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Abstract: Accurate trajectory tracking is a critical property of unmanned aerial vehicles (UAVs)
due to system nonlinearities, under-actuated properties and constraints. Specifically, the use of
unmanned rotorcrafts with accuracy trajectory tracking controllers in dynamic environments has
the potential to improve the fields of environment monitoring, safety, search and rescue, border
surveillance, geology and mining, agriculture industry, and traffic control. Monitoring operations in
dynamic environments produce significant complications with respect to accuracy and obstacles in
the surrounding environment and, in many cases, it is difficult to perform even with state-of-the-art
controllers. This work presents a nonlinear model predictive control (NMPC) with collision avoidance
for hexacopters’ trajectory tracking in dynamic environments, as well as shows a comparative study
between the accuracies of the Euler–Lagrange formulation and the dynamic mode decomposition
(DMD) models in order to find the precise representation of the system dynamics. The proposed
controller includes limits on the maneuverability velocities, system dynamics, obstacles and the
tracking error in the optimization control problem (OCP). In order to show the good performance of
this control proposal, computational simulations and real experiments were carried out using a six
rotary-wind unmanned aerial vehicle (hexacopter—DJI MATRICE 600). The experimental results
prove the good performance of the predictive scheme and its ability to regenerate the optimal control
policy. Simulation results expand the proposed controller in simulating highly dynamic environments
that showing the scalability of the controller.

Keywords: system identification; model predictive control; obstacles avoidance; hexacopter UAV;
system constraints; optimization

1. Introduction
1.1. Motivation

In recent years, the field of robotics has experienced exponential growth due to fast
technological advances. The applications are not restricted to the industrial field, as
nowadays robots are equipped with sophisticated and intelligent algorithms that are
useful for performing complex task in unstructured and natural environments with a high
degree of autonomy. The integration between robots and humans through service robotics
has the objective of facilitating activities of daily life or improving repetitive tasks. As
such, we can find mobile manipulators that are used to load transportation in structured
environments [1,2], robotic systems that help people during their rehabilitation process [3]
and aerial robotic vehicles that are useful in rescue or transportation operations [4]. Robot
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applications can be divided into four main groups: (i) Learning robots, which are robotic
systems for whom the main objective is to improve learning and stimulation processes [5,6].
(ii) Construction robots, which are systems that can be programmed to develop complex
repetitive tasks, where the main contributions are the decrease in production time and
the prevention of accidents in dangerous workplaces [7,8]. (iii) Field robots, which show
a variety of improvements in mining industries, agricultural and livestock, increasing
the economy of the population [9,10]. (iv) Military robots, which are designed to perform
exploration, security, rescue, among other applications in hostile environments that can
be dangerous for humans, and these applications are highly developed using unmanned
aerial vehicles (UAVs) [11].

The use of unmanned aerial vehicles have grown in a wide range of fields and has been
extensively studied by the scientific community due to the versatility and the possibility to
perform the fully autonomous tasks that humans are unable to. The extremely agility of
the UAVs with four or more rotors has attracted attention due to their ability to vertically
take off and land in confined or difficult to access spaces, which eases construction and
enables having a higher payload capacity, which are useful in critical missions such as
transportation, rescue, search, surveillance and disaster assistance. In these applications,
the execution time is an extremely important feature due to the task only being executed
for high-speed trajectories. To take advantage of UAVs, it is necessary to guarantee the
safe execution of the application; however, dynamic environments are spaces with highly
probabilities of collisions, where obstacle information is unknown at the beginning of the
task, and thus the UAV must be capable of avoiding the obstacles using online-scheme
information. Obstacle avoidance is an important feature that guarantees the correct func-
tionality of UAV applications. In this context, research efforts are still needed to safely
introduce UAVs as a technological tool with great potential to solve various current prob-
lems such as a collision avoidance control structure that can perform high-speed trajectories
in dynamic environments.

1.2. Related Work

Depending on the environment, UAV applications can be divided in two groups:
(i) Outdoor environments where many studies have employed UAVs with onboard sen-
sors, e.g., Mellinger et al. presented collaborative grasping to logistic applications [12];
Bircher et al. performed path planning for structural inspection using UAVs [13]; search
and rescue operations were developed by Oetter- shagen et al. in [14]; and an application
consisting of tasks related to physical interaction with the environment was developed by
Garimella et al. [15]. (ii) Indoor environments are the counterpart applications, developed
in cluttered indoor experiments, examples of which include the study by Song and Hsu
who presented navigation based on factor graph optimization (FGO) [16]; Paredes et al.,
who developed a hybrid acoustic and optical positioning system for accurate 3D move-
ments [17]; and Sandino et al., who proposed an autonomous navigation system using
partial observable and uncertainty sensor measurements [18]. Due to the different types
of UAVs, these systems have the ability to perform a wide range of applications that are
emerging. The most popular configuration of multi-rotors is the quadrotor UAV, which
is applied in a variety of aerial fields, e.g., Radoglou–Grammatiski et al., who presented
the compilation of the most important applications for precision agriculture using quadro-
tors [19]; and Gupta et al., who presented the advances of UAVs and the applications in
transportation systems [20]. This configuration only presents four motors attached to the
mechanical frame generating a limiting power that restricts the fields of use, especially
for rescue and transportation tasks. However, nowadays the design of a multi-rotor with
more than four rotors is a rapidly growing industry because multi-rotor configuration
has presented important advances due to its high maneuverability and transportation
capacity [21,22]. More works were conducted by Belmonte et al., who designed an oc-
tocopter for the inspection of mobile cranes [23]; Phong-Nguyen et al., who presented a
sliding mode control algorithm with a fuzzy inference system considering variable gains
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for hexacopters [24]; and Ali et al., who developed adaptive backstepping for the attitude
and altitude of coaxial octorotors [25].

The use of more rotors can produce high costs in production, a considerably increased
size of the UAV and complex dynamics. Nowadays, it still a challenge to design effective
controllers that ensure good performance in multi-rotors at high-speed trajectories. Pre-
cise trajectory tracking is an important feature for multi-rotors operating in real-world
environments due to the considerable size of the structure and possible collision with
obstacles. The main reasons that make this configuration more complex than the others
are presented below: (i) System actuation: An inherently under-actuated system due to
there only being four control inputs over the six degrees of freedom (DOF). (ii) Dynamics
behavior: high nonlinearities produced by translational and rotational dynamics due to
the considerable size of the system. (iii) Dynamic model mismatch: Unmodeled dynamics,
uncertainties and disturbances produced for high-speed trajectories and the possibility of
external forces such as wind in outdoor environments. All of these problems incited the
special attention of researchers from different fields. As a consequence, a wide variety of
control strategies have been proposed for the problem of trajectory tracking for hexacopters.
Initially, some linear control methods were presented, and these works considered small
angles’ assumptions that are necessary for linear control techniques, and the most common
structures were presented by Alaimo et al., who developed a proportional–integral and
derivative controller (PID) under linear assumptions in UAVs with an hexacopter configu-
ration [26] and Salim et al. presented optimum linear control that stabilizes the attitude of
a micro-hexacopter in indoor environments [27].

Linear models are only valid around the hover position, providing slow movements
where the controllers cannot guarantee the convergence to the desired trajectories. In order
to improve the performance and to satisfy the requirements of high-speed trajectories, a
large number of studies have used the principles of nonlinear control, e.g., Chen et al., who
proposed a nonlinear trajectory controller for UAVs based on backstepping and nonlinear
observer [28] and Wang et al. presented the sliding mode control (SMC) with a variable
structure to generate the control inputs [29]. Recently, many authors have proposed using
geometric tracking controllers, e.g., Lee et al. showed the results of trajectory tracking using
a nonlinear controller developed in a Euclidean group SE(3) [30]; Mellinger et al. revealed
the differential flatness properties in UAVs and the ability to derive the attitude, acceleration
and angular rate [31]. The property of differential flatness improves the accurate trajectory
tracking under high-speed references and it was demonstrated by [32,33]. In recent years,
intelligent control approaches were used to developed advance control systems, and these
schemes included artificial neural networks and fuzzy logic controllers that are highly
used in multi-rotor UAVs; the results present interesting behaviors under disturbances and
parameter changes [34–37].

