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Abstract: Since the passive sensor has the property that it does not radiate signals, the use of passive
sensors for target tracking is beneficial to improve the low probability of intercept (LPI) performance
of the combat platform. However, for the high-maneuvering targets, its motion mode is unknown in
advance, so the passive target tracking algorithm using a fixed motion model or interactive multi-
model cannot match the actual motion mode of the maneuvering target. In order to solve the problem
of low tracking accuracy caused by the unknown motion model of high-maneuvering targets, this
paper firstly proposes a state transition matrix update-based extended Kalman filter (STMU-EKF)
passive tracking algorithm. In this algorithm, the multi-feature fusion-based trajectory clustering
is proposed to estimate the target state, and the state transition matrix is updated according to the
estimated value of the motion model and the observation value of multi-station passive sensors.
On this basis, considering that only using passive sensors for target tracking cannot often meet the
requirements of high target tracking accuracy, this paper introduces active radar for indirect radiation
and proposes a multi-sensor collaborative management model based on trajectory clustering. The
model performs the optimal allocation of active radar and passive sensors by judging the accumulated
errors of the eigenvalue of the error covariance matrix and makes the decision to update the state
transition matrix according to the magnitude of the fluctuation parameter of the error difference
between the prediction value and the observation value. The simulation results verify that the
proposed multi-sensor collaborative target tracking algorithm can effectively improve the high-
maneuvering target tracking accuracy to satisfy the radar’s LPI performance.

Keywords: low probability of intercept; multi-sensor management; multi-feature fusion; trajectory
clustering; high-maneuvering target

1. Introduction

In modern warfare, when the radar detects and tracks the target, its radiation signal is
easily intercepted by the intercepting receiver, which seriously threatens the survivability
of the radar on the battlefield. Low probability of intercept (LPI) has become one of the
essential properties of radar. Only with the LPI performance can radar survive in the
harsh and fierce electronic warfare and exert its tactical and technical performance [1,2].
Therefore, the research on LPI radar has become one of the hot issues in modern radar
research, attracting more and more scholars.

Common radar low intercept probability realization methods include low intercept
probability waveform design, low sidelobe antenna design, and low radiation energy con-
trol. Among them, low radiation energy control is the most direct and effective method to
achieve the LPI performance of the radar. For radar low radiation energy control, a wealth
of research results has been achieved. Radar low radiation energy control mainly includes
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radar low radiation power control and radar low radiation time control. In terms of airborne
radar radiation power control, Godrich et al. proposed a multiple-input multiple-output
(MIMO) radar radiated power control algorithm that satisfies the radar target positioning
accuracy under the Cramér–Rao bound of distributed MIMO radar target state estima-
tion [3]. For multi-target tracking, Chavali et al. proposed a joint optimization algorithm
for MIMO radar transmit antenna selection and radiation power [4]. Shi et al. proposed
that on the premise of meeting the requirements of target tracking performance, the power
distribution of the networked radar is carried out by minimizing the total transmit power
of the networked radar so as to achieve the radio frequency stealth performance of the
networked radar [5]. Xie et al. optimized the radar node selection and power allocation
in the multi-target tracking process of the networked radar [6]. Han et al. studied the
power allocation problem of opportunistic array radar using the fuzzy variable representa-
tion method [7]. Ghoreishian et al. established an RF stealth power allocation model for
distributed MIMO radar under two transmit waveforms, orthogonal frequency diversity,
and phase encoding, respectively, for extended targets [8]. Based on the application of dis-
tributed MIMO radar target detection, Jebali et al. proposed a power allocation method that
jointly optimizes the total transmit power and intercept probability [9]. In terms of airborne
radar radiation time control, Wang et al. studied the joint assignment of beam pointing
and dwell time in the multi-target tracking process of phased array radar [10]. Ghazal
M et al. studied infrared sensors and electronic support measures to assist airborne radar in
target tracking, which can effectively reduce the number of external radiations of airborne
radar [11]. Xiong et al. also proposed to further increase the silence time of the airborne
radar through the cross-location method of multiple infrared sensors [12]. Narykov et al.
studied radar time resource management under the joint optimization of sensor selection
and dwell time for networked radar [13]. For MIMO radar, Zhao et al. proposed that
in MIMO radar search mode, the radio frequency stealth performance of MIMO radar
can be achieved by adaptively controlling beam dwell time, signal duty cycle, and search
frame period [14]. Shaghaghi et al. introduced machine learning into the multi-channel,
multi-function radar resource management problem, solved the optimal solution of the task
scheduling problem by using the branch and bound algorithm, and used machine learning
to reduce the computational complexity and maximize the utilization of time and other
resources [15]. Han et al. proposed a joint adaptive sampling interval and power allocation
(JASIPA) scheme based on opportunistic programming constraint (OCP) [16]. However,
most of the existing low radiation energy control methods are designed for conventional
moving targets, and there are few studies on high-maneuvering targets. This paper focuses
on the radar low radiation time control of high-maneuvering targets. The key is to improve
the tracking accuracy of passive sensors for high-maneuvering targets. In the process of
low radiation energy tracking for the target, this paper will realize the adaptive update of
the target motion state model based on the target motion trajectory clustering algorithm.

