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Abstract: Traditional power equipment defect-detection relies on manual verification, which places
a high demand on the verifier’s experience, as well as a high workload and low efficiency, which
can lead to false detection and missed detection. The Mask of the regions with CNN features (Mask
RCNN) deep learning model is used to provide a defect-detection approach based on the Mask RCNN
of Attention, Rotation, Genetic algorithm (ARG-Mask RCNN), which employs infrared imaging as the
data source to assess the features of damaged insulators. For the backbone network of Mask RCNN,
the structure of Residual Network 101 (ResNet101) is improved and the attention mechanism is added,
which makes the model more alert to small targets and can quickly identify the location of small
targets, improve the loss function, integrate the rotation mechanism into the loss function formula,
and generate an anchor frame where a rotation angle is used to accurately locate the fault location.
The initial hyperparameters of the network are improved, and the Genetic Algorithm Combined with
Gradient Descent (GA-GD) algorithm is used to optimize the model hyperparameters, so that the
model training results are as close to the global best as possible. The experimental results show that
the average accuracy of the insulator fault-detection method proposed in this paper is as high as 98%,
and the number of frames per second (FPS) is 5.75, which provides a guarantee of the safe, stable,
and reliable operation of our country’s power system.

Keywords: ARG-Mask RCNN; GA-GD algorithm; insulator fault; ResNet101; rotation mechanism;
attention mechanism

1. Introduction

With the continuous increase in people’s demand for electricity, the scale of transmis-
sion lines is also expanding [1]. The geographical environment where the lines pass is
complex and changeable and suffers from severe weather and climate all year round [2]. As
a bridge between live conductors or between conductors and the ground, insulators play a
role in fixing the busbar and live conductors in power transmission. However, insulator
faults occur frequently in reality [3]. Globally, more than 75% of power grid accidents
are caused by insulator failures every year, which seriously threatens the safe and stable
operation of power grids [4,5]. Various scholars have made efforts to create a healthy
and sustainable power grid environment and improve the detection accuracy of faulty
insulators [6,7]. The current fault-diagnosis methods [8] can be divided into two camps;
one is the physical method, and the other is the method based on deep learning.

As a traditional diagnostic method, physical methods [9] have the advantages of
being real-time and high-precision, mainly including ultrasonic, ultraviolet pulse, tera-
hertz, and other methods. Deng et al. [10] proposed an ultrasonic-based insulator peeling
detection method. The authors analyzed the propagation speed and energy attenuation
of longitudinal and torsional ultrasonic waves in the insulator double-layer model and
conducted experiments on the debonding of composite insulators. The results show that
the location of the peeling defect can be accurately determined by detecting the propagation
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attenuation coefficient of the waveguide. Ji et al. [11] proposed a method for detecting
the contamination state of ceramic insulators based on ultraviolet pulses. The authors
analyzed the results of experiments and operations by monitoring the insulator strings
under 110 KV transmission lines in real time. Online monitoring of the insulators is carried
out to effectively avoid the occurrence of flashover accidents. Cheng et al. [12] proposed
an aging detection of silicone rubber composite insulators based on terahertz technology,
using a terahertz vector network analyzer to test the calibrated groups of samples, and
an aging detection model of composite insulators based on terahertz signal transmission
characteristics is established. However, the above methods are difficult to achieve large-area
outdoor detection, and the efficiency is low and requires a large number of professionals
to complete. Physical methods are difficult to meet the basic requirements of power grid
equipment maintenance.

In recent years, with the continuous development of artificial intelligence technology,
detection methods based on deep learning frameworks have been widely used [13]. The
method of using drones to photograph and inspect can meet the requirements of large-area
outdoor fault detection and improve the efficiency of fault detection [14]. A large number
of target-detection algorithms have been applied to insulator fault detection. For example,
cascade of the regions with cnn features (Cascade RCNN) [15], single shot multi-box
detector (SSD) [16], RetinaNet [17], Mask RCNN [18], you only look once (YOLO) [19] and
other methods. Liu et al. [20] proposed an improved SSD insulator-detection algorithm,
using a lightweight network MnasNet [21] as a feature extraction network, and then using
a multi-scale fusion method to fuse the feature maps. The author used the dataset of
aerial images to conduct experiments. The results show that the algorithm can effectively
detect the position of the insulator and has the advantages of small model size and fast
detection speed. Wen et al. [22] proposed a Cascade RCNN insulator defect-detection
method, proposed an algorithm that integrates a series of advanced structures of FPN,
cascade regression, and GIoU, and introduced RoI Align instead of RoI pooling to solve the
dislocation problem, and introduced depthwise separable convolution and linear bottleneck
to reduce the computational burden; the results show that this method can effectively detect
defective insulators. Liu et al. [23] proposed an improved RetinaNet-based defect insulator-
detection algorithm, which corrected the shortcomings of the Apriori-based RetinaNet
anchor box extraction mechanism and used the improved K-means++ algorithm [24]
to redesign the number and size of anchor boxes, construct a feature pyramid based on
DenseNet as the backbone network, and the experimental results show that this method has
obvious advantages in the detection accuracy of insulator defects. Liu et al. [25] proposed an
improved YOLO tiny (MTI-YOLO) insulator-detection algorithm, which uses a multi-scale
fusion and spatial pyramid pooling (SSP) model and verified the results by comparing with
YOLO tiny and YOLO v2. The average accuracy of the proposed algorithm is significantly
higher than the above two algorithms, and it can achieve good performance under the
condition of complex background and high exposure. The above algorithm belongs to
the object-detection algorithm whose output is in the form of a bounding box. For large
targets such as insulators, the algorithm can complete the positioning task. However, it
is obviously difficult to accomplish multi-type fault identification. The reasons are as
follows: as we all know, the insulator failure caused by cracks takes up such a small area.
If we continue to use this algorithm to generate anchor frames, we can only determine
the approximate location of cracks. However, as a segmentation algorithm, Mask RCNN
can accurately detect that the edge positions of the cracks are segmented. Wang et al. [26]
proposed a fault-diagnosis method for infrared insulators based on Mask RCNN, using
the Mask RCNN network to automatically extract multiple insulators, and using transfer
learning and dynamic learning rate algorithms to train the dataset. The experimental
results show that the model has high recognition accuracy and calculation speed.