Unlike multi-rotor control techniques, obstacle avoidance has not been highly devel-
oped by the research community. Obstacle avoidance is a relatively new field and most
works have used the concept of artificial potential fields, a method which is based on
the generation of repulsive and attractive forces that allow the movements of the system
around obstacles. The literature presents the extensive applications with UAVs, but these
works revealed the problem of a local minimal that cannot guarantee the execution of
the task [38,39]. Nowadays, other methods have been proposed to solve the problem of
obstacle avoidance, the most popular among which include: (i) rapidly exploring random
tree (RRT), a formulation which generates a tree rooted at the initial configuration of the
system and using random samples to create edges between feasible points. The work by
Achtelik et al., who presented an RRT algorithm with a modification rapidly exploring ran-
dom belief tree (RRBT), which was used to generate the collision free path using quadrotor
UAVs [40]; (ii) The belief roadmap, which is a probabilistic version of the roadmap, which
uses the Kalman filter for the planning motion, and has the ability to generate trajectories
by avoiding obstacles; this structure was presented by [41]. (iii) The minimum snap trajectory
generation this algorithm includes navigation through corridors whilst considering con-
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straints on velocities and accelerations, the solution to which is based on the generation
of optimal trajectories that minimizes a functional cost confirmed by square norm of the
snap, an application of which was presented in [31]. All the obstacle avoidance algorithms
presented beforehand only consider the prior knowledge of the obstacle in the environment,
whilst also requiring high computational times and complex operations.

Taking into account the problems of no-dynamics constraints and only the prior knowl-
edge of environments, the results thus produce unfeasible control actions and problems in
dynamic environments with highly probabilities of collisions during the task execution.
To fully exploit hexacopters’ capabilities and take advantage of the available computation
power, optimization-based control techniques are becoming suitable for real-time problems.
Model predictive control (MPC) has been used in many fields of robotics due to the accuracy
of its tracking trajectories, robust performance and the ability to include constraints in the
controller scheme. In function of the field, the general applications can be divided into the
following groups:

• Ground mobile robots: where Sani et al. presented nonlinear model predictive control
(NMPC) to solve the competitive games between ground robots [42], another work
undertaken developed by Subramanian et al. increased the ability to avoid dynamic
obstacles [43], and finally, a leader–follower structure control using NMPC through
visual information to mobile robots was presented by Ribeiro et al. [44].

• Robotic arms and manipulation: In the last year, this field of research has been the
focus of many studies due to the complexity of the systems and the scalability of the
NMPC structure. The work of Osman et al. presented a task-space controller based on
(NMPC) to control a mobile manipulator 10 (DOF) [45].

• Aerial mobile robots: this field has also been the subject of a large number of studies
due to the high use of aerial vehicles in real-world applications, some applications
of which were studies Neunert et al., who developed an unconstrained nonlinear
predictive model for generation and tracking trajectories for the AscTec Firefly hex-
acopter [46]; Aoki et al., who presented an NMPC for position and attitude control
applied in a hexacopter without three of the six motor configurations [47]; and finally,
the contribution of Tzoumanikas et al., a letter which presented the NMPC designed
for micro aerial vehicles (MAVs) equipped with a robotic arm [48].

This kind of controller has had a huge impact on the field of robotics thanks to the
predictive behavior and ability to introduce system constraints in the controller scheme.
The main idea of this controller is to generate the control actions trying to minimize a
cost function over a prediction horizon. The cost function is solved using constrained
optimization techniques; however, the resolution of constrained optimization problems is
computationally expensive. Due to the recent developments in hardware and nonlinear
optimization solvers, nonlinear predictive control is computationally applicable in many
fields and has received the attention of a hexacopter control field [49–53].

1.3. Main Contributions of This Work

Run NMPC structures are realizable in modern computers and guarantee the execution
of complex tasks but still require more computational time than the schemes mentioned
beforehand. It is necessary to show performance under tracking accuracy and the ability to
extend this technique to dynamic environments in order to add obstacles in the optimization
problem. With all the aforementioned controllers and the significant results in many areas,
this work presents the nonlinear model predictive control to fast trajectory tracking in
dynamic environments applied in hexacopter platforms. The controller best generates
the control policy that moves the hexacopter to the reference trajectory while avoiding
obstacles through the environment. To construct the approach, this work developed the
important contributions presented below:

• System dynamics: a large number of research platforms cannot be controlled through
torque commands; as such, this work developed a reduced dynamic model of the
hexacopter using general control velocities, which is possible with the incorporation
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of low-level PID schemes in mathematical representation. The PIDs guarantee the
required velocities generated by the high-level controllers. The mathematical repre-
sentation was developed through an Euler–Lagrange formulation and the data-driven
technique known as dynamic mode decomposition (DMDc). Both approaches were
identified using experimental data from the (DJI MATRICE 600 PRO); furthermore,
this work presents accuracy comparative results between both techniques and selects
the best formulation to build the controller scheme.

• NMPC formulation: this includes the differential kinematics and the reduced dynamic
representation; furthermore, due to the ability of the NMPC controller, the system
constraints can be included in the optimization problem. The constraints included in
this work are: control action limits, control rate of change, and the system dynamics
and static and dynamic obstacles. The nonlinear optimization problem was solved
using CasADI framework and the problem was transformed into a nonlinear program-
ming problem (NLP) form using the direct multiple-shooting method. The CasADI
optimization toolkit guarantees a fast convergence with the possibility of extending
the solution to onboard hardware implementation.

• Results: the experiments were conducted in real-world outdoor environments, where
the system has a model mismatch and external disturbance product by air flows
and delay in system communications. The experiments were developed through the
hexacopter platform (DJI MATRICE 600 PRO) where multiple reference trajectories
were selected in order to verify the performance of the controller. The metrics used
in the experiments are the following: tracking accuracy, computational time and
disturbance rejection. Additionally, the simulation results show the scalability in
simulated high dynamic environments, considering the identified dynamics and
obstacles; these results will be used as a start point in future research due to the fact
that the hexacopter aerial platform does not have any sensor to measure obstacles
during the experiments.

1.4. Outline

This work is structured as follows. Section 2 presents the instantaneous kinematics
with the reduced dynamic model and system identification and validation. Furthermore,
the controller formulation is presented in this section, which consists of the nonlinear
model predictive controller with an obstacles avoidance scheme. Section 3 shows the real-
world experiments and simulation results; furthermore, considering the experiment results,
this section exhibits a review of the important aspects and the future research direction.
The conclusions of the work are presented in Section 4.

2. Materials and Methods
2.1. Hexacopter System Preliminaries

This section presents the instantaneous kinematics and the dynamic model. The dy-
namic model was formulated in maneuverability velocities space using two different
formulations: the Euler–Lagrange and dynamic mode decomposition. After the formula-
tion process, this work presents the validation results in order to verify the performance of
each formulation.

Figure 1 shows the hexacopter platform DJI MATRICE 600 PRO, where the world-
fixed inertial frame is represented by < I > with the following unit vectors

{
Ix, Iy, Iz

}
and the body-fixed frame attached to hexacopter movements is defined by < B > with
the unit vectors

{
Bx, By, Bz

}
, where the center of mass (CoM) is aligned; furthermore,

the hexacopter is configured with six motors in the mechanical frame which allows the
movement of the system.
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Figure 1. Hexacopter platform representation.

