
Citation: Moore, M.O.; Buehrer, R.M.;

Headley, W.C. Decoupling RNN

Training and Testing Observation

Intervals for Spectrum Sensing

Applications. Sensors 2022, 22, 4706.

https://doi.org/10.3390/s22134706

Academic Editor: Ahmed Toaha

Mobashsher

Received: 16 May 2022

Accepted: 20 June 2022

Published: 22 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Decoupling RNN Training and Testing Observation Intervals
for Spectrum Sensing Applications
Megan O. Moore 1,* , R. Michael Buehrer 2 and William Chris Headley 1

1 Hume Center for National Security and Technology, Virginia Tech, Blacksburg, VA 24061, USA;
cheadley@vt.edu

2 Wireless@VT, Virginia Tech, Blacksburg, VA 24061, USA; rbuehrer@vt.edu
* Correspondence: meganm99@vt.edu

Abstract: Recurrent neural networks have been shown to outperform other architectures when
processing temporally correlated data, such as from wireless communication signals. However, com-
pared to other architectures, such as convolutional neural networks, recurrent neural networks can
suffer from drastically longer training and evaluation times due to their inherent sample-by-sample
data processing, while traditional usage of both of these architectures assumes a fixed observation
interval during both training and testing, the sample-by-sample processing capabilities of recurrent
neural networks opens the door for alternative approaches. Rather than assuming that the testing
and observation intervals are equivalent, the observation intervals can be “decoupled” or set indepen-
dently. This can potentially reduce training times and will allow for trained networks to be adapted
to different applications without retraining. This work illustrates the benefits and considerations
needed when “decoupling” these observation intervals for spectrum sensing applications, using
modulation classification as the example use case. The sample-by-sample processing of RNNs also
allows for the relaxation of the typical requirement of a fixed time duration of the signals of interest.
Allowing for variable observation intervals is important in real-time applications like cognitive radio
where decisions need to be made as quickly and accurately as possible as well as in applications like
electronic warfare in which the sequence length of the signal of interest may be unknown. This work
examines a real-time post-processing method called “just enough” decision making that allows for
variable observation intervals. In particular, this work shows that, intuitively, this method can be
leveraged to process less data (i.e., shorter observation intervals) for simpler inputs (less complicated
signal types or channel conditions). Less intuitively, this works shows that the “decoupling” is
dependent on appropriate training to avoid bias and ensure generalization.

Keywords: modulation classification; radio frequency machine learning; recurrent neural networks;
spectrum sensing

1. Introduction

Typically in radio frequency machine learning (RFML) (RFML is a field in which
machine learning is applied to solve problems in radar, signal intelligence, electronic
warfare, and communications systems) applications, time is the most constrained resource
during both training and inference. During the training process, the needs of both dataset
collection/generation and architecture optimization increase as the amount of sequential
observation data needed for the algorithm to reliably generalize the problem increases. This
increase occurs with respect to both computational time and man-power and is typically
a function of the complexity of the application. The amount of data needed for a reliable
output is dependent on the input signal parameters and RF channel propagation conditions
and is not constant. For example, the authors’ prior work demonstrated that simpler input
formats with good channel propagation conditions (higher signal-to-noise ratios (SNR),
lower frequency offsets, simpler modulation schemes, etc.) required lower sequential

Sensors 2022, 22, 4706. https://doi.org/10.3390/s22134706 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22134706
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-5678-7231
https://doi.org/10.3390/s22134706
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22134706?type=check_update&version=2

Sensors 2022, 22, 4706 2 of 30

observation data needs to make a reliable decision [1]. Once fielded, many applications are
extremely time sensitive and can greatly benefit from processing as little data as necessary
to make a reliable decision. Therefore, for many RFML applications, fixed observation
intervals are sub-optimal and an unrealistic assumption.

In this paper, the inherent sample-by-sample nature of recurrent neural networks
(RNN) will be utilized to test the impact of setting training and testing sequence lengths
independently. This “decoupling” relaxes the assumption of equivalent input sequence
lengths that has previously been used and allows for the potential of greater flexibility be-
tween training and inference. Consider a network that is trained on short, fixed observation
intervals due to limited time for dataset collection. When the network is deployed, it may
need to process signals that are longer than it ever saw in training. Similarly, a network
trained for an application with one sequence length should be able to be applied to an
equivalent application with a different sequence length—without retraining the network.
Ref. [2] addressed this problem for convolutional neural networks (CNN) by processing
multiple, fixed observation intervals and fusing the results. However, with RNNs, a vari-
able sequence length can be easily processed with no changes necessary to the architecture.
Ref. [3] tested on sequence lengths longer than those used in training, however, they did
not examine how disparate training and testing sequence lengths impacted network bias,
generalization to data outside the training range, and performance for different channel
conditions. By examining the trends of training and testing sequence lengths, the most
advantageous sequence length for a problem set can be selected—potentially reducing
training time and network complexity and allowing for increased flexibility in deployment.