In terms of target trajectory clustering technology, combining trajectory mapping and
clustering methods, Li et al. proposed an improved density-based applied spatial clustering
algorithm with noise (DBSCAN) to cluster spatial points to obtain optimal clusters [17].
Yu et al. proposed an efficient trajectory dimensionality reduction method and a DBSCAN
hyperparameter initialization method [18]. In order to achieve adaptive parameter cali-
bration and reduce the workload of trajectory clustering, Mao et al. proposed an adaptive
trajectory clustering method based on grid and density [19]. Aiming at the limitation that
trajectory clustering is often sensitive to undesired outliers, Li et al. proposed a multi-step
trajectory clustering method for robust AIS trajectory clustering [20]. To address the com-
putational complexity of the DENCLUE algorithm, Mariam et al. conducted an empirical
evaluation of using the DENCLUE algorithm to discover clusters of arbitrary shapes [21].
In the application of AIS trajectory separation, Lei et al. used the OPTICS clustering method
based on spatiotemporal distance [22]. Aiming at the problems of difficult parameter set-
ting, high time complexity, poor noise recognition, and weak clustering ability for data sets
with uneven density in most density-based clustering algorithms, Tang et al. proposed an



Sensors 2022, 22, 4713 3 of 20

improved OPTICS algorithm to overcome the weakness of most algorithms for clustering
in data sets with uneven density [23]. However, most of the common trajectory clustering
algorithms use one single feature for clustering and cannot make accurate judgments on
maneuvering targets with similar motion patterns. Aiming at the single eigenvalue problem
of the traditional OPTICS algorithm, this paper proposes a trajectory clustering algorithm
based on multi-feature fusion. On this basis, the motion state estimation is performed, and
the state transition matrix is updated according to the observation values of multi-station
passive sensors.

It can be seen from the current research status of low radiation energy control and
trajectory clustering that most of the existing low radiation energy control methods do
not take high-maneuvering targets into account. Moreover, common trajectory clustering
algorithms use scant features and cannot make accurate judgments on maneuvering targets
that have similar motion patterns. Aiming at these issues, we conduct research on them.
In this paper, a multi-feature fusion-based trajectory clustering algorithm is proposed to
improve the clustering accuracy. On this basis, the STMU-EKF algorithm is proposed to
solve the problem of low tracking accuracy caused by the unknown motion model of high-
maneuvering targets. Considering that only using passive sensors for target tracking cannot
often meet the requirements of high target tracking accuracy, this paper also introduces
active radar for indirect radiation and proposes a multi-sensor collaborative management
model based on trajectory clustering.

The rest of this paper is organized as follows. Section 2: A trajectory clustering
algorithm based on multi-feature fusion is proposed. Section 3: On the basis of the multi-
feature fusion-based trajectory clustering, a passive target tracking algorithm for high-
maneuvering targets is proposed. Section 4: To satisfy the LPI performance of radar and
the target tracking accuracy, a multi-sensor collaborative management model based on
trajectory clustering is proposed. Section 5: Put the above algorithms into simulation.
Section 6: Conclude this paper.

2. Trajectory Clustering Algorithm Based on Multi-Feature Fusion
2.1. Trajectory Feature Description

The movement trajectory of a maneuvering target is essentially a mapping from time
to space, and the trajectory contains the relevant target information in time, space, and its
own properties. In a specific environment, by tracking the maneuvering target, a series
of centroid points can be obtained, and the target motion trajectory can be obtained by
connecting the above centroid points in a time sequence. Assuming that the coordinates in
the two-dimensional space are (xk, yk) and the current timestamp is tk, the target trajectory
can be expressed by

T = {xk, yk, tk, k = 1, 2, . . . , N}. (1)

During the movement process of a maneuvering target, when the trajectory model
changes, the trajectory between different frames is different, and the spatial trajectory
distribution of the specific model of the maneuvering target has certain characteristics. As
one of the bases of the trajectory model, the maneuvering target’s inter-frame trajectory
mean M can be defined as a position trajectory feature and can be written as

M =
1
N

N

∑
k=1

(xk, yk). (2)

The spatial information of the target trajectory T also includes the information Lk of
its trajectory length and forward direction, which can be defined as

Lk = (xk − xk−1, yk − yk−1), (3)

where xk and yk represent the trajectory vectors in the horizontal and vertical directions at
time tk, respectively. The trajectory type can be divided according to the size of Lk, which
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can be defined as another trajectory feature. For example, the larger the absolute value |L k|
of the information Lk is, the higher the probability of linear motion is, and according to
the positive and negative of Lk, the direction of trajectory movement can be judged. For
example, the trajectory with a negative sign is generally moving in the opposite direction.

However, for Equation (3), only the rough movement direction of the target can
be distinguished, that is, forward or backward. If you want to describe the movement
direction of the maneuvering target more accurately, you need to divide the trajectory
between frames. The trajectory information Lk should be further expanded into the angle
information and the speed information.

For the trajectory angle information, we can set a certain angle threshold. When the
trajectory angle exceeds the threshold, it will be marked as the corresponding feature point.
According to the distribution of the feature points, the trajectory angle θk, which can be
defined as an instantaneous angle trajectory feature, can be defined as

θk = arctan(
yk − yk−1
xk − xk−1

) +
π

2
+ nπ. (4)

For the trajectory speed information, we can also use the size of the target movement
speed as the target clustering feature, which can be further divided into instantaneous
speed vk and average speed v. They can be written respectively as

vk =

√
(xk − xk−1)

2 + (yk − yk−1)
2, (5)

v =
1

N − 1

N−1

∑
k=1

vk, (6)

where the successive time intervals are the same.
When the instantaneous speed vk is too high, the probability of making a turning

motion at this moment is small. When the average speed v is too high, the probability of
making a linear motion in the whole process is large.