In general, these existing advanced insulator fault-diagnosis methods have their ad-
vantages, but some flaws are hard to hide. Physical methods such as ultrasound, ultraviolet
pulse, and terahertz, it has the advantages of real-time and high precision. However,
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they also have common shortcomings, such as it is difficult to achieve large-area outdoor
detection, and the efficiency is relatively low. For SSD, RetinaNet, YOLO, Cascade RCNN,
and Mask RCNN, these deep learning-based methods have high efficiency and can meet
the needs of large-scale outdoor detection, but they have contradictions in real-time and
accuracy. Specifically, single-stage target-detection algorithms such as SSD, RetinaNet,
and YOLO have fast recognition speed, but low accuracy. The two-stage target-detection
algorithms such as Cascade RCNN and Mask RCNN are characterized by high accuracy,
but slow speed and difficult to realize real-time monitoring of insulators. It is worth noting
that these deep learning-based methods only detect a single fault type, and they cannot
complete the multi-fault classification task.

To complete the detection of various faults under the premise of real-time and high
precision. In this paper, a fault-diagnosis method for infrared insulators based on ARG-
Mask RCNN is proposed. First, it is proposed to modify the 7 × 7 convolution kernel of
the first layer of the backbone network ResNet101 to a three-layer 3 × 3 convolution kernel.
The three-layer 3 × 3 convolution kernel has the same receptive field as the 7 × 7 large
convolution kernel. However, the amount of computation is much smaller than that of the
large convolution kernel, and an attention mechanism is added to reduce the amount of
network computation and improve the detection speed of small targets. Subsequently, a
rotation mechanism is added to the calculation formula of the improved loss function to
improve the positioning accuracy of the target insulator and effectively separate the target
from the background. After that, it is proposed to improve the initial parameters, and the
updated parameters originally generated by Mask RCNN are now generated by a genetic
algorithm, to obtain the global optimal solution and improve the identification accuracy
of faulty insulators. Then, the labeled dataset is trained to analyze various misdiagnosis
phenomena and their causes in the detection results. Finally, the ARG-Mask RCNN method
proposed in this paper has obvious advantages through application experiments and
comparative analysis. This research has the following contributions:

(1) A new backbone network is proposed to improve the capability of fault feature
extraction.

(2) A rotated anchor box is proposed to reduce the extraneous background in the predic-
tion box.

(3) The genetic algorithm combined with the gradient descent method is proposed to
optimize the parameters so that the model is as close to the global optimal solution as
possible, and the detection accuracy of the model is improved.

(4) By comparing with several optimal insulator fault-identification algorithms, the
superiority of the proposed method is confirmed.

The rest of this article is organized in the following way. Section 2 briefly introduces
the four most common insulator faults and the Mask RCNN base network. Section 3
introduces the ARG-Mask RCNN network in detail from three aspects: backbone network,
loss function, and parameter optimization. Section 4 mainly demonstrates the superiority
of this method in practical detection. The conclusion is in Section 5.

2. Related Work

The infrared data set can reflect the temperature change of each part of the insulator
equipment, and the fault detection of the insulator can be carried out according to the
thermal imaging results. Mask RCNN network, as a two-stage target-detection algorithm,
classifies different faults by continuously learning the characteristics of these faults, and
segments the location of faulty insulator strings. This section will explain the data source
and Mask RCNN network model.

2.1. Data Sources

The infrared data source will be explained below, firstly indicating the characteristics
of infrared imaging technology, then introducing the four types of faults with the highest
appearance rate, and finally emphasizing the matters needing attention when collecting
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infrared data. These works will play a crucial role in the labeling of the dataset and
later training.

(1) Compared with other fault-diagnosis data, infrared imaging data has the following
outstanding characteristics. (I) The data collection is convenient, and the work effi-
ciency is high. It only takes a few hours to complete the collection of a large amount
of data with the drone. (II) During the actual inspection, it can be obtained without
touching the equipment to avoid product damage caused by improper operation
during inspection. (III) A variety of typical faults can be detected, and the location
of the faulty insulator sheet and the degree of damage can be located. (IV) Infrared
light can detect the internal characteristics of the equipment when it is running. The
location of the fault can be identified by the color of the light, which is related to its
fault principle, while it is difficult to find faults caused by cracks and internal defects
with visible light.

(2) To detect a variety of different faults of insulators, it is necessary to determine which
type of fault is caused when the data set is marked. The quality of the data set will
directly affect the identification of faulty insulators. To avoid confusion and the inabil-
ity to identify different fault types, the following will introduce the characteristics of
four typical infrared faults in detail.

The fault classification of inferior insulators is shown in Figure 1. (I) The type of
fault caused by self-explosion can cause some insulator pieces to be missing. (II) Stain
and dust fault, common surface stains such as ice and branches will cause the surface
temperature of the insulator to exceed 1000 degrees Celsius. (III) Zero-value insulator, the
surface of the zero-value insulator fault is dark red. (IV) The insulator sheet is broken,
and the temperature difference between the phases of the insulator sheet at the fracture is
greater than 18 degrees Celsius.
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Figure 1. Four typical infrared faults.

(3) When collecting data on insulators outdoors, to accurately reflect the temperature of
each insulator, the following points should be noted. (I) Weather conditions—avoid
collecting in bad weather such as strong wind, strong light, rain, and snow, which
will cause the detected device temperature to be inaccurate. (II) The collection time
should be selected as early as possible in the morning or the evening when the surface
temperature of the insulator is in a relatively stable state. (III) The measurement
position should cover the overall map of the insulator string as much as possible. If
it is the first measurement, it should keep a certain distance from the equipment to
avoid damage to the equipment caused by operation errors.

2.2. Mask RCNN Network

The Mask RCNN network [27], first proposed by He et al. in 2017, uses instance
segmentation to achieve human pose estimation. Compared with other target-detection
algorithms, Mask RCNN generates high-quality pixel-to-pixel masks for each instance,
can complete pixel-level segmentation tasks, and has high target-positioning accuracy,
which is why this network is selected for insulator-fault detection. This section will
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describe the Mask RCNN network model in detail, including its backbone network, mask
prediction, and region-of-interest correction. At the same time, for the loss function part,
the loss function is divided into three parts: mask loss (Lmask), classification loss (Lcls), and
regression loss (Lbox).