2.1.1. Kinematics Model

The robot has the ability to move through the inertial frame < I > and it is enabled to
rotate only in yaw ψ defined in the vertical axis Bz, whilst the others’ angular rotations roll
and pitch (φ, θ) are not considered in this work due to this hexacopter platform having a low
level flight controller which guarantees the hover position. The position and orientation of
the point to be controlled is defined by the vector η =

[
ηx ηy ηz ηψ

]T ∈ R4 with respect
to the frame < I >, and the following equation defines these elements in greater detail:

ηx = ηx0 + dx cos(ψ)− dy sin(ψ)
ηy = ηy0 + dx sin(ψ) + dy cos(ψ)
ηz = ηz0 + dz
ηψ = ψ

(1)

where the values (ηx0 , ηy0 , ηz0) are the locations of the CoM and (dx, dy, dz) are the distances
in the body-fixed frame < B > to the point of interest η. In order to know the evolution of
the interest point, it is necessary to introduce the concept of the instantaneous kinematic,
defining the time derivative as η̇ = ∂η

∂t µ. With these considerations, the velocity of the point

is defined by the vector η̇ =
[
η̇x η̇y η̇z η̇ψ

]T ∈ R4 with respect to the frame < I >;
furthermore, the time derivative produces maneuverability velocities µ attached to the
frame < B >. Due to the low-level PIDs controllers, the maneuverability vector is defined
by µ =

[
µl µm µn ω

]T ∈ R4, with the longitudinal velocities (µl , µm, µn) through the
axis (Bx, By, Bz) and the angular rate of change ω over unit vector Bz. Using the definition
of instantaneous kinematics, the evolution can be defined by the following equation:

η̇x = µl cos(ψ)− µm sin(ψ)− (dx sin(ψ) + dy cos(ψ))ω
η̇y = µl sin(ψ) + µm cos(ψ) + (dx cos(ψ)− dy sin(ψ))ω
η̇z = µn
η̇ψ = ω

(2)

the equation presented before can be written in a matrix form, defined as:
η̇x
η̇y
η̇z
η̇ψ

 =


cos(ψ) − sin(ψ) 0 −(dx sin(ψ) + dy cos(ψ))
sin(ψ) cos(ψ) 0 (dx cos(ψ)− dy sin(ψ))

0 0 1 0
0 0 0 1




µl
µm
µn
ω

 (3)
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where the expressions −(dx sin(ψ) + dy cos(ψ)) and (dx cos(ψ)− dy sin(ψ)) represent the
additional behavior considering the displacement of the point of interest. To simplify the
notation, Equation (3) is expressed in the compact form in (4)

η̇(t) = J(ψ(t))µ(t) (4)

where J(ψ(t)) ∈ R4×4 is the Jacobian matrix which allows the linear mapping between the
control maneuverability velocities µ to the evolution of the point of interest η̇, Equation (3)
is expressed in vector-function form as:

η̇(t) = fk(ψ(t), µ(t)) (5)

Considering that η̈(t) = d
dt η̇, the following relation was developed:

η̈x
η̈y
η̈z
η̈ψ

 =


cos(ψ) − sin(ψ) 0 −(dx sin(ψ) + dy cos(ψ))
sin(ψ) cos(ψ) 0 (dx cos(ψ)− dy sin(ψ))

0 0 1 0
0 0 0 1




µ̇l
˙µm

µ̇n
ω̇

+ . . .


−ω sin(ψ) −ω cos(ψ) 0 −ω(dx cos(ψ)− dy sin(ψ))
ω cos(ψ) −ω sin(ψ) 0 ω(dx sin(ψ) + dy cos(ψ))

0 0 0 0
0 0 0 0




µl
µm
µn
ω


(6)

it can be written in compact form as η̈(t) = J(ψ)µ̇(t) + J̇(ψ, ω)µ(t), where µ̇ =[
µ̇l ˙µm µ̇n ω̇

]T ∈ R4 is the vector of maneuverability accelerations, and this formula-
tion will be used in the dynamic model section.

2.1.2. Dynamic Model

This section presents the dynamic model, which has been developed considering
low-level PIDs controllers that only generate longitudinal movements in

{
Ix, Iy, Iz

}
and

the angular rotation through Bz. The dynamic model is useful for guaranteeing the stability
of the proposed controller in real-world applications.

Euler–Lagrange Formulation

One of the approaches to find the mathematical model is the Euler–Lagrange formula-
tion. This formulation is a convenient analytical method for obtaining the dynamic model
and studying the physical phenomena of the hexacopter. The Euler–Lagrange formulation
uses the total energy of the system confirmed by kinetic and potential energy. The total
kinetic energy is defined by the following equation:

T(η̇) =
1
2

η̇TM η̇ (7)

where M = diag(m, m, m, I) is a diagonal matrix confirmed by the mass of the hexacopter
m and the moment of inertia I around the vertical axis Bz. On the other hand, the potential
energy is the position or configuration of the system with respect to the world-fixed frame
< I >, and the potential energy is described by:

V(η) = mg(ηz + dz) (8)

where g represents the gravitational acceleration. The Lagrange formulation is obtained by
the subtraction of the kinetic T(η̇) and potential V(η) energy expressed as:

L =
1
2

η̇TM η̇−mg(ηz + dz) (9)
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Now, applying the Euler–Lagrange formulation:

d
dt
(

dL
η̇
)− dL

η
= fI (10)

where fI =
[

fxI fyI fzI τψI

]T ∈ R4 are the generalized forces and torque vector with
respect to the frame < I >; with this formulation, it is possible to obtain the nonlinear
model by the following equations:

mη̈x − dym cos(ψ)η̈ψ − dxm sin(ψ)η̈ψ − dxm cos(ψ)η̇ψ
2 + dym sin(ψ)η̇ψ

2 = fxI

mη̈y + dxm cos(ψ)η̈ψ − dym sin(ψ)η̈ψ − dym cos(ψ)η̇ψ
2 − dxm sin(ψ)η̇ψ

2 = fyI

mη̈z + mg = fzI

Iη̈ψ + dx
2m η̈ψ + dy

2m η̈ψ − dym cos(ψ)η̈x + dxm cos(ψ)η̈y − dxm sin(ψ)η̈x − dym sin(ψ)η̈y = τψI

(11)

the equations presented in (11) can be written in a matrix form, resulting in:
fxI

fyI

fzI

τψI

 =


m 0 0 −m(dy cos(ψ) + dx sin(ψ))
0 m 0 m(dx cos(ψ)− dy sin(ψ))
0 0 m 0

−m(dy cos(ψ) + dx sin(ψ)) m(dx cos(ψ)− dy sin(ψ)) 0 mdx
2 + mdy

2 + I




η̈x
η̈y
η̈z
η̈ψ

 . . .

· · ·+


0 0 0 dym sin(ψ)η̇ψ − dxm cos(ψ)η̇ψ

0 0 0 −dym cos(ψ)η̇ψ − dxm sin(ψ)η̇ψ

0 0 0 0
0 0 0 0




η̇x
η̇y
η̇z
η̇ψ

+


0
0

gm
0


(12)

To simplify the notation, this work compacts Equation (12), resulting in the following
classical representation:

fI(t) = H̄(η)η̈(t) + C̄(η, η̇)η̇(t) + ḡ (13)

where H̄ ∈ R4×4 is the mass and inertia matrix of the hexacopter system, in addition
to being positive and symmetric definite; C̄ ∈ R4×4 is the matrix of Coriolis forces and
ḡ ∈ R4 is known as the gravitational vector. Vectors η̈ =

[
η̈x η̈y η̈z η̈ψ

]
and η̇ =[

η̇x η̇y η̇z η̇ψ

]
are the acceleration and velocity of the point of interest in the inertia

frame < I >.
Due to the fact that the hexacopter platform can be controlled through reference

maneuverability velocity commands, this work converts the generalized force and torque
inputs of the dynamic model (13) into reference maneuverability velocities as system control
inputs. Considering the position dynamic model presented in [54] which considers all DOF
in a multirotor:  µ̇l

˙µm
µ̇n

 =

 0 wz −wy
−wz 0 wx
wy −wx 0

 µl
µm
µn

− fzI

m

0
0
1

+ . . .

g

cos(ψ) cos θ − sin ψ cos φ + cos ψ sin θ sin φ sin ψ sin φ + cos ψ cos φ sin θ
sin(ψ) cos θ cos ψ cos θ + sin φ sin θ sin ψ − cos ψ sin φ + sin θ sin ψ cos φ
− sin θ cos θ sin φ cos θ cos φ

