 January 2018; pp. 1–3.
3. Sigwele, T.; Hu, Y.F.; Ali, M.; Hou, J.; Susanto, M.; Fitriawan, H. Intelligent and energy efficient mobile smartphone gateway

for healthcare smart devices based on 5G. In Proceedings of the 2018 IEEE Global Communications Conference (GLOBECOM),
Abu Dhabi, United Arab Emirates, 9–13 December 2018; pp. 1–7.

4. Sabella, D.; Vaillant, A.; Kuure, P.; Rauschenbach, U.; Giust, F. Mobile-edge computing architecture: The role of MEC in the
Internet of Things. IEEE Consum. Electron. Mag. 2016, 5, 84–91. [CrossRef]

5. Satyanarayanan, M. Mobile computing: The next decade. In Proceedings of the 1st ACM Workshop on Mobile Cloud Computing
& Services: Social Networks and Beyond, San Francisco, CA, USA, 15–18 June 2010; pp. 1–6.

6. Forman, G.H.; Zahorjan, J. The challenges of mobile computing. Computer 1994, 27, 38–47. [CrossRef]
7. Etsi, M. Multi-access edge computing (mec) framework and reference architecture. ETSI GS MEC 2019, 3, V2.
8. Ahmed, E.; Ahmed, A.; Yaqoob, I.; Shuja, J.; Gani, A.; Imran, M.; Shoaib, M. Bringing computation closer toward the user network:

Is edge computing the solution? IEEE Commun. Mag. 2017, 55, 138–144. [CrossRef]
9. Li, S.; Da Xu, L.; Zhao, S. 5G Internet of Things: A survey. J. Ind. Inf. Integr. 2018, 10, 1–9. [CrossRef]
10. Taleb, T.; Samdanis, K.; Mada, B.; Flinck, H.; Dutta, S.; Sabella, D. On multi-access edge computing: A survey of the emerging 5G

network edge cloud architecture and orchestration. IEEE Commun. Surv. Tutor. 2017, 19, 1657–1681. [CrossRef]
11. Ranadheera, S.; Maghsudi, S.; Hossain, E. Computation offloading and activation of mobile edge computing servers: A minority

game. IEEE Wirel. Commun. Lett. 2018, 7, 688–691. [CrossRef]
12. Mazza, D.; Tarchi, D.; Corazza, G.E. A cluster based computation offloading technique for mobile cloud computing in smart cities.

In Proceedings of the 2016 IEEE International Conference on Communications (ICC), Kuala Lumpur, Malaysia, 23–27 May 2016;
pp. 1–6.

13. ETSI. Mobile Edge Computing (MEC); Deployment of Mobile Edge Computing in an NFV Environment; ETSI ISG: Sophia Antipolis,
France, 2018.

14. Alli, A.A.; Alam, M.M. The fog cloud of things: A survey on concepts, architecture, standards, tools, and applications. Internet
Things 2020, 9, 100177. [CrossRef]

15. Mach, P.; Becvar, Z. Mobile edge computing: A survey on architecture and computation offloading. IEEE Commun. Surv. Tutor.
2017, 19, 1628–1656. [CrossRef]

16. Nguyen, V.; Khanh, T.T.; Oo, T.Z.; Tran, N.H.; Huh, E.N.; Hong, C.S. Latency minimization in a fuzzy-based mobile edge
orchestrator for IoT applications. IEEE Commun. Lett. 2020, 25, 84–88. [CrossRef]

17. Zhou, D.; Chao, F.; Lin, C.M.; Yang, L.; Shi, M.; Zhou, C. Integration of fuzzy CMAC and BELC networks for uncertain
nonlinear system control. In Proceedings of the 2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Naples,
Italy, 9–12 July 2017; pp. 1–6.

18. Salmani, V.; Ensafi, R.; Khatib-Astaneh, N.; Naghibzadeh, M. A fuzzy-based multi-criteria scheduler for uniform multiprocessor
real-time systems. In Proceedings of the 10th International Conference on Information Technology (ICIT 2007), Rourkela, India,
17–20 December 2007; pp. 179–184.

19. Flores, H.; Su, X.; Kostakos, V.; Ding, A.Y.; Nurmi, P.; Tarkoma, S.; Hui, P.; Li, Y. Large-scale offloading in the Internet of Things.
In Proceedings of the 2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom
Workshops), Kona, HI, USA, 13–17 March 2017; pp. 479–484.