2.2.1. Network Model

Mask RCNN adopts a two-stage network model. In the first stage, Region Proposal
Network (RPN) makes predictions on Regions of Interest (ROI). In the second stage, the
fully linked network (FCN) predicts the category, offset box, and binary mask of each ROI
in parallel. The network model mainly includes the following three parts:

• Backbone network

In the Mask RCNN model, the ResNet50/101 + FPN model is used as the backbone
network. The low-level feature maps have high resolution and weak semantic information,
while the high-level feature maps have low resolution and strong semantic information.
The higher the resolution, the better for locating small objects, and the stronger the semantic
information, the better for classification. They are contradictory. To solve this problem,
FPN is proposed as shown in Figure 2, which integrates low-level features and high-level
features, that is, it has strong location information and semantic information. The low-level
feature information is up-sampled, the feature map gradually becomes larger, and the
semantic information is also enhanced. At the same time, the low-level feature maps with
strong location information are horizontally connected. FPN enables the network to achieve
both precise positioning and strong semantic information.
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• Pixel Prediction (Mask Prediction)

Mask Prediction is a prediction for pixels; the same pixel value is classified into one
category and filled with the same color, and different pixel values are classified and covered
by a different color, and pixel-level instance segmentation is conducted.

• Region of Interest Align (RoI Align)

RoI Pooling is improved in Mask RCNN. RoI Pooling quantizes a floating-point RoI
into the discrete granularity of the feature map, and the quantized RoI is subdivided
into spatial containers, which are themselves quantized. In both processes, floating-point
numbers are rounded, resulting in the loss of some feature information, which in turn
affects the accuracy of the model. To solve this problem, RoI Align is proposed to retain
the decimals of the RoI bounding box data, and divide it evenly when subdividing max
pooling, retaining the significant digits after the decimal point. When RoI Align performs
max pooling, the RoI bounding box can be divided equally, and the center point of each
small box can be determined. This point can correspond to four boundary points of the
feature map, and bilinear interpolation is performed on these four boundary points. You
can determine the value of the center point and then take the maximum value to complete
the max-pooling operation.
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2.2.2. Loss Function

As one of the important parameters to determine the prediction effect of the deep
neural network, the loss function determines the convergence effect of the model to a large
extent, and also controls the objective of the network. The smaller the loss function value,
the better the performance of the model.

Loss Function: L = Lcls + Lbox + Lmask
Lmask applies only to the true class of the kth parallel RoI, defined only on the kth mask.

Unlike Lmask, the loss of Lcls classification is obtained according to the softmax function,
there is category competition between different categories, and Lmask is obtained through
the corresponding dimension sigmoid function, and a mask is generated for each category,
so there is no competition between them between type.

Relying on a specialized classification branch to predict the class label of the output
mask, in prediction, sigmoid is not used directly for analysis. First, we select its dimension
through the category of the bounding box, then combine the result of this dimension with
the sigmoid function, and finally determine whether the result is the mask of this category.
According to the prediction result of the sigmoid function of this dimension, it is judged
whether the result is the mask of this category.

Lmask = loss1(x, class) = −x[class] + log

(
∑
j=k

exp(x[j])

)
(1)

Among them, x represents the probability of outputting a multi-classification problem,
class represents the index value [0, 1, 2] of the real result, j represents the number of
classifications, and k represents the dimension where the kth mask is located. After the loss
function calculation is completed, backpropagation begins. The backpropagation process
is essentially a parameter optimization process. For classification tasks, the optimization
objects are the weights and biases in the network. For the regression task, the optimization
object is the four parameters of x, y, w, and h corresponding to the bounding box.

• Classification parameters:

dw2 = reg× w2 + dw2
dw1 = reg× w1 + dw1

w2 = − epsilon× dw2 + w2
b2 = − epsilon× db2 + b2

w1 = − epsilon× dw1 + w1
b1 = − epsilon× db1 + b1

(2)

where epsilon represents the learning rate, w1 represents the weight from the input to the
hidden layer, w2 represents the weight from the hidden layer to the output, b1 represents
the deviation from the input to the hidden layer, b2 represents the deviation from the
hidden layer to the output, reg is the regularization penalty coefficient value.

• Cross entropy loss function:

Lcls = loss2(x, class) = − log

exp(x[class])
∑
j

exp(x[j])

 = −x[class] + log

(
∑

j
exp(x[j])

)
(3)

Among them, x represents the probability of outputting a multi-classification problem,
class represents the index value of the real result [0, 1, 2], j represents the number of
classifications, this article is a three-class fault detection, so j is 3.

• Regression parameters:
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tx = dx =
(
Ĝx − Px

)
/Pw

ty = dy =
(
Ĝy − Py

)
/Ph

tw = dw = log
(
Ĝw/Pw

)
th = dh = log

(
Ĝh/Ph

) (4)

The regression parameter Pi=w,x,y,w,h represents the predicted value. di=w,x,y,w,h repre-
sents the gradient of change. ti=w,x,y,w,h represents the offset calculated according to the
target, Λ

G i = x, y, w, h represents the change, and each regression parameter update will
generate a new ground truth.

• SmoothL1 Loss error function:

Lbox =
1
N

N

∑
n=1

t∗n ∑
j∈{x,y,w,h}

loss3

(
V∗nj, Vnj

)
(5)

loss3

(
V∗nj, Vnj

)
= smoothL1

(
V∗nj, Vnj

)
=

 0.5
(

V∗nj −Vnj

)2
,
∣∣∣V∗nj −Vnj

∣∣∣ < 1∣∣∣V∗nj −Vnj

∣∣∣− 0.5,
∣∣∣V∗nj −Vnj

∣∣∣ ≥ 1
(6)

Among them, N represents the number of anchors, and t∗n is the regression of the target
frame (1 for the target area and 0 for the background area). V∗nj represents the predicted
offset. Vnj represents ground truth information.

3. ARG-Mask RCNN Algorithm

The fault location usually only occupies a small part of the area. To improve the
vigilance of the network for small targets, this paper improves the ResNet101 backbone
structure and introduces an attention mechanism to focus the model on fault features.
The obtained insulators have different degrees of inclination. To generate more personal
candidate frames, this paper innovatively proposes a rotation mechanism, which breaks the
traditional thinking of generating horizontal anchor frames and overcomes the insufficient
target positioning of existing target-detection algorithms. In an accurate bottleneck, at that
time, a candidate frame with a rotation angle is generated, which can accurately locate the
fault location. In addition, this paper also cleverly introduces the genetic algorithm, which
replaces the network parameters originally generated randomly by the genetic algorithm
to promote global exploration and improve the accuracy of the model. This section first
expounds on the overall framework, then elaborates on the three innovations, and finally
points out how these three innovations are applied to the ARG-Mask RCNN algorithm
proposed in this paper.

3.1. ARG-Mask RCNN Overall Model Framework

The ARG-Mask RCNN network structure consists of four modules as shown in
Figure 3, genetic algorithm Figure 3a, the feature extraction Figure 3c, classification and
regression Figure 3b, and mask prediction Figure 3d.