2.2. Trajectory Clustering Algorithm Based on Multi-Feature Fusion

Common trajectory clustering algorithms include hierarchical-based clustering, density-
based clustering, partition-based clustering, grid-based clustering, and model-based clustering.
Among them, the density-based clustering algorithm, including the OPTICS algorithm, the
DBSCAN algorithm, and the DENCLUE algorithm, can obtain more clustering accuracy by
searching for different clusters and requires fewer input parameters. Compared with other
density-based clustering algorithms, OPTICS is an improved density clustering algorithm. It
shares many common concepts with the DBSCAN algorithm, such as core objects, density
of direct, density connection, etc. However, it overcomes the shortcomings of the DBSCAN
algorithm’s sensitivity to initial setting parameters and poor adaptability to data sets with
different densities and requires fewer input parameters than the DENCLUE algorithm, which
is suitable for trajectory recognition in the process of high-maneuvering target tracking.

Based on the DBSCAN algorithm, the OPTICS algorithm introduces two important
definitions, namely core distance d(x) and reachable distance r(x, y).

Assuming that the sample x ∈ X, its R∈ neighborhood contains the number of sub-
sample sets in the sample set X whose distance from x is not greater than R∈ is NR∈(x),
the input parameters are (R∈, MinPts) , where R∈ is the radius, MinPts is the minimum
number of points. The value d(x) of the minimum neighborhood radius of the sample core
point, which is called the core distance of x, is obtained according to the given parameters
that is

d(x) = d
(

x, NMinPts
R∈ (x)

)
, |NR∈(x)| ≥ MinPts, (7)

where NMinPts
R∈ (x) is the ith node adjacent to node MinPts in set NR∈(x).
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The reachable distance r(x, y) represents the minimum neighborhood radius that can
be directly density-reachable from the core point x, which is

r(x, y) = min{R∈ : y ∈ NR∈(x)}. (8)

Traditional OPTICS clustering algorithms often use a single eigenvalue for clustering,
for example, using the motion vector between two directly adjacent frames as a single
eigenvalue for clustering. However, a single eigenvalue only reflects the characteristics of
a certain aspect of the trajectory. If a single eigenvalue is used for clustering, an accurate
judgment cannot be made for maneuvering targets with similar motion patterns.

In order to further improve the model matching accuracy, this paper uses four spatial
features: the maneuvering target’s inter-frame trajectory mean M, trajectory angle θk,
instantaneous speed vk and average speed v for trajectory clustering, which corresponds
to different feature spaces. For the fusion clustering, the clustering results from different
feature spaces need to be associated. Then the relationship between the obtained fusion
clustering results and the remaining unprocessed trajectories can be established based on
the conditional probability of them. Finally, the motion model of the trajectory can be
obtained. Since the multi-feature fusion-based clustering is performed after the clustering
of each feature space, the dimensionality problem caused by fusion before clustering in
traditional algorithms can be avoided.

Assume that the feature space sample set is D = {F 1, . . . , Fn}, where n is the number
of feature spaces. If each feature space sample Fn in D is clustered separately, the sample
spaces will obtain different numbers of clusters {N i|i = 1, . . . , n}. After the fusion clus-
tering is performed, the clustering parameters need to contain the clustering results of all
the feature spaces. Therefore, the number Nmax of clusters after fusion clustering is the
maximum value in Ni, that is, Nmax= max{N 1, . . . , Nn}. The clustering result after fusion
can be expressed as {C l

max|l = 1, . . . , n}.
After the clustering results of each feature space are obtained, different feature spaces

need to be associated. Assuming that the two feature spaces are Fa and Fb, respectively, the
lth clustering result of Fb is El

b, and the cluster of the most overlapping elements with El
b in

the clustering result of Fa is Eβ
a . Then the clustering result can be updated to

El
max = Cl

max + Eβ
a (l = 1, . . . , Nmax). (9)

In order to correlate with the remaining unprocessed trajectories, a probabilistic
mapping relationship between each trajectory and the clustering of existing trajectories
needs to be calculated. Assuming that the trajectories that have not yet been clustered are G,
the standard deviation of El

max is δl
max, and the mean value is µi, the conditional probability

between each trajectory and the corresponding fusion clustering result is

P(G|Cl
max) =

1
n

n

∑
i=1

1√
2πδl

max
exp(

xi − µi

δl
max

). (10)

From the obtained conditional probabilities, we can then make decisions on the
assignment of the remaining trajectories. When P(G|E l

max) > P(G|E l
b

)
, the corresponding

trajectory G will establish a connection with El
max. When all remaining trajectories have

been assigned, the fusion clustering algorithm ends. The steps of the above algorithm are
shown in Algorithm 1:
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Algorithm 1. The steps of trajectory clustering algorithm based on multi-feature fusion.