0
0
1


(14)

it can be written in a compact form as µ̇ =
[
w
]

xµ + gR(θ, φ, ψ)Te3 − fz
m e3, where w =[

wx wy wz
]

are the angular velocities associated with the frame < B >,
[
w
]

x represents
skew symmetric matrix and finally R(θ, φ, ψ) represents the rotation matrix from the frame
< B > to < I >. For any multicopter, drags applied to rotating blades are in the direction
of the body axes; from (14), the position dynamic model considering the aerodynamic drag
model is represented as:
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[
µ̇l
˙µm

]
=

[
µmωz − µnωy − g sin θ − kdrag

m µl

µnωx − µlωz + g cos θ sin φ− kdrag
m µm

]
(15)

where µ̇l , ˙µm are the accelerations in the body frame < B > and kdrag is the drag constant.
To include the drag coefficients in the dynamic model, this work split Equation (14) and
can be written as: [

ax
ay

]
=

[
µmωz − µnωy −

kdrag
m µl

µnωx − µlωz −
kdrag

m µm

]
(16)

where ax = µ̇l + g sin(θ) and ay = ˙µm − g cos(θ) sin(φ). Since the low-level controller
guarantees hover, the cross terms are ignored, so the specific force satisfies:[

fx
fy

]
=

[
−kdragµl
−kdragµm

]
(17)

where the forces produced in the system fhB =
[

fx fy
]

are generate by a PD controller for
the horizontal plane. The PD controller was designed as:

fhB = kpl(µhre f
− µh) + kdl(µ̇hre f

− µ̇h) (18)

where µh =
[
µl µm

]T ∈ R2 is the vector of the horizontal maneuverability velocities,

µhre f
=
[
µlre f µmre f

]T ∈ R2 is the reference desired velocity and kpl , kdl are positive
definite matrices. For the PD controller, this work used the following assumptions if
µ̇hre f

= 0 then limt→∞ ‖fh‖ = 0 and limt→∞ ‖µ̃h‖ = 0, respectively.
A similar concept was applied to the vertical force attached to the body frame fzB =

fre f + mg. Designing a PD controller for the vertical thrust as:

fzB = kpn(µnre f − µn) + kdn(µ̇nre f − µ̇n) + mg (19)

where kpn, kdn are positive definite matrices, this work considers the following assumptions
if µ̇nre f = 0 then the limt→∞ ‖ fzI‖ = 0 and limt→∞ ‖µ̃n‖ = 0, respectively.

The same approach can be extended to the attitude dynamic model presented in [54],
which is defined as:

JB · ẇ = −w× (JB ·w) + GB + τ (20)

where τ ,
[
τx τy τψ

]
∈ R3 is the vector of moments in the body axes < B >; JB ∈

R3×3 includes the moment of inertia and GB ,
[
GB,φ GB,θ GB,ψ

]T ∈ R3 represents the
gyroscopic torques. Ignoring the term −w× (JB ·w) +GB, the simplified attitude dynamic
model is defined as: JBẇ = τψ, where a PD controller for angular translations is defined as:

τψ = kpω(ωre f −ω) + kdω(ω̇re f − ω̇) (21)

where kpω , kdω ∈ R are positive scalars and the following assumptions are true if ω̇re f = 0;
then, limt→∞ ‖τψ‖ = 0 and limt→∞ ‖ω̃‖ = 0, respectively.

After all the considerations presented beforehand, this work introduces the general
structure of low-level PD controllers combining Equations (18), (19) and (21), finally the
structure is presented in Equation (22).

fxB

fyB

fzB

τψB

 =


kpl 0 0 0
0 kpl 0 0
0 0 kpn 0
0 0 0 kpω




µlre f
µmre f
µnre f
ωre f

−


kpl 0 0 0
0 kpl 0 0
0 0 kpn 0
0 0 0 kpω




µl
µm
µn
ω

−


kdl 0 0 0
0 kdl 0 0
0 0 kdn 0
0 0 0 kdω




µ̇l
µ̇m
µ̇n
ω̇

+


0
0

mg
0

 (22)

Equation (22) can be written in a compact form as fB(t) = Kpµref(t) − Kpµ(t) −
Kdµ̇(t) + g, where the values kpl , kpm and kpω are the proportional values of the PD
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controller; kdl , kdm and kdω are the derivative gains; µref =
[
µlre f µmre f µnre f ωre f

]T ∈
R4 are the reference maneuverability velocities or control vector of the hexacopter; µ and µ̇
are the real velocities and accelerations generated in the system.

Finally, with all the transformations considered beforehand, Equations (4) and (6) are
substituted into a dynamic hexarotor model (12), and equating the expression to (22), a new
reduced dynamic model can written as:

µlre f
µmre f
µnre f
ωre f

 =


ζ1 0 0 ζ2
0 ζ3 0 ζ4
0 0 ζ5 0

bζ6 aζ7 0 ζ8(a2 + b2) + ζ9




µ̇l
µ̇m
µ̇n
ω̇

+


ζ10 ωζ11 0 aωζ12

ωζ13 ζ14 0 bωζ15
0 0 ζ16 0

aωζ17 bωζ18 0 ζ19




µl
µm
µn
ω

 (23)

This new formulation represents the evolution of the hexacopter’s general velocities
with the reference maneuverability velocities as the input of the system. This representation
is useful because commercial aerial platforms can be directly controlled with maneuver-
ability velocities, ignoring the low-level control. Equation (23) can be compactly written as:

µref(t) = H(ζ, a, b)µ̇(t) + C(ζ, µ)µ(t) (24)

where H = (RKp)−1((H̄J + RKd), C = (RKp)−1(H̄J̇ + RKp + C̄J) , G = (RKp)−1(g−
RḠ)) = 0. Thus, H(ζ, a, b) ∈ R4×4 is a positive definite matrix, which is the new mass and
inertia matrix of the hexacopter robot, the new Coriolis and Centripetal matrix is defined
by C(ζ, µ) ∈ R4×4, R represents the rotation matrix under the z axis from frame < B >
to frame < I >. The vector of dynamic parameters represents the combination of all the
internal values in the hexacopter robot such as the physical, mechanical, electrical and
PD values, and the vector is defined by ζ =

[
ζ1 ζ2 . . . ζld

]
∈ Rld where ld = 19 is the

number of variables that this work needs to identify as the details of each parameters are
presented in Appendix A for Equations (A1) and (A2).

Euler–Lagrange Identification and Validation

This section presents the identification and validation of the dynamic parameters, as
this work uses real experimental data to estimate these values in order to use the model in
the proposed controller. This work transforms the mathematical model (24) in the linear
parametric representation into:

µref(t) = Θ(µ̇(t), µ(t))ζ (25)

where the matrix Θ confirms the values of velocities and accelerations obtained from
real-world experiments. In order to estimate the vector of dynamic values, this work uses
snapshot measurements over the time as l ∈ [t, t+ t f ] where l is an instant of measure and t f
is the final time of the experimental information. The identification process was developed
through optimization techniques defining `m(µ̇(l|t), µ(l|t), µref(l|t), ζ) : R4 → R≥0, which
is a positive semi-definite function confirmed by:

`m(µ̇(l|t), µ(l|t), µref(l|t), ζ) =
1
2

Model identi f ication cost︷ ︸︸ ︷
||µref(l|t)−Θ(µ̇(l|t), µ(l|t))ζ||2Qm

(26)

Model identification cost: this function was formulated using the subtraction between the
reference maneuverability µref(l|t) velocities applied in the hexacopter and the system
measurements defined by the matrix Θ(µ̇(l|t), µ(l|t)); the operator || · || is known as the
Euclidean norm; and Qm ∈ R4×4

>0 is a positive definite weighting matrix.
With Equation (26), it is possible to generate the functional cost or performance index

over the experimental data, which is formulated as follows:

Vm(µ̇(l|t), µ(l|t), µref(l|t), ζ) =
∫ t+t f

t
`m(µ̇(τ|t), µ(τ|t), µref(τ|t), ζ)dτ (27)
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Considering the performance index function presented in (27), the optimization struc-
tures are defined in (28), which was solved using the sequential quadratic programming
(SQP) technique.