In many cases, the sequence length in inference may be variable or completely un-
known. Rather than setting a fixed testing sequence length it would be preferable to
allow for variable sequence lengths to be processed. Such an approach is commonly used
in machine text translation where the network will process inputs until it displays an
<EOS> (end of sentence) key [4]. However, in spectrum sensing applications the choice
of appropriate evaluation lengths is not nearly as obvious—especially with limited or no
prior knowledge of the signals of interest, while pre-processing steps could be added to
identify and separate the signal prior to feeding it into the network, this would not be
ideal for real-time deployments. In time-sensitive applications like electronic warfare,
radar, and dynamic-spectrum access (DSA), decisions need to be made as quickly and
accurately as possible. To allow for faster processing, many researchers have focused on
reducing network complexity [5–7]. However, these approaches result in processing every
signal for the same amount of time—regardless of signal complexity. Consider the case
discussed in [8] where signals have different oversampling rates. The signals with higher
oversampling rates needed to be processed for longer in order to see enough complete
symbols to correctly identify the class. However, without knowing the oversampling rate
of the signal ahead of time, it is unclear when to stop processing inputs. In our initial
paper [1], we introduced the “just enough” decision making (JED) method—an approach
that dynamically chooses how much sequential input data to process based on signal
complexity. However, the approach was only tested for a single training sequence length
and did not allow for signals to be processed for longer sequence lengths. The JED method
will be evaluated on additional parameters to determine its true utility.

The contributions of this paper can be summarized as the following:

• Verified that the performance of a neural network based modulation classifier is
bounded only by the number of symbols seen in inference.

• Examined the impact of “decoupled” training and testing sequence lengths on network
bias and generalization.

• Demonstrated that the JED method can improve accuracy and reduce the average
number of samples processed.

• Showed that the JED method chooses how much sequential input data to process
based on signal complexity.

Sensors 2022, 22, 4706 3 of 30

While RNNs have seen use in applications such as RF fingerprinting [9], spectrum
prediction [10,11], and signal classification [12–14], the scope of this paper’s analysis is
an RNN-based Automatic Modulation Classifier (AMC). Although much work has been
done on AMCs, it is still an important topic in spectrum sensing with recent applications in
MIMO systems [15,16], while modulation classification will be used for the initial proof
of concept, the results are expected to generalize to other areas, and a similar analysis for
signal detection can be found in Appendix 2 of [17].

In Section 3, the data sets and networks used in this paper are introduced. In Section 4,
the maximum likelihood (ML) classifier is introduced and compared to networks trained
on different observation intervals. In Section 5, the potential benefits and detriments of
training on longer observation intervals are identified. In Section 6, the JED method is
examined for different nuisance parameters and evaluated for its ability to differentiate
between simple and complex signals. Section 7 present a brief summary and discussion of
the results. Finally, this work is concluded and future work is suggested in Section 8.

2. Background

Traditional approaches for spectrum sensing applications have relied on expert knowl-
edge and feature extraction or simplistic models. As such, they often require a human
operator and have strong assumptions concerning a priori knowledge [18]. For example,
common signal detectors include matched filter detectors that require perfect knowledge of
the signal, energy detectors that are sensitive to noise, and cyclostationary feature detectors
that are computationally expensive [19]. In contrast to traditional approaches, the data
driven approach of deep neural networks (DNN) allows feature extraction to take place
internally and can reduce the number of required assumptions. Current DNN approaches
to RFML include both supervised and unsupervised approaches, however, supervised
networks are more commonly seen since they are trained to perform a specific task rather
than just search for structure in the data. Prior work in RFML has commonly leveraged
CNNs [20,21], but RNNs and hybrid CNN-RNN networks have become more common
over the last decade.