Specifically, the first is the genetic algorithm module, which is used to obtain the
initial parameter weights and biases required for CNN feature extraction. The second is the
feature map module, which is used to extract the target feature map. The original image is
extracted through the CNN layer to extract image features, and the RPN layer generates
multiple regions of interest. RRoI Align (rotated RoI Align) is a simulation of the RoI Align
in Mask RCNN. The rotation mechanism is added. The principle is the same as RoI Align.
RRoI Align adds the center rotation parameter, rotates the horizontal candidate frame
by a certain angle, adjusts the rotated candidate frame, and finally generates a candidate
frame that matches the ground truth. Next is the fully connected layer, which includes
two modules: classification and regression, which are used to obtain insulator fault type
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and location information. The last one is the MPN module to generate mask branches for
pixel-level segmentation of insulator fault locations.
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for pixel-level segmentation of insulator fault locations. 

3.2. ARG-Mask RCNN Backbone Network 
The fault location of insulators often occupies a small area in the captured data set. 
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ing, for the Conv1 layer as shown in Figure 4, the first layer of ResNet uses a 7 × 7 large 
convolution kernel to obtain the initial image features in a bigger format. To reduce the 
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ResNet101 to improve the recognition speed of the fault location by the module.  

Figure 3. ARG-Mask RCNN framework.

3.2. ARG-Mask RCNN Backbone Network

The fault location of insulators often occupies a small area in the captured data set.
To improve the recognition speed of such small targets, this paper introduces an attention
mechanism and improves the ResNet101 structure. Drawing on the idea of transfer learning,
for the Conv1 layer as shown in Figure 4, the first layer of ResNet uses a 7 × 7 large
convolution kernel to obtain the initial image features in a bigger format. To reduce the
calculation amount of the network and improve the efficiency, it is proposed to replace the
7 × 7 convolution kernel of the first layer of ResNet with three layers of 3 × 3 convolution
kernels. At the same time, we choose to insert a 7 × 7 Attention between Pre-conv and
ResNet101 to improve the recognition speed of the fault location by the module.

The ResNet101 residual network [28] structure was proposed by He et al. in 2016. The
author proposed to construct a deep network through the method of identity mapping.
The deep network is copied from the trained shallow layer, and the identity mapping
shortcut key. The connection does not add additional parameters and computational
complexity, and the network is still trained end-to-end through gradient descent and
backpropagation. The actual shooting data set has a large observation area and a large
amount of irrelevant information. For example, backgrounds such as tower poles, busbars,
trees, etc.; these backgrounds are large and independent, while the area occupied by faults
is small and concentrated.

In response to this phenomenon, this paper introduces an attention mechanism, which
is very similar to human visual attention, and also enables the machine to select the
information that is more critical to the current task goal from a large amount of information.
As shown in Figure 5, DANet [29] is chosen to help the model to better select target regions.
The net module is a general-purpose lightweight module commonly known as plug-and-
play. This module is conducive to improving the accurate screening of insulator minor
faults and can obtain more key information.
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Figure 4. ARG-Mask RCNN backbone network structure. 

The ResNet101 residual network [28] structure was proposed by He et al. in 2016. 
The author proposed to construct a deep network through the method of identity map-
ping. The deep network is copied from the trained shallow layer, and the identity map-
ping shortcut key. The connection does not add additional parameters and computational 
complexity, and the network is still trained end-to-end through gradient descent and 
backpropagation. The actual shooting data set has a large observation area and a large 
amount of irrelevant information. For example, backgrounds such as tower poles, bus-
bars, trees, etc.; these backgrounds are large and independent, while the area occupied by 
faults is small and concentrated. 

In response to this phenomenon, this paper introduces an attention mechanism, 
which is very similar to human visual attention, and also enables the machine to select the 
information that is more critical to the current task goal from a large amount of infor-
mation. As shown in Figure 5, DANet [29] is chosen to help the model to better select 
target regions. The net module is a general-purpose lightweight module commonly 
known as plug-and-play. This module is conducive to improving the accurate screening 
of insulator minor faults and can obtain more key information. 

Figure 4. ARG-Mask RCNN backbone network structure.
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3.3. ARG-Mask RCNN Loss Function

For the photographed infrared insulator map, there are various attitudes, both hori-
zontal and inclined. When a target in the horizontal direction generates a candidate frame,
a personal rectangular frame can be generated, and the bounding box generated for an
inclined target is much larger than that in the horizontal direction, which means that in the
subsequent classification and regression operations, the amount of computation will be
greatly increased. To detect these objects with rotation directions in aerial photography,
this paper creatively introduces the rotation mechanism into the production of candidate
boxes. The difference between rotating target detection and horizontal target detection
is that the direction of the target needs to be detected. The predicted result includes the
category, position coordinates, length and width, and angle. The Rotated Region of Interest
Align (RRoI Align) is based on the Mask RCNN-detection algorithm, adding a rotated
Rol extraction module (Rotated Rol), which is divided into two stages. In the first stage,
Mask RCNN predicts a rough rotation frame through RPN and horizontal RoI and uses
the horizontal RoI feature to predict (x, y, w, h, θ), which represents a rotation angle. The
second stage is to extract the features of Rol from the rotation frame of the first stage, and
then perform accurate (x′, y′, w′, h′, θ′) correction. Rotation Rol feature extraction is imple-
mented based on RoI Align, that is, based on horizontal RoI Align, and each sampling point
(x,y) is coordinate offset according to angle θ to obtain (x,y). The final feature extraction of
rotation is shown in Figure 6.

In order to achieve the effective separation of target and background, the above
Equation (4) will be improved. The arrangement of insulator string facilities is relatively
dense, and the acquired data has a large overlap and pick-and-roll situation. It is difficult
to achieve accurate instance segmentation for inclined fault locations. Therefore, this paper
improves the loss function while improving the backbone network. This paper proposes a
rotating anchor frame, which can maintain high localization accuracy and speed for small,
inclined objects. That is, a new parameter is introduced into the bounding box loss function
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to represent the angle of the bounding box on the Y-axis relative to the X-axis, in the range
[0, 2], obtained from Equation (4). The improved bounding box is defined as follows.

tx = dx =
(
Ĝx − Px

)
/Pw

ty = dy =
(
Ĝy − Py

)
/Ph

tw = dw = log
(
Ĝw/Pw

)
th = dh = log

(
Ĝh/Ph

)
tθ = dθ = Ĝθ − Pθ

(7)

Pi=w,x,y,w,h,θ means proposal. di=w,x,y,w,h,θ represents the gradient of change. ti=w,x,y,w,h,θ

corresponds to the target as the required offset, Λ
G i = x, y, w, h, θ represents the change, and

each regression parameter update will generate a new Ground truth.
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In order to achieve the effective separation of target and background, the above Equa-
tion (4) will be improved. The arrangement of insulator string facilities is relatively dense, 
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the change, and each regression parameter update will generate a new Ground truth. 
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Figure 6. Rotational object refinement extraction module.