Step1. Count the required number of clusters after trajectory fusion Nmax.
Step2. Calculate the clustering structure El

max of this target movement, and complete the fusion
trajectory clustering for each individual feature space.
Step3. Assign the trajectories that satisfy the clustering conditions to the corresponding clusters
by calculating the conditional probability P(G|C k

max and making judgments.
Step4. Obtain the approximate model of the target motion trajectory according to the result of
trajectory clustering after multi-feature fusion.

3. Passive Tracking Algorithm for High-Maneuvering Targets Based on Adaptive
Update of Target Motion State Model

As a common passive sensor target tracking algorithm, the extended Kalman filter
(EKF) algorithm is often used in the condition where the target trajectory is nonlinear. The
principle is to truncate the nonlinear state equation f (x) and the observation equation
h(x) according to the target filter value by the first-order Taylor series so as to obtain a
linearized system model. However, the state transition matrix of the conventional EKF
algorithm has the singularity property and will keep unchanged in the process of high-
maneuvering target tracking, causing a large error in the filtering results. IMM-EKF is based
on the probability of different motion models, which can improve the tracking accuracy
in maneuvering target tracking to some extent. For high-maneuvering targets, IMM-EKF
is difficult to obtain the motion model probability in advance, so it cannot improve its
tracking accuracy effectively. In order to solve this problem, this section introduces the
multi-feature fusion-based trajectory clustering algorithm proposed in Section 2 and designs
a state transition matrix update-based EKF (STMU-EKF) passive tracking algorithm for
high-maneuvering targets.

The proposed STMU-EKF algorithm can be divided into three main steps, which
are the prediction of the current target (also called ‘time update’), state correction (also
called ‘state transition matrix update’), and parameter correction (also called ‘measurement
update’). The flowchart of the proposed STMU-EKF algorithm is shown in Figure 1.
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3.1. Time Update

Assuming that the current target motion state is X̂k, the covariance matrix of the
target state vector is Pk, and the measurement noise is vk. The nonlinear state equation is
f (x), and the nonlinear observation equation is h(x), then the Jacobi matrices of these two
nonlinear equations are calculated as Fk and Hk, which is Fk =

∂ f (XK−1)
∂XK−1

∣∣∣
XK−1=X̂k−1|k−1

and

Hk =
∂ f (XK)

∂XK

∣∣∣
XK=X̂k|k−1

.

The state equation is

X̂k+1|k = f
(

X̂k|k

)
= Fk+1|kX̂k|k, (11)

where Fk+1|k represents the state transition matrix.
The observation equation is

Ẑk+1|k = Hk+1|kX̂k+1|k + vk. (12)

And the prediction covariance matrix is

Pk+1|k = Fk+1|kPk|kFT
k+1|k + Qk+1, (13)

where Qk+1 represents the Gaussian covariance matrix in the target prediction process.

3.2. State Transition Matrix Update

Through Equations (11)–(13), we have completed the time update of the target, and
then we need to update the state transition matrix by decision.

The state transition matrix is determined by the target state model, and the target
motion state can be estimated by multi-feature fusion trajectory clustering according to the
observation values of the target state, which can be obtained by a multi-station passive
positioning system. The difference time of arrival (DTOA) algorithm, which is one kind of
multi-station passive positioning algorithm, can obtain the target state information. Since
it does not radiate electromagnetic signals to the outside, it will not be intercepted by the
interceptor. Therefore, this paper applies DTOA to help with the state transition matrix
update of the STMU-EKF algorithm, extracts the features of the parameters obtained by
the observation value of DTOA, and carries on the multi-feature fusion-based trajectory
clustering according to the extracted features.

DTOA uses the time difference of electromagnetic signals to reach different stations to
construct the hyperboloid of the target position and calculates the intersection of different
hyperboloids to obtain the target position. The model of time difference multi-station
passive positioning is shown in Figure 2.

In Figure 2, point P represents the radiation source, and points A, B, and C represent
the three passive sensors that track the target P. Assuming that at time k, the coordinate of
the radiation source is P(xk, yk), and the position coordinates of the three passive sensors
are A(x 0, y0), B(x 1, y1), C(x 2, y2). The distances of the radiation source to the three
passive sensors are d0, d1 and d2, respectively, which have the mathematical relationship
with the target position as 

d0
2 = (xk − x0)

2 + (yk − y0)
2

d1
2 = (xk − x1)

2 + (yk − y1)
2

d2
2 = (xk − x2)

2 + (yk − y2)
2

. (14)

Assuming that the position of passive sensor A is the main positioning and tracking
station, and the positions of passive sensors B and C are auxiliary positioning and tracking
stations, c represents the propagation speed of electromagnetic waves in the air, and the
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time difference between the time the signal reaches each auxiliary station and the time it
reaches the main station is

∆t0−i =
d0 − di

c
. (15)

Performing calculations on Equations (14) and (15), the corresponding hyperbolic
equations are obtained as follows

√
(xk − x0)

2 + (yk − y0)
2 −

√
(xk − x1)

2 + (yk − y1)
2 = c∆t0−1√

(xk − x0)
2 + (yk − y0)

2 −
√
(xk − x2)

2 + (yk − y2)
2 = c∆t0−2

. (16)