Pm : Pm(µ̇(t), µ(t), µref(t)) = min
ζ

Vm(µ̇(l|t), µ(l|t), µref(l|t), ζ) (28)

This work used the experimental information of the hexacopter platform DJI MATRICE
600 PRO to identify the dynamic parameters. The aerial system has a low-level flight
controller called A3, which is confirmed by three global positioning systems (GPS) and
three inertial measurement unit systems (IMUs). Furthermore, this system provides highly
precise measurements from the system states. The identified parameters are presented
in Table 1; furthermore, for the identification and validation process, this work used a
different kind of reference velocity signals.

Table 1. Dynamic parameters of the hexacopter aerial platform.

System Dynamic Parameters

DJI MATRICE 600 PRO ζ1 = 2.11 ζ2 = −0.005 ζ3 = 1.8
ζ4 = 3.17 ζ5 = 1.78 ζ6 = 0.39

ζ7 = −0.003 ζ8 = −0.03 ζ9 = 0.006
ζ10 = 0.02 ζ11 = 0.002 ζ12 = 0.06
ζ13 = 0.70 ζ14 = 0.02 ζ15 = −0.05

ζ16 = −0.01 ζ17 = −0.005 ζ18 = −0.01
ζ19 = 0.831

Figure 2 shows the results of the identification process, where the signals µl , µm, µn and
ω were obtained by real-world experiments; and µlm, µmm, µnm and ωm are the estimated
values of the dynamic model using the optimization formulation presented previously.
The presence of noise in the signals is an important factor due to the fact that it probably
causes problems in the identification process; this work uses a filter defined as: λ/(s + λ)
with λ = 1 to eliminate noise in the real measurements. The filter was applied to the system
measurements and the reference maneuverability velocities.

Figure 2. Signals of the identification process using the Euler-Lagrange formulation with the optimiza-
tion techniques (SQPs). The results are confirmed by: (a) identification of the reference velocity µlre f ;
(b) shows the results over the reference velocity µmre f ; (c) identification over the upper longitudinal
velocity µnre f ; and (d) shows the results of the reference angular velocity ωre f .
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The validation process of the dynamic parameters is a very important factor; hence,
the model needs to estimate the behavior of the system with different signals in order to
represent the real dynamics of the system. The validation signals are shown in Figure 3,
the validation process shows the performance of the estimate dynamic model, which will
be useful for the comparative section.

Figure 3. Validation process signals using the Euler–Lagrange formulation with the optimization
technique (SQP). The results are confirmed by: (a) validation over the reference velocity µlre f ;
(b) shows the results over the reference velocity µmre f ; (c) shows the validation over the longitudinal
velocity µnre f ; and (d) shows the validation results of the reference angular velocity ωre f .

With all the previously presented results and the validation of the dynamic parame-
ters, this work formulates the identified model using Euler-Lagrange as a vector-function
presented as:

µ̇(t) = fSQP(ζ, µ(t), µref(t)) (29)

Dynamic Mode Decomposition Formulation

This section presents the second approach of the dynamic model formulation which,
due to the hexacopter platform, only has internal low-level PIDs; and the system tries
to stay close to the hover-position with small angular variations in roll and pitch angles
(φ, θ). Furthermore, this kind of hexacopter platforms cannot be controlled with the torques
commands, and the control inputs at the system are the reference maneuverability velocities
µref. Considering the small angle assumptions and the inputs in the system, the model can
hence be formulated with a linear approximation for time-varying systems resulting in:

µ̇(t) = Aµ(t) + Bµref(t) (30)

where µ and µ̇ are the vectors of the maneuverability velocities and accelerations; µref is
the reference maneuverability velocity vector also known as the control vector; matrices
A ∈ R4×4 and B ∈ R4×4 represent the unforced system and the contribution of the control
vector, respectively.

One of the emerging techniques to identify systems by experimental information is
that of dynamic mode decomposition (DMD) [55–57], where the objective is to approxi-
mate the matrices A and B. The DMD algorithm proposes the construction of snapshot
measurements s and the formation of augmented matrices, resulting in a new formulation
of the system as follows:

χ̇ ≈ Aχ + BΓ (31)
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where the new matrices are defined below:

χ̇ =

 | | |
µ̇1 µ̇2 . . . µ̇s
| | |



χ =

 | | |
µ1 µ2 . . . µs
| | |



Γ =

 | | |
µref1 µref2 . . . µrefs

| | |


χ̇ and χ are the augmented matrices confirmed by the maneuverability accelerations and
velocities, respectively; and Γ is the matrix of the reference velocities applied in the system
over the s number of snapshots.

For estimation purposes, the system can be formulated as:

χ̇ ≈ ΦΩ (32)

where Φ =
[
A B

]
∈ R4×(4+4) is the matrix confirmed by unknown values of A and B;

and Ω =
[
χ Γ

]T ∈ R(4+4)×s is the data matrix obtained from the system. This work finds
the best values of the unknown matrix using the Frobenius norm ||χ̇−ΦΩ||F, defining the
values in the following equation:

Φ ≈ χ̇Ω† (33)

One of the best methods to find the solution of the Frobenius norm is the singular
value decomposition (SVD); therefore, applying this method to the augmented data matrix
resulting as Ω ≈ ŪΣ̄V̄T , where Ū, Σ̄ and V̄ are matrices with a truncation value r̄, with these
considerations presented above, the estimation is defined by the following equation:

Φ ≈ χ̇V̄Σ̄−1ŪT (34)

To approximate the values of the matrices A and B, the Equation (34) can be written
as (35), considering the splitting values of the singular vector Ū .[

Ā B̄
]
≈
[
χ̇V̄Σ̄−1ŪT

1 χ̇V̄Σ̄−1ŪT
2
]

(35)

The values of the matrix A can be approximated using the split matrix Ū1 ∈ R4×r̄ and
the values of B are approximated using the values of Ū2 ∈ R4×r̄.

Dynamic Mode Decomposition Identification and Validation

This section presents the identification and validation process of the dynamic model
using the DMD formulation. The values of matrices χ̇, χ and Γ were constructed by
measure snapshots information of the aerial platform DJI MATRICE 600 PRO and the
application of Algorithm 1, which represents all the necessary steps to identify the values
of unknown matrices.

The approximation values of the unknown matrix are presented in Tables 2 and 3,
where, aij and bij are the individual elements of Ā and B̄, respectively.

The signals used for the identification process are presented in Figure 4, which are the
same as those used for the identification process employing Euler–Lagrange formulation,
due to the fact that both techniques need to estimate the values under the same conditions.
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Algorithm 1 Identification process Using DMD

Input: DJI MATRICE 600 PRO measurements (χ̇, χ, Γ) and truncation value r̄.
Output: Matrices Ā and B̄.

Ident (χ̇, χ, Γ, r̄) do
Ω←

[
χ Υ

]T

(U, Σ, V)← SVD(Ω)
(Ū, Σ̄, V̄)← Trunc(U, Σ, V, r̄)
(Ū1, Ū2)← Split(Ū)
Ā← χ̇V̄Σ̄−1ŪT

1
B̄← χ̇V̄Σ̄−1ŪT

2
end Ident
return (Ā, B̄)

Table 2. Approximation values of unforced matrix.

Matrix Approximated Values

Ā a11 = −0.5827 a12 = −0.0721 a13 = 0.0587 a14 = −0.0280
a21 = 0.0214 a22 = −0.4770 a23 = 0.0731 a24 = −0.1840
a31 = 0.0152 a32 = 0.0102 a33 = −3.5696 a34 = 0.0064
a41 = 0.0377 a42 = −0.0113 a43 = −0.0058 a44 = −8.2424

Table 3. Approximate values of control actuation matrix.

Matrix Approximated Values

B̄ b11 = 0.8048 b12 = −0.0376 b13 = −0.0793 b14 = −0.1797
b21 = 0.0634 b22 = 0.8527 b23 = −0.0783 b24 = 0.3821

b31 = −0.0202 b32 = −0.0046 b33 = 3.5776 b34 = 0.0607
b41 = −0.0251 b42 = −0.0029 b43 = −0.0288 b44 = 8.1294

Figure 4. Identification process using dynamic mode decomposition formulation (DMD): (a) results
over µlre f ; (b) identification on µmre f ; (c) validation over µnre f ; and (d) shows the results on ωre f .