RRoI Align and RoI Align are essentially the same, except that RRoI Align will have an
offset angle for the sampling points during bilinear interpolation. The offset is calculated as:

x = Samplingy sin θ + Samplingx cos θ + Centerw
y = Samplingy cos θ + Samplingx sin θ + Centerh

(8)

Among them, Centerw, Centerh represents the (x, y) coordinates of the center point,
respectively. Samplingx , Samplingy represents the (x, y) coordinates of the feature map
where the sampling point is located.

The improved loss function: obtained by Equations (1), (3) and (5).

L =
λ1

N

N

∑
n=1

t∗n ∑
j∈{x,y,w,h,θ}

Lreg

(
V∗nj, Vnj

)
+

λ2

N

N

∑
n=1

Lcls(x, class) +
λ3

N

N

∑
n=1

Lmask(x, class) (9)

Among them, N represents the number of anchors, and t∗n is the regression of the target
frame (1 for the target area and 0 for the background area). V∗nj represents the predicted
offset. Vnj represents the GT information, x represents the probability of outputting a
multi-classification problem, class represents the index value [0, 1, 2] of the real result, and
λ1 λ2 λ3 is three hyperparameters that control the balance of the two losses.
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3.4. ARG-Mask RCNN Parameter Update

The classic convolutional neural network adopts the steepest descent algorithm as
the optimizer, and its optimal performance is greatly affected by the initial weight settings
of the convolutional layer and the fully connected layer. The genetic algorithm is used to
generate multiple groups of initial weights, and the optimal weights are obtained through
selection, crossover, and mutation operations. These weights are used as the initial weights
of the neural network, and their performance is better than the initial weights randomly
selected by the steepest descent algorithm. Considering that the genetic algorithm has
the efficient searchability of the global and local optimal solutions, this paper proposes a
convolutional neural network combined with a genetic algorithm to optimize parameters
to be as close to the global optimum as possible.

The genetic algorithm [30] is used to determine the initial weight of the neural network
classifier, as well as the initial position of the bounding box of the regressor and the size
of the target box. The weight of the convolution layer in the neural network and the
parameters of the bounding box are used as the population individuals of the genetic
algorithm, and all combinations of weights and parameters are binary-coded to generate
the chromosomes of the genetic algorithm. Then, we perform reselection, crossover, and
mutation operations on each chromosome in the population to approach the one with the
better weight. To solve the chromosome fitness value, decode the chromosome to obtain a
set of initial values, which will be used as the initial value of the neural network and the
initial parameters of the generated frame, and the generated initial value will be used to
train the neural network classification by using the steepest descent algorithm. The loss
function value of the convolutional neural network after training is calculated and used as
the fitness value of the corresponding chromosome. To avoid data overfitting, the number
of iterations should not be set too large, and the genetic algorithm can be used to mark
many local optimal values. For given population size, after performing multiple rounds
of the genetic algorithm, the final population can be obtained, which will be used as the
initial parameter. The flow chart of the realization of the algorithm is shown in Figure 7.

Sensors 2022, 22, 4720 13 of 27 
 

 

Convolution
Layer

Sampling
Layer

Output

The
Connection

Layer

Sampling
Layer

Convolution
Layer

.

.

.

Population 
initialization

Select Crossover 
Variation

Whether Fitness 
satisfied condition

Acquisition of final 
population

Initialize algorithm 
parameters

Input

Calculate population 
fitness value

 
Figure 7. GA-CNN implementation flowchart. 

The training of the neural network is the process of updating the parameters accord-
ing to backpropagation. At that time, the optimizer will calculate the new value according 
to the gradient information of backpropagation. Adaptive moment estimation (Adam) 
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tively. They have advantages in efficiency and precision. Adam has fast optimization 
speed in the early stage, while SGD has high optimization accuracy in the later stage. To 
test the performance of target recognition using the genetic algorithm to generate the ini-
tial parameters of the network proposed in this paper, we chose to test the classification 
task on the CIFAR10 dataset. The experimental results are shown in Figure 8. In the figure, 
SGD [31] represents the stochastic gradient descent method; GA-GD is the genetic algo-
rithm combined with the gradient descent method proposed in this paper, and the Adam 
[32] algorithm evolved from SGD. The Adam algorithm has been used in recent years and 
is widely used in the field of computer vision. The experimental results show that the GA-
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is about 72%, which is better than other methods. 

SGD

  GA-GD

Adam

(a)The process of finding better answers (b)The results for finding better answers  
Figure 8. GA-GD test results. 

Figure 7. GA-CNN implementation flowchart.



Sensors 2022, 22, 4720 13 of 26

The training of the neural network is the process of updating the parameters according
to backpropagation. At that time, the optimizer will calculate the new value according to
the gradient information of backpropagation. Adaptive moment estimation (Adam) and
stochastic gradient descent (SGD) are the best deep learning optimizers today, respectively.
They have advantages in efficiency and precision. Adam has fast optimization speed
in the early stage, while SGD has high optimization accuracy in the later stage. To test
the performance of target recognition using the genetic algorithm to generate the initial
parameters of the network proposed in this paper, we chose to test the classification task
on the CIFAR10 dataset. The experimental results are shown in Figure 8. In the figure,
SGD [31] represents the stochastic gradient descent method; GA-GD is the genetic algorithm
combined with the gradient descent method proposed in this paper, and the Adam [32]
algorithm evolved from SGD. The Adam algorithm has been used in recent years and is
widely used in the field of computer vision. The experimental results show that the GA-GD
algorithm can quickly complete the classification task. Compared with the other two
methods, there are much fewer roundabout processes, and the final recognition accuracy is
about 72%, which is better than other methods.
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3.5. ARG-Mask RCNN Algorithm Implementation Steps

The previous section has described the basic structure of the ARG-Mask RCNN
algorithm in detail, including its backbone network, loss function, and parameter update.
This section will concatenate these structures, specifically how the loss function is used
to optimize the initial parameters, and how these basic structures are stitched together to
form the final ARG-Mask RCNN algorithm.

Step 1: Feature extraction according to the filter [33]; the process of layer-by-layer
convolution of the original image is completed. As the number of convolution layers
increases, image information will also be lost, and the loss of a large amount of information
will be extremely unfavorable for the regression task. The backbone network of ARG-Mask
RCNN is composed of FPN + ResNet101. FPN effectively retains the basic characteristics of
the image by summing and superposing the various convolutional layers of ResNet101.
When an image is input, the backbone network first performs noise reduction processing
on the original image and then performs scaling and superposition processing on the R, G,
and B channels of the image. During feature extraction of the target, the backbone network
of ARG-Mask RCNN can calculate the edge information of the target.