20. Sonmez, C.; Ozgovde, A.; Ersoy, C. Fuzzy workload orchestration for edge computing. IEEE Trans. Netw. Serv. Manag. 2019,
16, 769–782. [CrossRef]

21. Nguyen, V.; Khanh, T.T.; Nguyen, T.D.; Hong, C.S.; Huh, E.N. Flexible computation offloading in a fuzzy-based mobile edge
orchestrator for IoT applications. J. Cloud Comput. 2020, 9, 1–18. [CrossRef] [PubMed]

22. Rathore, S.; Sharma, P.K.; Sangaiah, A.K.; Park, J.J. A hesitant fuzzy based security approach for fog and mobile-edge computing.
IEEE Access 2017, 6, 688–701. [CrossRef]

23. Hossain, M.D.; Sultana, T.; Nguyen, V.; Rahman, W.u.; Nguyen, T.D.; Huynh, L.N.; Huh, E.N. Fuzzy based collaborative task
offloading scheme in the densely deployed small-cell networks with multi-access edge computing. Appl. Sci. 2020, 10, 3115.
[CrossRef]

24. Nakamura, T. 5G Evolution and 6G. In Proceedings of the 2020 IEEE Symposium on VLSI Technology, Honolulu, HI, USA,
16–19 June 2020; pp. 1–5.

http://doi.org/10.1109/ACCESS.2017.2778504
http://dx.doi.org/10.1109/MCE.2016.2590118
http://dx.doi.org/10.1109/2.274999
http://dx.doi.org/10.1109/MCOM.2017.1700120
http://dx.doi.org/10.1016/j.jii.2018.01.005
http://dx.doi.org/10.1109/COMST.2017.2705720
http://dx.doi.org/10.1109/LWC.2018.2810292
http://dx.doi.org/10.1016/j.iot.2020.100177
http://dx.doi.org/10.1109/COMST.2017.2682318
http://dx.doi.org/10.1109/LCOMM.2020.3024957
http://dx.doi.org/10.1109/TNSM.2019.2901346
http://dx.doi.org/10.1186/s13677-020-00211-9
http://www.ncbi.nlm.nih.gov/pubmed/33532167
http://dx.doi.org/10.1109/ACCESS.2017.2774837
http://dx.doi.org/10.3390/app10093115

Sensors 2022, 22, 4727 28 of 29

25. Jiang, F.; Ma, R.; Gao, Y.; Gu, Z. A reinforcement learning-based computing offloading and resource allocation scheme in F-RAN.
EURASIP J. Adv. Signal Process. 2021, 2021, 1–25. [CrossRef]

26. Eshratifar, A.E.; Pedram, M. Energy and performance efficient computation offloading for deep neural networks in a mobile cloud
computing environment. In Proceedings of the 2018 on Great Lakes Symposium on VLSI, Chicago IL, USA, 23–25 May 2018;
pp. 111–116.

27. Liu, C.F.; Bennis, M.; Debbah, M.; Poor, H.V. Dynamic task offloading and resource allocation for ultra-reliable low-latency edge
computing. IEEE Trans. Commun. 2019, 67, 4132–4150. [CrossRef]

28. An, V.T.; Hai, T.T.; Nguyen, B.M.; Le, N.P.; Binh, H.T.T. Fuzzy Deep Q-learning Task Offloading in Delay Constrained Vehicular
Fog Computing. In Proceedings of the 2021 International Joint Conference on Neural Networks (IJCNN), Shenzhen, China, 18–22
July 2021; pp. 1–8.

29. Alfakih, T.; Hassan, M.M.; Gumaei, A.; Savaglio, C.; Fortino, G. Task offloading and resource allocation for mobile edge computing
by deep reinforcement learning based on SARSA. IEEE Access 2020, 8, 54074–54084. [CrossRef]

30. Defazio, A.; Graepel, T. A comparison of learning algorithms on the arcade learning environment. arXiv 2014, arXiv:1410.8620.
31. Gao, Z.; Hao, W.; Han, Z.; Yang, S. Q-learning-based task offloading and resources optimization for a collaborative computing

system. IEEE Access 2020, 8, 149011–149024. [CrossRef]
32. Hossain, M.S.; Nwakanma, C.I.; Lee, J.M.; Kim, D.S. Edge computational task offloading scheme using reinforcement learning for

IIoT scenario. ICT Express 2020, 6, 291–299. [CrossRef]
33. Zhang, W.; Yin, S.; Zhang, Z.; Yang, C.; Luo, Z.; Huang, S. SARSA-Based Computation Offloading between Cloudlets with EON.