According to Equation (16), the observation value of the current model is ∆t0−i, and
the difference between the distances of the measured target reaching the main station
and the auxiliary station is d0 − di= c∆t0−i, i = 1, 2. Taking the distance difference c∆t0−i
calculated here as the observation value ZDTOA

k of DTOA, which is

ZDTOA
k =

[
Z∆d1 , Z∆d2 , Z∆d3

]
, (17)

where ∆di= d0 − di, and Z∆di
is the observation value of ∆di. The observation equation can

be obtained by Equation (17), which is

ẐDTOA
k+1|k = HDTOA

k+1|k X̂k+1|k + vk, (18)

where HDTOA
k+1|k X̂k+1|k = [d0 − d1, d0 − d2, d0 − d3]

T . According to Equations (17) and (18),
the features required by the clustering algorithm can be obtained so as to estimate the target
state model and update the state transition matrix.
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For the decision to update the state transition matrix, this paper introduces the fluctu-
ation parameter δk, which reflects the accuracy of the filtering algorithm. It is the difference
in the error between the prediction value X̂k and the observation value Xk of the filtering
algorithm in two adjacent intervals, which can be expressed as

δk = ‖X̂k − Xk‖1 − ‖X̂k−1 − Xk−1‖1, (19)

where ||·||1 represents vector 1 norm. When the target motion state model is unchanged,
the δk in the two adjacent time intervals is smaller, and when the target motion state model
changes because the state transition matrix no longer adapts to the current motion model,
the δk is larger.

Set the preset error threshold as δth. When δk is not greater than the preset threshold
δth, keep the state transition matrix Fk+1|k unchanged; otherwise, if δk > δth, then update the
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state transition matrix Fk+1|k. By using the multi-feature fusion-based trajectory clustering
algorithm proposed in Section 2.2 for target trajectory clustering, the approximate motion
trajectory model of the target can be obtained. The current state transition matrix F of the
target can be inferred by the trajectory model. If the target moves in a straight line at a
uniform speed, the state transition matrix is

F =


1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

, (20)

where T represents the current sampling interval.
Similarly, if the target performs a coordinated turning motion, the state transition

matrix is

F =


1 sinω/ω 0 (cosω− 1)/ω
0 cosω 0 − sinω

0 (1− cosω)/ω 1 sinω/ω
0 sinω 0 cosω

, (21)

where ω represents the current angular velocity of the target movement.
In the process of target tracking, many motion parameters can be obtained, such as

target radial distance ρk, target azimuth angle θk, and target pitch angle ϕk. Substituting the
current sampling interval T into Equation (20), we can obtain the current state transition
matrix Fk of the uniform linear motion model. According to the target pitch angle ϕk and
the current sampling interval T obtained by the sensor, the angular velocity ω(k + 1|k)
between target frames can be calculated, and the angular velocity ωk can be calculated as

ωk =
1
L

0

∑
l=−(L−1)

ω(k + l + 1

∣∣∣∣∣∣k + l) =
1
L

0

∑
l=−(L−1)

ϕk+l+1 − ϕk
T

. (22)

Substituting ωk into Equation (21), we can obtain the current state transition matrix Fk
of the coordinated turning motion model.

3.3. Measurement Update

Substituting Fk into Equation (13), we can obtain a new covariance matrix, which is

Pk+1|k = FkPk|k(Fk)
T + Qk+1. (23)

After the decision update of the state transition matrix, the filter parameters need to
be updated. Among them, the filter gain K represents the degree of the uncertainty of the
result after data fusion, and its calculation equation is

Kk+1|k = Pk+1|k(HDTOA
k+1 )

T
[HDTOA

k+1 Pk+1|k(HDTOA
k+1 )

T
+ Rk]

−1
, (24)

where Rk represents the covariance matrix of the measurement error. According to the
obtained filter gain K, the current state can be estimated by X̂k+1|k+1, which is,

X̂k+1|k+1 = X̂k+1|k + Kk+1

[
ZDTOA

k+1 − HDTOA
k+1 X̂k+1|k

]
. (25)

The covariance matrix Pk+1 of the current target state vector can be updated as

Pk+1 = Pk+1|k − Kk+1HDTOA
k+1 Pk+1|k. (26)



Sensors 2022, 22, 4713 10 of 20

4. Multi-Sensor Collaborative Management Model Based on Trajectory Clustering

Considering that the passive sensors have a low positioning accuracy for high-maneuvering
targets, the STMU-EKF algorithm proposed in Section 3 has an unsatisfactory tracking error
by only using the passive sensors, and with the iteration of the filtering algorithm, the target
tracking effect will become worse and worse. To address this problem, this section proposes a
multi-sensor collaborative management model based on trajectory clustering. In this model, the
trajectory parameters are corrected through radar radiation. Since the radar’s radiation signal
is easily intercepted by the intercepting receiver, this paper applies indirect radar radiation for
the target state transition matrix update, thus achieving the LPI tracking of high-maneuvering
targets. The multi-sensor collaborative management model based on trajectory clustering is
shown in Figure 3.
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The initial target motion state X0 and its state transition matrix F can be obtained by
TBD at the beginning of the track. In the two-dimensional rectangular coordinate system,
the maneuvering target motion state Xk can be expressed as

Xk+1 = FXk + Wk, (27)

where Wk represents Gaussian white noise with a mean of 0.
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And the observation value Zj
k, which is observed from radar when j = 1, while

observed from the multi-station passive sensors when j = 2, can be expressed as

Zj
k+1 = HXk + Vk, (28)

where Vk represents Gaussian white noise with a mean of 0.
When the radar is used as the observation sensor for target tracking, that is, when

j = 1, the observation value Z1
k is

Z1
k = [ρ(k), θ(k), ϕ(k)], (29)

where ρ(k) is the distance of the target measured by radar, θ(k) is the target azimuth, and ϕ(k)
is the target pitch angle. If the multi-station passive sensor is used as the observation sensor and
the DTOA is used for target tracking, that is, when j = 2, the observation value Z2

k is

Z2
k =

[
Z∆d1 , Z∆d2 , Z∆d3

]
. (30)

As shown in Figure 3, the sensor management model is mainly divided into two parts,
which are the state transition matrix update and the radar radiation control.