Step 2: Calculation of loss function after completing the first step; the processed feature
map is sent to the full link layer to complete the classification and regression tasks [34]. In
this paper, four-class fault detection is performed on insulators. According to the input
feature map, the neural network will predict the probability values of four types of faults.
At that time, ARG-Mask RCNN will calculate Lcls based on the difference between the
predicted result and the real situation. In the regression task, Lbox is calculated from the
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difference between the predicted fault location and the true location. In the same way, Lmask
is calculated.

Step 3: Update of parameters after the calculation of the loss function is completed
and back-propagation begins, that is, the process of optimizing the parameters. As a tool to
measure the quality of the model’s prediction, the loss function can reflect the gap between
the predicted value and the actual value. In Section 3.3, the loss function of ARG-Mask
RCNN was described, and its expression was used as the objective function as shown in
Equation (10). Taking the parameters in the classification and regression tasks as the object
of optimization, such as Equation (11), the update of the parameters is completed by the
GA-GD algorithm.

f (x) =
λ1

N

N

∑
n=1

t∗n ∑
j∈{x,y,w,h,θ}

Lreg

(
V∗nj, Vnj

)
+

λ2

N

N

∑
n=1

Lcls(x, class) +
λ3

N

N

∑
n=1

Lmask(x, class) (10)
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Among them, W1ib1iW2ib2i is the classification optimization parameter, W1ib1i is the
weight and deviation from the input layer to the hidden layer, W2ib2i is the weight and
deviation from the hidden layer to the output, GxiGyiGwiGhiGθi is the regression parameter,
GxiGyi corresponds to the coordinate information of the center of the rectangular frame,
and GwiGhi corresponds to the width of the rectangular frame and height, Gθi corresponds
to the rotation angle of the rectangular box.

4. Simulation Experiment

In order to test the recognition performance of the ARG-Mask RCNN method proposed
in this paper for infrared fault insulators, a comparison experiment with the classical
convolutional neural network algorithm is proposed to verify whether the recognition
accuracy and speed can be improved. This section will elaborate on the experimental
environment, experimental results, and performance tests. The specific experiments are as
follows: (1) The ARG-Mask RCNN algorithm is used for edge extraction to separate the
insulator from the background. (2) Analyze the fault-detection performance of the ARG-
Mask RCNN algorithm, and the test data set contains different fault types. (3) It is proposed
to compare the ARG-Mask RCNN algorithm with the classic target-recognition algorithm
to verify whether the algorithm proposed in this paper can achieve good performance.

4.1. Experimental Environment

The infrared insulator images used in this paper are provided by a China Southern
Power Grid Company (Nanning, China), from which 6000 images are selected as the
training data set, and the remaining 1000 images are used as the test data set. Each insulator
string image contains at least four insulator sheets. In this paper, Labelme labeling software
(Labelme v5.0.1) is used to label the insulator fault location and type for training analysis.
The software is an image annotation tool developed by the Massachusetts Institute of
Technology (MIT) in the United States. Labelme software will generate the corresponding
JSON file. The experimental environment used in this paper is shown in Table 1.

The data set required by the network is trained by converting the labeled data set into
COCO [35]. The modified ResNet50/101 + FPN model is used in the ARG-Mask RCNN
model as the backbone network, and the hyperparameters of the model are obtained by a
genetic algorithm. The initial hyperparameters are shown in Table 2.
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Table 1. Experimental environment.

Project Model or Parameter Value

Central Processing Unit (CPU) Intel i5-7300HQ
RAM/GB 128

Graphics Processing Unit (GPU) An RTX 3080Ti
Operating System Window 10

Software Environment Anaconda3, Cuda11.3, Python3.7
Development Tools Pycharm

Deep Learning Libraries PyTorch

Table 2. Training parameters.

Parameter Value

weight decay 0.0001
learning rate 0.001

number of iterations 100
number of training rounds 60

4.2. Experimental Results and Analysis

This section will elaborate on the process of image processing, and show the results of
edge extraction, object recognition, and fault detection. Among them, fault detection will
be the key content, showing the detection effects of four kinds of faults, and at the same
time, it will locate different fault locations.

The quality of the image will determine whether the type of insulator fault can be
accurately diagnosed, and the image is a complex outdoor environment affected by noise,
which leads to the degradation of the image quality. To improve the detection accuracy of
the model, based on image processing technology, a Gaussian filter is used to process the
noise of the incoming image [36], and the gradient method, non-maximum suppression,
and double threshold are used to extract the image edge [37]. The gradient can obtain
the changes of pixels in the region, use non-maximum suppression to retain the nine
boundary contours with the largest changes in adjacent pixels, and finally use double
thresholds to obtain strong edges greater than the upper limit while retaining candidates
between the upper and lower limits. Weak edges, as shown in Figure 9, are the effects of
image processing.

Figure 9 shows a total of four original infrared images representing self-explosion
faults, low-value faults, zero-value faults, and contamination faults. The first is to extract
the edge contour information of the insulator by the edge detection of Marginal check, to
provide the basis for the subsequent target detection and fault location. Target detection
Background Separation shows the separation of the insulator from the background, treat-
ing the pixel as a mixture of multiple Gaussian models, and then assigning a Gaussian
model to one class, selecting the insulator model to filter out the background [38]. Target
extraction performs pixel segmentation on insulators to obtain detection targets. Abort
situation locates the fault location of the insulator to supply grid maintenance personnel
for subsequent insulator maintenance.

In this paper, the fault detection of infrared insulators based on the ARG-Mask RCNN
method is used, and the faulty insulators are segmented by using the Mask. In Figure 10,
red, purple, fluorescent green, and blue represent self-explosion faults, low-value faults,
and zero-value faults, respectively—four types of contamination faults.

To better illustrate the effect of the method proposed in this paper on insulator-
fault detection, Figure 11 shows the detection effect of four different fault locations. The
detected fault rectangle in Figure 11a is inclined, which is good as it is proved that the
rotation mechanism proposed in this paper can more accurately detect the position of the
faulty insulator sheet, and directly generate a horizontal frame for the horizontally placed
target [39].