RNNs are a unique class of neural network defined by their ability to process inputs
sequentially. They rely on the concept of a cell that is continually updated with new
inputs and a hidden state allowing. As a result, they can be considered an Infinite Impulse
Response (IIR) system [22]. The cell contains the actual network weights which are shared
across all time inputs; this allows cells to be copied as many times as necessary to process
an entire input sequence.

Vanilla RNNs suffer from instability due to what is commonly referred to as the
“vanishing and exploding gradient problem” [22] which makes it difficult to learn long-
term dependencies. To combat this problem, a new network known as the Long-Short-Term
Memory (LSTM) network was developed in 1997 [23]. The LSTM network consists of three
gates in each cell: the forget gate, input gate, and output gate. The forget gate considers
what information should be thrown away from the hidden state, the input gate considers
which values will be updated with the new input, and the output gate determines the next
hidden state. Each gate consists of a sigmoid function to keep gradients within the range of
0 to 1. Another common type of RNN, the Gated Recurrent Unit (GRU), is an LSTM variant
that combines the input and forget gate resulting in fewer parameters and faster processing
with minimal performance loss [24].

Since LSTMs and GRUs can learn the long-term dependencies seen in RF signals,
they are the most commonly used types of RNNs in RFML. They have shown incredible
promise for their usage in applications such as RF fingerprinting [9], spectrum prediction
with Cognitive Radios [10,11], and modulation classification [12–14], among others.

Due to their serial processing nature, RNNs have been shown to outperform other
commonly seen networks like CNNs in some spectrum sensing applications. In [25], a 2-
layer LSTM model given amplitude phase inputs outperformed the CNN model described
in [26] by over 10% in both the low and high SNR range. In [12], a 1-layer LSTM model

Sensors 2022, 22, 4706 4 of 30

outperformed the same CNN model by 6% for SNRs greater than 4 dB when using raw
I/Q inputs.

Although RNNs can improve performance in some cases, they tend to be very time
consuming to train and evaluate—particularly for longer sequences. In one comparison,
an LSTM network took 75 times as long to train and twice as long to evaluate each sample
when compared to a CNN [27]. As such, hybrid networks that consist of both RNN and
CNN layers [28,29], approaches that mimic RNNs like dilated CNNs [30,31], and sequential
CNNs [27] have been introduced. Many of these networks have performance that is
equivalent or superior to RNNs. For example, in [32] a CNN, LSTM, and a convolutional
LSTM deep neural networks (CLDNN) were all trained to perform AMC under Rayleigh
fading. The LSTM and CLDNN performed similarly under Rayleigh fading, but CLDNN
outperformed the LSTM under AWGN conditions.

It is also important to remember that accuracy is not the only consideration when
choosing a network architecture—the utility of the model must also be considered. For ex-
ample, in [7] a CNN and LSTM had similar accuracy, but the CNN was preferred due to
having fewer trainable parameters. However, while CNNs and hybrid networks may be
preferred in some scenarios, they typically assume a fixed block input size which is not
desirable for many real-time scenarios. Ref. [2] addresses the idea of processing a longer
sequence than trained for with a CNN by processing the signal in sections and fusing the
results, however, the method is limited in its flexibility. Unlike CNNs which are fed a
block of inputs and are typically restricted to a fixed input size, RNNs can be extended
indefinitely. This allows for networks to be trained on varying sequence lengths and to be
evaluated for any arbitrary number of input samples.

In many spectrum sensing cases, a variable sequence length is advantageous. For ex-
ample, in DSA interfering signals need to be identified as quickly as possible so that the
interference can be mitigated. To allow for the faster processing required in some appli-
cations, performance may be sacrificed. Ref. [3] improved the performance of their AMC
by testing on a longer sequence length than used in training, however, they felt that the
increased computational time was too large a detriment. By using a fixed sequence length,
they were forced to process every signal for the longer sequence length instead of only
those that would most benefit from further processing. Simpler input formats with good
channel propagation conditions (higher signal-to-noise ratios, lower frequency offsets,
simpler modulation schemes, etc.) may require lower sequential data needs to make a
reliable decision.

The true utility of RNNs is the ability to easily process a variable number of samples.
In [8], an RNN based AMC network was trained on three separate sequence lengths
determined by the oversampling rate. Signals that had a higher oversampling rate needed to
be processed for additional samples in order to see the same number of symbols. However,
it was unclear how this would be approached if the oversampling rate of an input signal
was unknown. Ref. [5] recognized the potential for real-time classification with LSTMs
by training the classifier only on the final hidden state of an LSTM autoencoder. The new
training process significantly reduced training time. It also allowed for faster real-time
classification as only the LSTM operations were repeated at each time step. However,
the paper did not address how to determine a stopping condition in inference.