The estimated model displays good behavior due to the fact it replicates the signals
obtained from experimental data. The noise in the angular maneuverability velocity ω
is an important factor, however, dynamic mode decomposition and the robustness of the
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Frobenius norm can deal with this noise and the application of filters is not necessary in
the identification process.

In the same way presented in the validation process using the Lagrange formulation,
this section presents the validation process under DMD formulation, the results of which
are shown in Figure 5, which shows the good performance of the proposed technique.

Figure 5. Validation process using dynamic mode decomposition (DMD). The results are: (a) vali-
dation over the reference velocity µlre f ; (b) shows the results through velocity µmre f ; (c) validation
over the longitudinal velocity µnre f ; and (d) shows the validation results of the reference angular
velocity ωre f .

Finally, considering the approximation values of the unknown matrices, the dynamic
model can be written in a vector-function form as:

µ̇(t) = fDMD(Γ, µ(t), µref(t)) (36)

2.1.3. Accuracy Comparative Results

This section presents the comparative results between the Euler–Lagrange (29) and
dynamic mode decomposition (36) formulations. This work uses the integral square error
(ISE) to show the performance of each formulation and selects the best one for the nonlinear
model predictive controller structure.

Figure 6 shows the ISE of each formulation, where the model for frontal maneuverabil-
ity velocity µlm presents a considerable error using the Euler–Lagrange formulation—with
a value of precisely 1.26—whilst on the other hand, DMD results show a better performance
with a value of 0.56. The proposed formulations show similar results with respect to the
lateral velocity µmm, and the values using the Euler–Lagrange and DMD are 0.35 and 0.16,
respectively. The results for the estimated upper maneuverability velocity µnm are really
close with the following values 0.0104 and 0.0100. Finally, the ISE of the estimated models
for the angular maneuverability velocity are 0.104 and 0.038 for the Euler–Lagrange and
DMD formulations, respectively.
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Figure 6. Integral square error of the identified models using Euler–Lagrange with sequential
quadratic programming (SQP) and dynamic mode decomposition (DMD) formulation.

With the previously presented results, this work uses the DMD estimated model to con-
struct the proposed controller. Combining Equations (5) and (36), the general mathematical
representation is defined as:

ẋ(t) = f(x(t), µref(t)) (37)

f(x(t), µref(t)) :=
[

fk(ψ(t), µ(t))
fDMD(Γ, µ(t), µref(t))

]
where x =

[
ηT µT]T ∈ R8 is the generalized vector of the system states that is confirmed

by η, which is the pose of the point of interest in the hexacopter and µ is the maneuverabil-
ity velocities.

2.2. Control Methodology

This section presents the formulation of the proposed controller, where the main
objective is the trajectory tracking over the desired reference trajectory using an hexacopter
platform and due to the dynamic effects and the important size of the system, this work
includes obstacle avoidance to improve the behavior of the system in dynamic environ-
ments. This work presents the nonlinear model predictive controller (NMPC); furthermore,
the constraints included in the optimization problem were: generalized system dynamics,
bounded maneuverability velocities, rate of change of control velocities and obstacles in
the dynamic environment. The main objectives of the proposed controller are: to solve
the control problem associated with the trajectory tracking subject to the system and the
environment and system constraints. The control problem is solved by the scheme shown
in Figure 7, where the structure uses the system information and possible obstacles in the
environment to generate an optimal control policy under the system constraints.

2.2.1. Nonlinear Model Predictive Control

In order to solve the NMPC proposed scheme, this work formulates the generalized
dynamics (37) as a prediction, resulting in:

ẋ(l|t) = f(x(l|t), µref(l|t)) (38)

where l ∈ [t, t+T] is the instant value evolution between the initial time t and the prediction
horizon T. Due to the prediction behavior of this scheme, the NMPC formulation requires
index performances over the prediction horizon T that guarantees the solution of the
control problem and the system constraints. The generation of the performance functions
are presented below.
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Figure 7. Proposed controller scheme.

2.2.2. Tracking Trajectory Formulation

This subsection presents the generation of the cost function over the evolution instants
l considering the following property: `t(x(l|t), ηref(l|t), µref(l|t)) : R4 × R4 → R≥0 to
formulate the function as:

`t(x(l|t), ηref(l|t), µref(l|t)) =

Trajectory stage cost︷ ︸︸ ︷
1
2
||ηref(l|t)−Wtx(l|t)||2Qt

+
1
2
||µref(l|t)||2Qu︸ ︷︷ ︸

Control stage cost

(39)

Trajectory Stage Cost: this part of the function is structured by the control error between

the desired trajectory ηref =
[
ηxre f ηyre f ηzre f ηψre f

]T
∈ R4 and the measurements of

the system x; the constant matrix Wt ∈ R4×8 produces linear mapping between all the
states of the system and the outputs ηx, ηy, ηz and ηψ; the Euclidean norm is defined by the
operator || · ||; finally, Qt ∈ R4×4

>0 is a constant positive definite matrix.
Control stage cost: this part of the cost function defines the variations between the

maneuverability control velocities µref(l|t)) considering that Qu ∈ R4×4
>0 is a positive

definite weighting matrix.
The cost function at the last step of the prediction horizon T was formulated with

following property: `T(x(t + T|t), ηref(t + T|t)) : R4 → R≥0; with this consideration, the
cost function is defined as:

`T(x(t + T|t), ηref(t + T|t)) =

Terminal Trajectory cost︷ ︸︸ ︷
1
2
||ηref(t + T|t)−Wx(t + T|t)||2QT

(40)

Terminal trajectory cost: this term considers the control error between the reference trajec-
tory at the last step of the prediction horizon T, where QT ∈ R4×4

>0 is a positive definite
weighting matrix.

This work uses Equations (39) and (40) to generate the performance index over the
prediction horizon, which was developed in the continuous time formulation, where τ is
the interval analyzed in the integral operation, and the performance index is defined as:

V(x(l|t), ηref(l|t), µref(l|t)) =
∫ t+T

t
`t(x(τ|t), ηref(τ|t), µref(τ|t))dτ + `T(x(t + T|t), ηref(t + T|t)) (41)
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The performance index function (41) guarantees the trajectory tracking propriety of
the controller. The tuning process of the positive definite matrices were developed in the
simulations in order to prevent accidents in real-world experiments.

2.2.3. Maneuverability Velocities Constraints

Due to the hexacopter platform having maximum maneuverability velocities, this
work proposes control input constraints on the NMPC structure, in addition to further
constraints on the successive difference of the maneuverability velocities which were
included to prevent aggressive behaviors. The input constraints are defined in (42) in order
to maintain the control signals generated by the proposed structure under the limits of the
hexacopter platform

U = {µref ∈ R4 : µrefmin ≤ µref ≤ µrefmax ; |µref(j + 1|t)− µref(j|t)| ≤ ∆µrefmax} (42)

where µrefmin ∈ R4 and µrefmax ∈ R4 are the vectors of lower and upper limits in maneuver-
ability velocities; to the successive difference, this works considers j ∈ [t, t + (T − 1)] and
∆µrefmax as the vector of the maximum rate of change between the maneuverability velocities.

2.2.4. Obstacle Constraints

This section presents the obstacle constraints in order to track the desired trajectory and
avoid obstacles in the dynamic environments. The obstacles can be defined as ξobs(i|z) =[

ηobs
x ηobs

y ηobs
z

]T
∈ R3 like a position vector with respect to the inertia frame < I >,

where i ∈ [z, z + Z] considering the analyzed obstacle as z and Z the number of obstacles
detected by the system, the representation of the obstacles is shown in Figure 8.

Figure 8. Representation of the hexacopter and obstacles.