Sensors 2022, 22, 4720 16 of 26

Sensors 2022, 22, 4720 16 of 27 
 

 

the changes of pixels in the region, use non-maximum suppression to retain the nine 
boundary contours with the largest changes in adjacent pixels, and finally use double 
thresholds to obtain strong edges greater than the upper limit while retaining candidates 
between the upper and lower limits. Weak edges, as shown in Figure 9, are the effects of 
image processing. 

 
Figure 9. Visualization of the image processing process. 

Figure 9. Visualization of the image processing process.

By analyzing the results in Figure 11, it is found that there are four types of faults:
self-explosion fault, low-value fault, zero-value fault, and contamination fault. After
changing the fault location in various ways, the ARG-Mask RCNN network can still locate
it accurately. The highest recognition rate of self-explosion faults is 96%, the highest
recognition rate of low-value faults is 95%, the highest recognition rate of zero-value faults
is 96%, and the highest recognition rate of pollution faults is 99%. It can be concluded
that the method proposed in this paper can identify a variety of fault types, which greatly
consolidates the safe and stable operation of the power grid.
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4.3. ARG-Mask RCNN Performance Test

To fully demonstrate the insulator fault-detection performance proposed in this paper,
Cascade RCNN, SSD, Retina Net, Mask RCNN, and YOLOv3 tiny are used as the control
group. Among them, Cascade RCNN is a two-stage target-detection algorithm. It pro-
poses a step-by-step method to integrate the IOU, which effectively solves the problem
of low training accuracy with a low threshold and a lack of positive samples with a high
threshold. SSD belongs to a single-stage target-detection algorithm. It proposes a method
for end-to-end direct target detection. After a single detection, the category and position
information of the target can be obtained, which reduces the region proposal stage, so
the detection speed is faster. After acquiring the feature map, RetinaNet added the FPN
feature pyramid for feature fusion and used focal loss to adjust the loss weight to solve
the problem of positive and negative sample imbalance. Mask RCNN is a segmentation
method based on pixel suggestion. It obtains image feature maps in an end-to-end manner,
which can realize convolution sharing, and then perform classification and regression oper-
ations on the feature maps. Due to the addition of a mask prediction network, pixel-level
segmentation can be performed. YOLOv3 belongs to the one-stage algorithm, which uses
only one CNN to directly predict the categories and positions of different targets [40]. It
has obvious advantages in speed. Finally, the proposed method is based on ARG-Mask
RCNN. Hyperparameters such as epoch, learning_rate, batch_size, etc., are kept the same
in all experimental groups. Four factors, TP, TN, FP, and FN [41], and four indicators
of precision, recall, accuracy, and technique for order preference by similarity to an ideal
solution (TOPSIS) [42] are set up. Definitions of these indicators are provided by (12)–(15).

Accuracy =
TP

TP + TN + FP + FN
(12)

Precision =
TP

TP + FP
(13)

Recall =
TP

TP + FN
(14)
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TOPSIS =
D−i

D+
i + D−i

(15)

Among them, TP means that the test result is consistent with the actual result, both
of which are the same fault type; FP means that the test result is a certain fault insulator
and the real result is a normal insulator; FN means that the real result is a kind of fault
insulator, and the test result shows a normal insulator or a fault category that is inconsistent
with the actual result is detected; TN means that the actual result and the test result are
normal insulators; D+

i represents the distance between the various indicators of an object
and the maximum value; and D−i represents the distance between various metrics and the
minimum value of an object.

It should be noted that TOPSIS is a comprehensive indicator that combines two
parameters—accuracy and frames per second (FPS) [43]. The calculation process of the
TOPSIS indicator is as follows:

x∗i =
xi − xmin

xmax − xmin
=

xi − xmin

xmax − xi + xi − xmin
(16)

x′i = xmax − xi (17)

Ynm =


Y11 Y12 · · · Y1m
Y21 Y22 · · · Y2m

...
...

. . .
...

Yn1 Yn2 · · · Ynm

 (18)

Zij =
Yij√
n
∑

i=1
Yij

2

(19)

Z+ =
(
Z+

1 , Z+
2 , · · · , Z+

m
)

= (max{z11, z21, · · · , zn1}, max{z12, z22, · · · , zn2}, · · · , max{z1m, z2m, · · · , znm})
(20)

Z− =
(
Z−1 , Z−2 , · · · , Z−m

)
= (min{z11, z21, · · · , zn1}, min{z12, z22, · · · , zn2}, · · · , min{z1m, z2m, · · · , znm})

(21)

D+
i =

√√√√ m

∑
j=1

ωj

(
Z+

j − zij

)2
(22)

D−i =

√√√√ m

∑
j=1

ωj

(
Z−j − zij

)2
(23)

TOPSIS = Si =
D−i

D+
i + D−i

(24)

Among them, xi represents each evaluation object, xmax, xmin represents the largest and
smallest evaluation object in a certain evaluation index, x′i represents the forwarded data,
Ynm represents the permutation and combination of the forwarded data, and n represents
the object (the text refers to different methods), m represents the evaluation index (the
text refers to accuracy and time), Z+, Z− represents the maximum and minimum values
in each column, and ωj represents the weight of different indicators (this paper sets the
accuracy weight as 0.8, and the time weight as 0.2). D+

i represents the distance between
each indicator of an object and the maximum value, D−i represents the distance between
each indicator of an object and the minimum value, and Si represents the final score.

According to the results of the demonstration, for the extraction of insulators, four
parameters of six different detection methods, TP, TN, FP, and FN, are counted. The two
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indicators of precision and recall are obtained from Equations (13) and (14), respectively, as
shown in Table 3.

Table 3. Comparison of six different detection methods.

Method Backbone True
Positive (TP)

False
Positive (FP)

False
Negative

(FN)

True
Negative

(TN)
Precision Recall

Cascade RCNN ResNet-101 + FPN 125 19 21 0 0.868 0.856
SSD VGG-16 231 42 50 0 0.846 0.822

Retina Net ResNet-101 + FPN 254 36 30 0 0.876 0.894
Mask RCNN ResNet-101 + FPN 268 11 27 0 0.961 0.908
Yolov3 tiny DarkNet-53 354 66 68 0 0.842 0.839
ARG-Mask

RCNN
Improved

ResNet-101 + FPN 316 5 4 0 0.984 0.988

There are six different detection methods in Table 3: Cascade RCNN, SSD, Retina Net,
Mask RCNN, Yolov3 tiny, ARG-Mask RCNN. The precision indicators are 0.868, 0.846,
0.876, 0.961, 0.842, 0.984, and the recall indicators are 0.856, 0.822, 0.894, 0.908, 0.839, 0.988.
The experimental results show that the method proposed in this paper is significantly better
than other methods for the two indicators of precision and recall.