4.1. State Transition Matrix Update

Firstly, the state transition matrix is updated. At the beginning of the track, the target
motion state is obtained by the TBD algorithm, and the features are extracted from the target
motion state values Xk−L+1∼ Xk. In order to improve the accuracy of trajectory model
recognition, the four spatial features of the maneuvering target, namely, the inter-frame
trajectory mean M, the instantaneous trajectory angle θk, the instantaneous speed vk, and
the average speed v are used for multi-feature fusion.

After the feature extraction, the current target motion state is clustered by using the
multi-feature fusion-based clustering algorithm described in Section 2.2 in this paper, and
the current trajectory model of the target is obtained. According to the trajectory model,
the target current state transition matrix F can be inferred.

According to the observation value Zj
k obtained by radar observation and the state

transition matrix F obtained by trajectory clustering, the target tracking algorithm can
obtain the prediction value X̂k+1|k+1 and the prediction covariance Pk+1, as shown in
Equations (25) and (26).

When using the multi-sensor collaborative management model for target tracking, we
also use the fluctuation parameter δk proposed in Section 3 as the basis for updating the
state transition matrix. Assuming that the threshold is Mth in the multi-sensor collaborative
management model, when δk > Mth, it means that the target tracking error has increased
sharply, and the target trajectory has changed abruptly. At this time, the motion states of the
current target are updated again, and the features are extracted for fusion and clustering,
and then the target state transition matrix can be obtained by estimating the target motion
state parameters. Finally, the updated target state transition matrix is given to the target
tracking algorithm for the next round of tracking.

4.2. Radar Radiation Control

In the radar radiation control part, in order to measure the accuracy of the current
multi-sensor collaborative management model so as to carry out the optimal allocation of
sensors, we take the accumulated errors of the eigenvalue of the error covariance matrix η

q
k

as the basis for sensor decision making, which refers to the stacking value of the difference
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between the traces of the prediction covariance matrices in adjacent intervals from time q
to time k, which is

η
q
k =

k
∑

i=q
(Tr(Pi+1)− Tr(Pi))

= ∑k
i=q[Tr

(
Pm

i+1|i − Ki+1HDTOA
i+1 Pm

i+1|i

)
− Tr

(
Pm

i|i−1 − Ki HDTOA
i Pm

i|i−1

)
],

(31)

where Tr refers to the trace of the matrix.
The preset threshold of η

q
k is ηth, and η

q
k of the target tracking algorithm is compared

with the preset threshold ηth. If η
q
k ≤ ηth, no radar radiation is performed, the passive DTOA

is used for target tracking, and the obtained parameters are used as the input parameters of
the target tracking algorithm for the next filter tracking; if η

q
k > ηth, it means that the error

of the target tracking algorithm is too large, and the passive DTOA with poor accuracy
can no longer be used for tracking. At this time, the radar radiation is turned on, and the
observation value obtained by the radar is used as the observation value required by the
target tracking algorithm at the next moment to carry out the next round of target tracking.
By repeating the above steps, we can achieve LPI tracking.

5. Simulations and Performance Analysis
5.1. Simulation Parameters

Without loss of generality, the tracking process is implemented in the two-dimensional
X-Y coordinate system. In the coordinate system, the initial position of the target is
(30 km, 100 km), and the initial speed is (150 m/s, 260 m/s). The measurement stan-
dard deviation error of the radar in the distance is 20 m, and the measurement standard
deviation error in azimuth and pitch angle is 0.1◦; the measurement standard deviation
error of azimuth and pitch angle of the passive sensor is 0.4◦. The minimum measurement
interval for radar and passive sensors is 3 s, and the number of sampling points is 85. The
initial motion model of the target is a uniform linear model, which suddenly changes to
a collaborative turning model at 120 s and continues to move with this model until the
measurement ends at 255 s.

5.2. Trajectory Clustering

Different motion models of maneuvering targets are simulated in this subsection,
and the 15 trajectory samples shown in Figure 4 are used as the processing objects of the
multi-feature fusion trajectory clustering algorithm. Among them, there are six curves of
the uniform linear motion model, five curves of the coordinated turning motion model,
and four curves of the mixture of a uniform straight line and a coordinated turning.

By using the single-feature trajectory clustering algorithm and the proposed multi-
feature fusion-based trajectory clustering algorithm, respectively, the comparison results as
shown in Table 1 are obtained.

Table 1. Two-dimensional coordinate system trajectory clustering results.