In Asia Communications and Photonics Conference; Optical Society of America: Washington, DC, USA, 2019; p. S4C-5.
34. Dab, B.; Aitsaadi, N.; Langar, R. Q-learning algorithm for joint computation offloading and resource allocation in edge cloud. In

Proceedings of the 2019 IFIP/IEEE Symposium on Integrated Network and Service Management (IM), Washington DC, USA,
8–12 April 2019; pp. 45–52.

35. Mahenge, M.P.J.; Li, C.; Sanga, C.A. Energy-efficient task offloading strategy in mobile edge computing for resource-intensive
mobile applications. Digit. Commun. Netw. 2022, in press. [CrossRef]

36. Shu, C.; Zhao, Z.; Han, Y.; Min, G.; Duan, H. Multi-user offloading for edge computing networks: A dependency-aware and
latency-optimal approach. IEEE Internet Things J. 2019, 7, 1678–1689. [CrossRef]

37. Kuang, Z.; Li, L.; Gao, J.; Zhao, L.; Liu, A. Partial offloading scheduling and power allocation for mobile edge computing systems.
IEEE Internet Things J. 2019, 6, 6774–6785. [CrossRef]

38. Huynh, L.N.; Pham, Q.V.; Pham, X.Q.; Nguyen, T.D.; Hossain, M.D.; Huh, E.N. Efficient computation offloading in multi-tier
multi-access edge computing systems: A particle swarm optimization approach. Appl. Sci. 2019, 10, 203. [CrossRef]

39. Zhang, K.; Mao, Y.; Leng, S.; Zhao, Q.; Li, L.; Peng, X.; Pan, L.; Maharjan, S.; Zhang, Y. Energy-efficient offloading for mobile edge
computing in 5G heterogeneous networks. IEEE Access 2016, 4, 5896–5907. [CrossRef]

40. Khorsand, R.; Ramezanpour, M. An energy-efficient task-scheduling algorithm based on a multi-criteria decision-making method
in cloud computing. Int. J. Commun. Syst. 2020, 33, e4379. [CrossRef]

41. Dai, Y.; Xu, D.; Maharjan, S.; Zhang, Y. Joint load balancing and offloading in vehicular edge computing and networks. IEEE
Internet Things J. 2018, 6, 4377–4387. [CrossRef]

42. Lyu, X.; Tian, H.; Sengul, C.; Zhang, P. Multiuser joint task offloading and resource optimization in proximate clouds. IEEE Trans.
Veh. Technol. 2016, 66, 3435–3447. [CrossRef]

43. Tran, T.X.; Pompili, D. Joint task offloading and resource allocation for multi-server mobile-edge computing networks. IEEE
Trans. Veh. Technol. 2018, 68, 856–868. [CrossRef]

44. Basic, F.; Aral, A.; Brandic, I. Fuzzy handoff control in edge offloading. In Proceedings of the 2019 IEEE International Conference
on Fog Computing (ICFC), Prague, Czech Republic, 24–26 June 2019; pp. 87–96.

45. Wei, Y.; Wang, Z.; Guo, D.; Yu, F.R. Deep q-learning based computation offloading strategy for mobile edge computing. Comput.
Mater. Contin. 2019, 59, 89–104. [CrossRef]

46. Tang, M.; Wong, V.W. Deep reinforcement learning for task offloading in mobile edge computing systems. IEEE Trans. Mob.
Comput. 2020, 21, 1985–1997. [CrossRef]

47. Pan, C.; Wang, Z.; Zhou, Z.; Ren, X. Deep reinforcement learning-based URLLC-aware task offloading in collaborative vehicular
networks. China Commun. 2021, 18, 134–146. [CrossRef]

48. Jeong, J.; Kim, I.M.; Hong, D. Deep Reinforcement Learning-based Task Offloading Decision in the Time Varying Channel.
In Proceedings of the 2021 International Conference on Electronics, Information, and Communication (ICEIC), Jeju, Korea,
31 January–3 February 2021; pp. 1–4.