The function of the distance between obstacles and the hexacopter has the following
property: `obs(x(l|t), ξobs(i|z)) : R4 → R≥0, and the equation is formulated as:

`obs(x(l|t), ξobs(i|z)) =

Distance to Obstacles︷ ︸︸ ︷
||ξobs(i|z)−Wox(l|t)||2 (43)

where Wo ∈ R3x8 is a constant matrix that produces linear mapping between all the states of
the system and the outputs ηx, ηy and ηz. With the previously presented considerations, this
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work formulates the system states constraints in (44), and where the safe region was defined
as robs ∈ R>0, this value includes the safely region and the rotating blades’ positions.

O = {x ∈ R4 : robs − `obs(x(l|t), ξobs(i|z)) ≤ 0} (44)

2.2.5. Nonlinear Model Predictive Control Formulation

Considering the performance index presented before (41) and the system states (44)
and control (42) constraints, this work can formulate the optimization problem as:

P : P(ηref(t)) = min
µref(l|t),x(l|t)

∫ t+T

t
`t(x(τ|t), ηref(τ|t), µref(τ|t))dτ + `T(x(t + T|t), ηref(t + T|t)) (45a)

subject to: ẋ(l|t)− f(x(l|t), µref(l|t)) = 0 (45b)

with the following constrains:

x(l|t) ∈ robs − `obs(x(l|t), ξobs(i|z)) ≤ 0 (45c)

µref(l|t) ∈ µrefmin ≤ µref ≤ µrefmax ; |µref(j + 1|t)− µref(j|t)| ≤ ∆µrefmax (45d)

P is the function that guarantees the correct trajectory tracking and obstacle avoidance of
the hexacopter system. The optimal control problem (45a) was converted into a nonlinear
programming formulation (NLP) using the direct multiple shooting method, where the
control maneuverability velocities µref(l|t) and the system states x(l|t) are the decision
variables of the optimization problem. A multiple shooting technique is more computa-
tionally efficient when it is compared with other discretization formulation, e.g., single
shooting, more information in [58]. The system model was considered as the optimization
constrain defined by (45b), the system and control constraints formulated in (45c) and (45d),
respectively. With these considerations, this work minimizes the nonlinear programming
problem using CasADI as a nonlinear optimization framework [59].

3. Results and Discussions

This section presents the simulations and experimental results to validate the pro-
posed controller for the hexacopter platform DJI MATRICE 600 PRO. The experiments were
performed considering: (i) Real-world experiment: the results presented in this section were
developed using the nonlinear model predictive controller and environment obstacles are
not considered in this experiments due to the hexacopter platform not having the required
sensor for real-world measurements. (ii) Simulation experiment: simulation experiments
show the effectiveness of the proposed controller in highly dynamic simulation environ-
ments with simulations of the dynamic behavior of the hexacopter in order to make it more
realistic and prove the scalability of the controller.

3.1. Real-World Experiments

Several experiments on trajectory tracing were performed in order to demonstrate
the performance of the proposed controller. In order to demonstrate the effectiveness of
the optimization structure, the controller was implemented at onboard computer of the
hexacopter through the software Matlab, additionally the hexacopter platform is shown
in Figure 9 with the following hardware features Intel processor i7-7700HQ and CPU 2.80
GHz × 8. The controller was developed considering the optimal control problem (45a),
the evolution of the identified model was developed using the fourth-order Runge–Kutta
method, with a sample time of ts = 0.1[s] and the final time of the experiment is defined as
t f = 100[s].

https://web.casadi.org/
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Figure 9. Hexacopter platform used in a real-world experiment.

The experiment was performed in the city of Ambato, in the province of Tungurahua,
Ecuador, and started at 09:36 on 12 January 2022. The wind velocity at the time of the
experiment was approximately 10.1 km/h, as shown in Figure 10.
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Figure 10. Wind velocity during experiment.

The desired reference trajectory for the hexacopter and the initial conditions are
defined in Table 4, where (ηxo , ηyo , ηzo , ηψo ) and (µlo , µmo , µno , ωo) are the initial position
and maneuverability velocities of the hexacopter, respectively.

Table 4. Desired reference trajectory in a real-world experiment.

Initial Positions Initial Maneuverability
Velocities Reference Trajectory

ηxo = 4.18[m] µlo = 0.01[m/s] ηxre f = 8 sin(0.1t)[m]
ηyo = 1.88[m] µmo = −0.04[m/s] ηyre f = 6 sin(0.2t) + 1[m]
ηzo = 3.97[m] µno = −0.02[m/s] ηzre f = 0.35 sin(0.5t) + 7[m]

ηψo = 1.05[rad] ωo = −0.02[rad/s] ηψre f = 0[rad]

To implement the proposed controller, the constant values of positive definite matrices
are defined in Table 5, and were obtained through a variety of experiments in order to
improve the performance of the controller scheme.
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Table 5. Proposed values for the NMPC scheme in a real-world experiment.

Parameters Values Parameters Values

QT diag(1) ∈ R4×4 Qt diag(1) ∈ R4×4

Qu diag(0.005) ∈ R4×4 T 2 [s]
µrefmin −[1, 1, 1, 1.5][m/s,rad/s] µrefmax [1, 1, 1, 1.5][m/s,rad/s]

∆µrefmax 0.05[m/s,rad/s]

The results of the experiment are illustrated in Figures 11–14. Figure 11 shows the
movement of the hexacopter platform based on real information over the experiment. The
hexacopter tracks the desired reference trajectory; however, the results present a small
control error in the trajectory due to the wind velocity that acts as an external disturbance.
The reference trajectory is defined as ηref =

[
ηxre f ηyre f ηzre f ηψre f

]
and the hexacopter

system states during the experiment were confirmed by η.

Figure 11. Movements of the hexacopter based on the real-world experimentation: (a) represents the
behavior of the hexacopter platform using the 3D isometric perspective

{
Ix, Iy, Iz

}
; and (b) shows

the upper view
{

Ix, Iy
}

of the experimental information.

The previously presented results show the performance of the controller that guaran-
tees the execution of the reference trajectory over different axes.

Figure 12. Control signals generated by the proposed control during the real-world experiment, where
(a) represents the control velocity over the axis {Ix}; (b) describes the evolution of velocity in

{
Iy
}

;
finally (c) and (d) represent the evolution of the upper and angular control velocity, respectively.
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The control signals represented in Figure 12 are generated by the proposed control
scheme, the external disturbances produce a miss match in the model but the controller
generates the adequate smooth control actions.

Figure 13. Control errors during a real outdoor experiment: (a) represents the error in the work-space{
Ix, Iy, Iz

}
; and (b) shows the results with respect to the desired angular position.

Figure 13 shows the control errors of the proposed controller, where η̃x, η̃y, η̃z and η̃ψ

are the results from the steady state error that asymptotically converge to values close to
zero, i.e., since these position errors are bounded and different from zero ηref(t)−Wtx(t) =
0 ∈ R3, it is achieved that the errors in the steady state are |η̃| < 0.15[m]. In addition,
the control error maintains a dependency on the external disturbances in the outdoor
environments, and external disturbances are the product of the wind velocity which was
approximately 10 km/h.

The time required to solve the optimal control problem is shown in Figure 14, and
the computation time stays always below the sample time ts = 0.1 [s], guaranteeing the
efficient computation of the proposed control considering the time horizon of T = 2 [s] in
the optimal control problem.

Figure 14. Computational time during the real-world experimental results.

3.2. Simulation Experiments

This section presents the simulation result of the proposed controller. In order to
improve the results, this experiment was performed using the identified dynamics in
Equation (36) with the identified parameters presented in Tables 2 and 3 . Furthermore, a
Gaussian noise with the following consideration in all the states ηn ∼ N (−0.05, 0.05) and
µn ∼ N (−0.01, 0.01), where ηn and µn are the additive noise in position and velocity states,
was identified.

The desired reference trajectories and initial values over the frame < I > are defined
in Table 6.
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Table 6. Desired reference trajectory in the simulation experiment.