Uniform Linear Motion
(6 Curves in All)

Coordinated Turning
(5 Curves in All)

Linear Motion+ Coordinated Turning
(4 Curves in All)

Trajectory mean 83.3% 83.3% 100%
Trajectory length 100% 83.3% 75%
Trajectory angle 50% 40% 50%

Instantaneous speed 83.3% 100% 75%
Average speed 100% 80% 75%

Proposed multi-feature
fusion-based OPTICS 100% 100% 100%
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As shown in Table 1, the mentioned 15 trajectory samples cannot be accurately clas-
sified by the single-feature trajectory clustering algorithm. However, the multi-feature
fusion-based trajectory clustering algorithm can achieve the correct classification of the
trajectory samples, which is beneficial for us in updating the state transition matrix.

Comparing the proposed multi-feature fusion-based OPTICS algorithm with the
common trajectory clustering algorithms, the clustering results are shown in Table 2.

Table 2. The comparison of trajectory clustering algorithms.

Uniform Linear Motion Coordinated Turning Linear Motion +
Coordinated Turning

DBSCAN 78% 73% 69%
DENCLUE 83% 80% 74%

OPTICS 92% 90% 87%
Proposed multi-feature
fusion-based OPTICS 98% 94% 92%

In Table 2, it is found that the recognition rate of the DBSCAN and DENCLUE algo-
rithms is about 80%. The OPTICS algorithm is more accurate, and the recognition rate can
reach about 90%. However, the multi-feature fusion-based OPTICS algorithm can improve
the recognition accuracy more effectively, and the recognition rate can reach about 95%.

5.3. Passive Tracking of High-Maneuvering Targets

The STMU-EKF algorithm is simulated for high-maneuvering target tracking, com-
pared with the EKF algorithm and the IMM-EKF algorithm. The state transition probability
prior matrix of the IMM-EKF algorithm is [0.9 0.05 0.05]; that is, the initial probability of
the uniform linear motion is 0.9, while the initial probability of the coordinated turning
models is 0.05.

The initial state transition matrix is divided into three types, which are the state
transition matrix F1 of the uniform linear motion, the state transition matrix F2 of the



Sensors 2022, 22, 4713 14 of 20

uniform downward turning motion, and the state transition matrix F3 of uniform upward
turning motion, which are expressed as

F1 =


1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

, (32)

F2 =


1 sinω2/ω2 0 (cosω2 − 1)/ω2
0 cosω2 0 − sinω2
0 (1− cosω2)/ω2 1 sinω2/ω2
0 sinω2 0 cosω2

, (33)

F3 =


1 sinω3/ω3 0 (cosω3 − 1)/ω3
0 cosω3 0 − sinω3
0 (1− cosω3)/ω3 1 sinω3/ω3
0 sinω3 0 cosω3

, (34)

where ω2 = π
180 and ω3 = − π

180 .
Track the target within 85 sampling intervals, and the target tracking traces of the

EKF algorithm, the IMM-EKF algorithm, and the STMU-EKF algorithm are shown in
Figure 5. The target tracking errors of the EKF algorithm, the IMM-EKF algorithm, and the
STMU-EKF algorithm are shown in Figure 6.
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Figure 5. The target tracking trace of the three passive target tracking algorithms.

As shown in Figures 5 and 6, at the first 40 sampling moments, the state transition
matrix of EKF remains F1 unchanged. Meanwhile, the tracking error of STMU-EKF is
similar to that of EKF because the state transition matrix F1 is not updated. As a multi-
model algorithm, IMM-EKF is not completely derived from the single uniform linear
motion model, so its error is the largest at the same time.

At the 41st sampling time, the target motion model is transformed from a uniform
linear motion to a uniform downward turning motion. At this time, the EKF algorithm still
keeps the original state transition matrix F1 unchanged, which leads to the worst tracking
results. The IMM-EKF algorithm performs multi-model adaptive adjustment due to the
control of the state transition probability prior matrix, and its error is slightly smaller than
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that of EKF. Different from these two algorithms, the result of STMU-EKF is not ideal at the
41st~46th sampling moment, but the state transition matrix is updated at the 47th sampling
moment. Substitute the updated state transition matrix F2 into the algorithm for target
tracking, and the error of the STMU-EKF algorithm gradually decreases. Finally, stabilizes
within a certain error range and is much smaller than the other two algorithms. Therefore,
the algorithm proposed in this paper is suitable for the high-maneuvering target tracking.
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5.4. Multi-Sensor Collaborative Management

On the basis of passive tracking of high-maneuvering targets, radar is introduced for
error correction; that is, the STMU-EKF algorithm is applied to the multi-sensor collabora-
tive management model, and the target tracking trace in which the green points represent
the true motion trajectory of the target is shown in Figure 7, and the target tracking error is
shown in Figure 8.

In the first 40 sampling intervals, that is, when the tracking target is in a uniform linear
motion model, the error values of the EKF algorithm and the STMU-EKF algorithm both
fluctuate within a certain range, and their tracking performance is similar; However, due to
the unknown state transition probability matrix, the error of the IMM-EKF algorithm is
slightly larger than that of the EKF algorithm and the STMU-EKF algorithm, so the number
of radar radiations is also slightly larger.