49. Gao, H.; Huang, W.; Liu, T.; Yin, Y.; Li, Y. PPO2: Location Privacy-Oriented Task Offloading to Edge Computing Using
Reinforcement Learning for Intelligent Autonomous Transport Systems. IEEE Trans. Intell. Transp. Syst. 2022. [CrossRef]

50. Kouatli, I. The Use of Fuzzy Logic as Augmentation to Quantitative Analysis to Unleash Knowledge of Partici-pants’ Uncertainty
when Filling a Survey: Case of cloud computing. IEEE Trans. Knowl. Data Eng. 2020, 34, 1489–1500. [CrossRef]

51. Abdullah, L. Fuzzy multi criteria decision making and its applications: A brief review of category. Procedia Soc. Behav. Sci. 2013,
97, 131–136. [CrossRef]

52. Khanh, T.T.; Nguyen, V.; Huh, E.N. Fuzzy-Based Mobile Edge Orchestrators in Heterogeneous IoT Environments: An Online
Workload Balancing Approach. Wirel. Commun. Mob. Comput. 2021, 2021, 5539186. [CrossRef]

http://dx.doi.org/10.1186/s13634-021-00802-x
http://dx.doi.org/10.1109/TCOMM.2019.2898573
http://dx.doi.org/10.1109/ACCESS.2020.2981434
http://dx.doi.org/10.1109/ACCESS.2020.3015993
http://dx.doi.org/10.1016/j.icte.2020.06.002
http://dx.doi.org/10.1016/j.dcan.2022.04.001
http://dx.doi.org/10.1109/JIOT.2019.2943373
http://dx.doi.org/10.1109/JIOT.2019.2911455
http://dx.doi.org/10.3390/app10010203
http://dx.doi.org/10.1109/ACCESS.2016.2597169
http://dx.doi.org/10.1002/dac.4379
http://dx.doi.org/10.1109/JIOT.2018.2876298
http://dx.doi.org/10.1109/TVT.2016.2593486
http://dx.doi.org/10.1109/TVT.2018.2881191
http://dx.doi.org/10.32604/cmc.2019.04836
http://dx.doi.org/10.1109/TMC.2020.3036871
http://dx.doi.org/10.23919/JCC.2021.07.011
http://dx.doi.org/10.1109/TITS.2022.3169421
http://dx.doi.org/10.1109/TKDE.2020.2993326
http://dx.doi.org/10.1016/j.sbspro.2013.10.213
http://dx.doi.org/10.1155/2021/5539186

Sensors 2022, 22, 4727 29 of 29

53. Mendel, J.M. Fuzzy logic systems for engineering: A tutorial. Proc. IEEE 1995, 83, 345–377. [CrossRef]
54. Flores, H.; Srirama, S. Adaptive code offloading for mobile cloud applications: Exploiting fuzzy sets and evidence-based learning.

In Proceeding of the Fourth ACM Workshop on Mobile Cloud Computing and Services, Taipei, Taiwan, 25 June 2013; pp. 9–16.
55. Hosseini, S.; Kazeminia, M.; Mehrjoo, M.; Barakati, S. Fuzzy logic based mobile data offloading. In Proceedings of the 2015 23rd

Iranian Conference on Electrical Engineering, Tehran, Iran, 10–14 May 2015; pp. 397–401.
56. Ghosh, S.; Razouqi, Q.; Schumacher, H.J.; Celmins, A. A survey of recent advances in fuzzy logic in telecommunications networks

and new challenges. IEEE Trans. Fuzzy Syst. 1998, 6, 443–447. [CrossRef]
57. Ahmed, N.; Amin, R.; Aldabbas, H.; Koundal, D.; Alouffi, B.; Shah, T. Machine learning techniques for spam detection in email

and IoT platforms: Analysis and research challenges. Secur. Commun. Netw. 2022, 2022, 1862888 . [CrossRef]
58. Guo, Z.; Wong, W.K. Fundamentals of artificial intelligence techniques for apparel management applications. In Optimizing

Decision Making in the Apparel Supply Chain Using Artificial Intelligence (AI): From Production to Retail; Elsevier Inc.: Amsterdam,
The Netherlands, 2013; pp. 13–40.