Initial Positions Initial Maneuverability
Velocities Reference Trajectory

ηxo = 4.18[m] µlo = 0[m/s] ηxre f = 8 sin(0.1t)[m]
ηyo = 1.88[m] µmo = 0[m/s] ηyre f = 6 sin(0.2t) + 1[m]
ηzo = 3.97[m] µno = 0[m/s] ηzre f = 0.35 sin(0.5t) + 7[m]

ηψo = 1.05[rad] ωo = 0[rad/s] ηψre f = 0[rad]

The desired values of the reference trajectory are the same as the proposed in real-
world experiments; therefore, the results present similar behavior. The controller constant
values are the same as those presented in Table 5. However, the safe region distance was
defined as robs = 0.4[m].

The trajectory described by the hexacopter platform and the reference trajectory are
presented in Figure 15. The results show that the hexacopter tracks the desired reference
trajectory, in addition to the avoidance obstacles property being demonstrated due to the
system following the reference and trying to maintain the distance to obstacles considering
the safety radius robs. The three obstacles were positioned over the reference trajectory, two
of which were positioned at the corners are dynamic obstacles and they have movements
during the experiment.

The values of the control errors presented in Figure 16 tend to increase when the
hexacopter avoids the obstacles satisfying the system constraints, a phenomenon which
is represented in the rectangles representing obstacles close to the hexarotor. Given that
the errors in steady state η̃x, η̃y, η̃z and η̃ψ symptomatically converge towards zero in the
presence of the Gaussian noise applied in the simulation, the results show the robustness
under this type of disturbance and the ability to keep the system under the reference
trajectory, i.e., the position errors are bounded and are different from zero ηref(t)−Wtx(t) =
0, achieving a final characteristic error with a max |η̃| < 0.9[m] when the obstacles are close
to the hexarotor and |η̃| < 0.1[m] without obstacles near the system reference trajectory.

Figure 15. Movements of the hexacopter during the simulation experimentation: (a) represents the
behavior of the hexacopter platform using the 3D isometric perspective

{
Ix, Iy, Iz

}
; and (b) shows the

upper view of the experimental information; furthermore, the black spheres represent the static and
dynamic obstacles. The velocity of the dynamic obstacles was approximately 0.2 cos(0.1t)[m/s] over
Ix for the first obstacle and approximately 0.6 cos(0.2t)[m/s] over Iy for the third obstacle. The second
obstacle was considered static and the position is static during the experiment.
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Close Obstacles

Close Obstacles

Figure 16. Control errors during the simulated experiment: (a) represents the error in the work-space;
and (b) shows the error with respect to angular displacements.

The control signals are presented in Figure 17, which are generated by the proposed
control scheme. Taking into consideration the dynamics of the robotic system and the
simulated environmental conditions, the behavior of the reference velocities are close to the
dynamic model values. Furthermore, the values are presented as smooth curves with the
presence of peaks when the obstacles are close to the hexacopter which are emphasized by
the rectangles shown in Figure 17. The behavior of the control actions prevents collisions
between the hexacopter and the obstacles during the simulation.

The time required to solve the proposed controller and the Euclidean distance are
presented in Figure 18, and the computational time is an important factor to demonstrate
its ability to generate an adequate control policy that guarantees the system constraints.
The computational time presents peaks produced by the obstacles that are close to the
hexacopter during the trajectory whilst the controller finds a sub-optimal solution to
guarantee that the computational time remains under the sample time; however, this
problem can be efficiently solved using another low-level language to implement the
proposed controller or with a more powerful computer, which is therefore a solvable
technological issue. On the other hand, the distance to each obstacle shows that the
proposed controller respects the safely radius, guaranteeing the avoidance property of
the system.

Obstacles

Obstacles

Obstacles

Obstacles

Figure 17. Control signals generated by the proposed control and maneuverability velocities were
generated by the dynamic approximation, where (a) represents the maneuverability velocities over
the axis {Ix}; (b) describes the evolution of velocities in

{
Iy
}

; finally, (c) and (d) represent the
evolution of the upper and angular velocity, respectively.
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Obstacles

Figure 18. Computational time and distance to obstacles: (a) represents the time to solve the optimiza-
tion problem; and (b) shows the distance to the obstacles, where `1

obs `
2
obs and `3

obs are the respective
distances and robs is the radius of security considering the dimensions of the hexarotor frame.

3.3. Discussion

The experiments presented in the last section show that the nonlinear model predictive
scheme solves the control problem associated with the trajectory tracking subject to the
system and environment constraints. Specifically, the real-world experiments showed
the robustness of the proposed controller due to the excessive wind velocity during the
experiment which acted as an external disturbance. Despite the excessive wind velocity,
the controller generates the adequate smooth control actions guaranteeing that the steady
state error that converges towards values close to zero with the dependency of the external
disturbances. The use of CasADI such as an optimization framework guarantees the fact
that the computational time always stays below the sample time, which is one of main
problems in NMPC schemes due to the highly computational time that these solutions
required, as similar computing times were presented in [45].

On the other hand, the simulation results show the ability of the proposed scheme
to generates the adequate control signals guaranteeing the corrected tracking trajectories
while the system avoids obstacles during the simulation. The presence of Gaussian noise
provides uncertainty in the measurements demonstrating the power of the controller as it
maintains the distance to obstacles in consideration of the safety radius. One of the main
differences presented in this experiment was the control error, which tends to increase
when the hexacopter avoids obstacles satisfying the system constraints. Furthermore,
the computational time presents peaks produced by the hard constraints included in the
optimization problem, and despite the hard constraint, the controller finds a sub-optimal
solution to guarantee a low computational time. Other works have used the concept of soft
constraints, low-level programming language and embeddable optimization methods such
as (SQP) in order to increase the convergence of the optimization algorithm and reduce
the computational time [60–64]. This work uses the concept of soft constraints and the
approximation of the nonlinear problem in order to improve the computational time and
the future implementation on a single on-board PC.

4. Conclusions

This work carried out the identification of a dynamic system using the dynamic mode
decomposition with control technique to develop the optimal control problem for trajectory
tracking with obstacle avoidance, a decision which was made due to the precision of the
comparative results between the Euler–Lagrange and the dynamic mode decomposition
formulations. The optimal control problem was translated into a nonlinear programming
problem (NLP) using the multiple shooting technique and considering the control actions
and systems states as decision variables, which is a technique that improves the computa-
tional time and the convergence of the algorithm. The nonlinear model predictive control
(NMPC) generates the maneuverability velocities policy that allows the hexacopter plat-
form to track the reference trajectory while avoiding obstacles presented in the environment.
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The NMPC formulation was developed in consideration of the reference desired trajectory
and constraints in the system such as the bounded control actions, the generalized dynamics
and static and dynamic obstacles. Furthermore, the NMPC problem was solved through the
nonlinear programming framework CasADI, which solves high-dimensional optimization
problems and has advantages that can be expanded to a low-level programming language
to improve the computational time.

The simulation results show how the hexacopter avoids both static and dynamic
obstacles whose locations vary over time while executing the trajectory tracking task, and
always maintaining a safe distance defined as a radius of repulsion. Since there is no
sensor for obstacle measurements in the hexacopter platform, the real experimental tests
were not carried out with obstacle avoidance; however it was verified that although the
experimental tests were carried out during the period of time in which the average wind
speed was approximately 10 km/h, the behavior of the control law on the hexacopter
system fulfills the desired task, so that the control errors in stable state converge closer to
zero. In addition, it can be observed that the steady state error asymptotically converges
towards values closer to zero under conditions wherein the control actions are saturate
when they reach the established restrictions. On the other hand, the computational time of
the proposed control algorithm is maintained under 100 ms in real experimentation due to
the optimization technique used to solve the control problem. During the simulation tests,
it is clearly verified that the computational time remains under 100 ms; however, when
obstacle avoidance occurs, this time increases but remains under the specified sample time
with a sup-optimal solution. Other works use the concept of soft constraints to guarantee
the rapid convergence of the optimization algorithm, as this work will use the same concept
to improve the computational time and the possible expansion to visual-servoing systems
under an MPC structure.
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Appendix A

The dynamic parameters developed during the system identification of the hexarotor
aerial platform are as follows:
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