To further analyze the effect of each method on identifying different fault types [44],
the accuracy of fault detection for each method is obtained from Equation (12). Table 4
lists four typical fault types: self-explosion, low value, zero value, and pollution. The
detection accuracy was evaluated according to the Equation (15) TOPSIS method. Six
different detection methods were taken as the object, and mean accuracy and FPS were
used as two indicators for performance analysis.

Table 4. Six different methods for accuracy and TOPSIS scoring.

Class Cascade
RCNN SSD Retina Net Mask RCNN YOLOv3

Tiny
ARG-Mask

RCNN

Self-imploding fault (%) 76.96 72.63 79.69 87.65 73.42 97.66
Low fault (%) 67.32 64.38 81.47 86.12 74.38 96.82
Zero fault (%) 75.31 75.59 79.46 82.73 73.91 95.46
Filth fault (%) 83.81 73.64 77.34 94.02 68.33 99.18

Mean Accuracy (%) 75.85 71.56 79.49 87.63 72.51 97.28
FPS 1.84 5.97 4.56 3.27 6.41 5.75

Times 0.54 0.17 0.22 0.31 0.16 0.17
TOPSIS 0.2834 0.6684 0.5324 0.2180 0.6973 0.8725

According to the data in Table 4, the average accuracy of single-stage object-detection
methods such as SSD and YOLOv3 tiny is about 72%, which is generally low. The recogni-
tion accuracy of Mask RCNN, Cascade RCNN, and the method proposed in this paper is
generally higher than that of the single-stage object-detection method, but the image run-
ning time is longer. The method proposed in this paper has made a good balance between
the recognition accuracy and the processing time of each image [45]. At the recognition
accuracy of 97.28%, the processing time of each image is only 0.174 s.

Figure 12 shows the change curve of precision and recall rate during the training
process. Figure 12 represents six kinds of Cascade RCNN, SSD, Retina Net, Mask RCNN,
YOLOv3 tiny, ARG-Mask RCNN, from left to right and from top to bottom. The abscissa
represents the number of training rounds and the ordinate represents the percentage [46].
The recall rates of Cascade RCNN, SSD, Retina Net, Mask RCNN, and YOLOv3 tiny are
generally between 60% and 65% at the beginning of training, while the method in this
paper performs well, at about 75% at the beginning. In terms of recognition accuracy, the
method in this paper is also 70% in the initial stage, while most of the other methods are
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between 55% and 68%. When the detection performance reaches a plateau, the recognition
accuracy and recall of the method in this paper hover within 0.5%, while other methods
fluctuate greatly in the steady-state. In comparison, the system of this method is more
stable [47]. To sum up, the method in this paper is superior to other methods in terms of
accuracy, recall, and stability.
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Figure 13 shows the effect of six different methods on fault detection. On the one
hand, we can acquire the distribution of the accuracy of fault identification by different
methods, and on the other hand, we can acquire the probability of different faults being
detected [48]. These two data will be of great reference value for future work. The four
graphs in Figure 13 represent the boxplots of the identification accuracy of self-explosion
faults, low-value faults, zero-value faults, and contamination faults, respectively. The
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abscissa represents the accuracy of different methods. The ordinate represents the accuracy
degree of distribution [49].
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Figure 13. Boxplot of recognition accuracy of different methods. The red “+” represents outliers in
the detection results. Each box has two black “−”, one above and the other below, representing the
upper and lower limits of the box, respectively. The blue rectangle has upper and lower lines, which
represent the upper and lower quartiles, respectively. There is also a short red line in each rectangle,
which represents the median in the results. In addition, there is a small blue square in the center of
each bin, which represents the mean across the set of results.

To more intuitively show the evaluation results of the six different methods for insula-
tor fault detection, Figure 14 shows the histogram of the performance comparison of these
six methods under each evaluation index. It shows that the method proposed in this paper
has obvious advantages in insulator fault identification [50].

In Figure 14, the horizontal axis shows precision, recall, accuracy, and TOPSI, rep-
resenting the four different performance evaluation indicators. Each indicator includes
six insulator fault-diagnosis methods: Cascade RCNN, SSD, Retina Net, Mask RCNN,
YOLOv3 tiny, and ARG-Mask RCNN. The vertical axis represents the scores under different
indicators of each method. The four performance indicators of precision, recall, accuracy,
and TOPSIS of the insulator infrared fault-diagnosis method proposed in this paper are
better than other methods, which are 0.984, 0.988, 0.972, and 0.873, respectively. From the
error bar in Figure 14, it is found that the method proposed in this paper has the smallest
error of these four indicators, which further shows that the ARG-Mask RCNN method has
the best performance in the infrared insulator fault-diagnosis method [51].
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5. Discussion and Future Work

Aiming at the problems of the existing image-recognition algorithms, such as single
category, low recognition rate, and slow speed in insulator fault diagnosis, this paper
proposes an image-segmentation method based on ARG-Mask RCNN. This method has
achieved good results in infrared insulator fault detection. Good results, many different
fault types can be detected, and the location of the faulty insulator string can be precisely
identified. The main method is to use the genetic algorithm to obtain the initial hyperpa-
rameters required by the network, which solves the problem that it is difficult to obtain
the global optimal solution through random selection combined with the steepest descent
algorithm. Modify the backbone network model to reduce the time for small target recogni-
tion; the rotating target detection algorithm improves the accuracy of fault location. The
experimental results show that the method proposed in this paper can effectively solve the
problems of the current insulator detection system, such as single function, low accuracy,
slow speed, and difficulty in dealing with harsh environments.

Many factors cause the failure of insulators, but most of them are determined by
natural factors. What we can do is to find it as soon as possible and reduce unnecessary
losses. Deep learning methods are popular in the field of insulator fault identification.
Although the method proposed in this paper has achieved good results, there are still
some limitations worthy of further study: (1) In the actual fault detection, the influence
of various types of bad weather should be considered. For example, in the background
of rainy and dense fog, the detection accuracy of the model will drop slightly. (2) There
are slight differences between some faults, which will normally cause the network to fail
to identify such faults, and even confuse faults with similar characteristics. (3) There are
many kinds of faults of insulators. This paper only covers four common fault detections:
self-explosion fault, contamination fault, zero fault, and damage fault. For some uncommon
types of failures, it is not yet possible to identify them. The future research direction should
continue to expand the data set, improve the recognition rate under various complex envi-
ronmental backgrounds, mine the differences in the characteristics of different fault types,
and subdivide the fault types to highlight the problems of confusion of similar categories.
Finally, it is hoped that the method in this paper can be helpful for the construction of smart
grids in my country.
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