59. Hossain, M.D.; Sultana, T.; Hossain, M.A.; Hossain, M.I.; Huynh, L.N.; Park, J.; Huh, E.N. Fuzzy decision-based efficient task
offloading management scheme in multi-tier MEC-enabled networks. Sensors 2021, 21, 1484. [CrossRef] [PubMed]

60. Cingolani, P.; Alcala-Fdez, J. jFuzzyLogic: A robust and flexible Fuzzy-Logic inference system language implementation. In
Proceedings of the 2012 IEEE International Conference on Fuzzy Systems, Brisbane, Australia, 10–15 June 2012; pp. 1–8.

61. Abuowada, K.; Dyke, D.; Noroozi, S.; Okhotnikov, I. Dynamic Performance Analysis of PID and Fuzzy Logic Controllers
Applicable in Electrohydraulic Servo Actuator. In Proceedings of the 13th APCA International Conference on Automatic Control
and Soft Computing, Ponta Delgada, Azores, Portugal, 4–6 June 2018.

62. Dernoncourt, F. Introduction to fuzzy logic. Mass. Inst. Technol. 2013, 21, 50–56.
63. Liu, Q.; Li, Q. A Joint Allocation Algorithm of Computing and Communication Resources Based on Reinforcement Learning in

MEC System. J. Inf. Process. Syst. 2021, 17, 721–736.
64. Jin, C.; Allen-Zhu, Z.; Bubeck, S.; Jordan, M.I. Is Q-learning provably efficient? Adv. Neural Inf. Process. Syst. 2018, 31.
65. Sonmez, C.; Ozgovde, A.; Ersoy, C. Edgecloudsim: An environment for performance evaluation of edge computing systems.

Trans. Emerg. Telecommun. Technol. 2018, 29, e3493. [CrossRef]
66. Tunca, C.; Pehlivan, N.; Ak, N.; Arnrich, B.; Salur, G.; Ersoy, C. Inertial sensor-based robust gait analysis in non-hospital settings

for neurological disorders. Sensors 2017, 17, 825. [CrossRef]
67. Silva, M.; Freitas, D.; Neto, E.; Lins, C.; Teichrieb, V.; Teixeira, J.M. Glassist: Using augmented reality on Google Glass as an aid

to classroom management. In Proceedings of the 2014 XVI Symposium on Virtual and Augmented Reality, Salvador, Brazil,
12–15 May 2014; pp. 37–44.

68. Guo, J.; Song, B.; He, Y.; Yu, F.R.; Sookhak, M. A survey on compressed sensing in vehicular infotainment systems. IEEE Commun.
Surv. Tutor. 2017, 19, 2662–2680. [CrossRef]

69. Cheng, Y.; Li, X. A compute-intensive service migration strategy based on deep reinforcement learning algorithm. In Proceedings
of the 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), Chongqing,
China, 12–14 July 2020; Volume 1, pp. 1385–1388.

70. Almutairi, J.; Aldossary, M. A novel approach for IoT tasks offloading in edge-cloud environments. J. Cloud Comput. 2021,
10, 1–19. [CrossRef]

http://dx.doi.org/10.1109/5.364485
http://dx.doi.org/10.1109/91.705512
http://dx.doi.org/10.1155/2022/1862888
http://dx.doi.org/10.3390/s21041484
http://www.ncbi.nlm.nih.gov/pubmed/33672768
http://dx.doi.org/10.1002/ett.3493
http://dx.doi.org/10.3390/s17040825
http://dx.doi.org/10.1109/COMST.2017.2705027
http://dx.doi.org/10.1186/s13677-021-00243-9

	Introduction
	Related Work
	System Model and Overview of the Fu-SARSA Algorithm
	System Model
	Overview of Fu-SARSA Algorithm
	Fuzzy Logic Phase
	SARSA Phase

	blackTwo-Stage Fuzzy-Logic-Based Task Offloading Algorithm
	Fuzzification
	Fuzzy Inference
	Defuzzification

	SARSA-blackSupported Task Offloading Algorithm
	Communication Model and Computation Model
	SARSA-blackSupported Offloading Decision

	Performance Evaluation
	Conclusions
	References