Starting from the 41st sampling interval, the target changes from a uniform linear
motion model to a coordinated turning motion model. At this time, the original state
transition matrix is no longer suitable for the current target motion model, so the traditional
EKF algorithm has a large error. At the same time, because the IMM-EKF algorithm can
convert between models, the error is slightly smaller than that of the EKF algorithm, and
its radar radiates 14 times. The STMU-EKF algorithm starts to update the state transition
matrix at the 41st sampling interval and completes the update at the 46th sampling interval.
The STMU-EKF algorithm that obtains the correct state transition matrix improves the
target tracking accuracy and reduces the number of radar radiations. It can be seen from
Figures 7 and 8 that the error of the STMU-EKF algorithm gradually decreases from the
46th sampling interval, and its predicted trajectory gradually approaches the real trajectory;
It can be seen from Figures 9 and 10 that when using the STMU-EKF algorithm, the radar
radiates 11 times in the last 45 simulation intervals, which is lower than that using IMM-
EKF algorithm and EKF algorithm. From the perspective of the whole sampling process,
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the radar radiates 19 times when using STMU-EKF, which is much lower than the 29 times
when using the EKF algorithm and 27 times when using IMM-EKF. Therefore, the multi-
sensor collaborative management model based on trajectory clustering designed in this
paper can improve the radar tracking accuracy and reduce the number of radar radiation,
thereby achieving LPI tracking.
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5.5. Performance Analysis

For the multi-sensor collaborative management model based on trajectory clustering,
different accumulated error thresholds are selected to simulate the high-maneuvering target
tracking, and the number of radar radiations and mean estimation error are counted, as
shown in Table 3.

As shown in Table 3, a small threshold can decrease the average estimation error,
but it also increases the number of radar radiation, which is not conducive to the radar’s
LPI tracking. Too large a threshold is not suitable either, which leads to a large average
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estimation error though the number of radar radiation is reduced. Therefore, it is best to
set the threshold value around 0.1 when tracking the high-maneuvering targets.

Table 3. The comparison of accumulated error thresholds.

Accumulated error threshold 10.0 5.0 0.5 0.1 0.04
Number of radar radiations 5 8 13 18 27
Mean estimation error/km 1.3 0.83 0.21 0.073 0.048

In addition, when the radar threshold is 0.1, this paper also selects different fluctuation
parameter thresholds for tracking simulation and counts their radiation times and mean
estimation errors, as shown in Table 4.

Table 4. The comparison of fluctuation parameter thresholds.

Fluctuation parameter threshold 7.0 4.0 2.0 0.5 0.1
Number of radar radiations 10 13 16 18 20
Mean estimation error/km 1.2 0.43 0.122 0.073 0.052

It can be seen from Table 4 that the setting of the fluctuation parameter threshold also
has a great influence on the radar radiation and the average estimation error. When the
threshold is too large, the model cannot update the state transition matrix in time, the
number of radar radiation is large, and the average estimation error is large; If the threshold
is too small, too many times of trajectory clustering are required, and each clustering
requires 5~6 simulation intervals, which will cause the phenomenon of trajectory clustering
blockage, which will increase the number of radar radiation and the average estimation
error. Therefore, it is best to set the threshold around 0.5.

6. Conclusions

In this paper, the STMU-EKF algorithm is firstly proposed to solve the problem of low
tracking accuracy caused by the unknown motion model of high-maneuvering targets. In
the case of a large target tracking error, STMU-EKF uses trajectory clustering to realize target
motion state estimation and updates the state transition matrix according to the estimated
value of the motion model and the observation value of the multi-station passive sensor,
which solves the problem of poor tracking accuracy of traditional passive tracking algorithm
in high-maneuvering target tracking. The trajectory clustering algorithm uses four spatial
features of inter-frame trajectory mean M, trajectory angle θk, instantaneous speed vk and
average speed v as eigenvalues for fusion clustering to improve the clustering accuracy. On
this basis, considering that only using passive sensors for target tracking cannot often meet
the requirements of high target tracking accuracy, this paper introduces active radar for
indirect radiation and proposes a multi-sensor collaborative management model based on
trajectory clustering. This model optimally allocates the sensor by judging the accumulated
errors of the eigenvalue of the error covariance matrix, that is, the accumulated value of the
difference of the prediction covariance matrix trace in the adjacent interval. This model
also makes the decision to update the state transition matrix according to the fluctuation
parameters, that is, the difference between the prediction value and the observation value of
the filtering algorithm in the adjacent intervals. In this paper, the target tracking simulation
of the multi-station passive sensor for high-maneuvering targets is carried out, the target
tracking error and radar radiation times based on multi-sensor cooperative management
are analyzed, and the setting of the accumulated errors of the eigenvalue of the error
covariance matrix and fluctuation parameter threshold is discussed. The simulation results
show that the STMU-EKF algorithm designed in this paper can significantly improve the
tracking accuracy of passive sensors for high-maneuvering targets, and the multi-sensor
collaborative management model based on trajectory clustering can further improve the
tracking accuracy of high-maneuvering targets while ensuring the low radiation times
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of radar. The research conclusion is helpful to improve the concealment of the fighter
and realize the LPI tracking. In the future, low intercept probability tracking methods
for multiple high-maneuvering targets can be studied. In addition, the radar networking
technology can be applied to the sensor management model proposed in this paper to
further improve the LPI performance.
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EKF Extended Kalman Filter
STMU-EKF State Transition Matrix Update-Based Extended Kalman Filter
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DBSCA Density-Based Applied Spatial Clustering Algorithm With Noise
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DENCLUE Density-Based Clustering
OPTICS Ordering Points To Identify The Clustering Structure
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