In general, longer sequence lengths—in either training or testing—will result in im-
proved performance [6,33]. However, a thorough analysis of the impact of training and
testing sequences—individually and combined—has not been performed. In particular,
the impact of sequence length on network bias and generalization to data outside the
original training range need to be considered.

In [1] we, proposed a real-time post-processing decision making method. It was an
initial attempt to dynamically alter the testing sequence length based on the output of
the network’s softmax value over time. The approach should be able to handle variable
or unknown signal lengths by continually processing inputs until a decision criteria is
reached. However, it was not tested on a larger number of samples than seen in training or

Sensors 2022, 22, 4706 5 of 30

for networks trained on different sequence lengths. Further analysis will be performed to
test the efficacy of the approach.

3. System Model

For the analysis that follows, three spectrum scenarios are considered which dictate
the training assumptions of the RNNs. The first scenario assumes perfect synchroniza-
tion and matched filtering between the transmitter and receiver, allowing for the use of
received symbols as input to the RNN. This scenario, termed symbol in this work, will
act as our baseline performance given optimal sensing conditions. The second scenario,
termed sample throughout this work, assumes frequency synchronization and Nyquist
sampling, but not matched filtering. Therefore, in this scenario, the input to the RNN is the
received IQ samples, not symbols. Finally, the third scenario, termed nuisance, assumes
no synchronization or matched filtering and considers additional nuisance effects such
as frequency offsets and greater than 2 times oversampling. The final scenario is more
indicative of real-world sensing conditions in which the sensor is non-cooperative with
the transmitter.

3.1. Data Generation

For each of the three sensing scenarios, synthetic signals were generated for five modu-
lation schemes under test, namely BPSK, QPSK, 8PSK, 16QAM, and 64QAM. The takeaways
provided in this work are not expected to be dependent on this specific class of signals.
These modulations were chosen for their simplicity of synthetic generation, ease of defining
a theoretical bound, as well as their variability in difficulty. For example, consider that
BPSK should be easily identified after a few samples while differentiating between 16QAM
and 64QAM is difficult for shorter sequence lengths. Table 1 shows the data generation
parameters used for each considered spectrum scenario. For all scenarios, the signals were
pulse shaped with a root-raised-cosine filter with a roll-off factor of 0.35. The propagation
channel for each scenario is assumed to be AWGN with a random SNR between 0 dB and
10 dB. Future work will include training on additional modulations and more complex
channel models.

Table 1. RNN input assumptions for each considered spectrum scenario.

Symbol Sample Nuisance

Input Type symbols samples samples
Oversampling Rate 2 2 2, 4, 8
Frequency Offset 0 0 ±0.01

Number of Examples 1,000,000 1,000,000 2,000,000

3.2. RNN Model Architecture and Training Process

The general network architecture in this analysis is shown in Table 2. It consists of a
variable number of LSTM layers, a dropout layer to prevent regularization, and then two
fully-connected layers with different activation functions. The architecture is similar to
the ones presented in [7,34] which consist of multiple LSTM layers followed by two dense
layers. Any sequence-to-sequence classification network that operates on each time-step
independently could reasonably be used for this analysis. For example, replacing the first
dense layer with a 1-d convolutional layer would still allow for variable length inputs to
be processed. Figure 1 shows a time-unrolled version of the architecture—including the
passing of the hidden state, while the network is technically sequence-to-sequence, only
the output of the final time step YN is used when calculating accuracy.

Each network was trained for a maximum of 30 epochs with a training/validation
split of 80/20. The Adam optimizer was used with a fixed learning rate of 0.001. Different
fixed sequence lengths were examined to determine how they impacted the generalization
of the network. However, based on the findings of this work, future work should include
training on variable sequence lengths.

Sensors 2022, 22, 4706 6 of 30

Figure 1. Diagram showing the general architecture of the considered models.

Table 2. General architecture of the considered models.

Name Layers Input Output Weights

LSTM + dropout 1 l ∈ (1, 4) 2 h ∈ (15, 512) 4h(2hl − h + l + 2)
Dense + Tanh 1 h d ∈ (15, 512) hd

Dense + Softmax 1 d 5 5d
1 Dropout probability of 0.5.

For each scenario and sequence length, five random architectures were trained. Multi-
ple architectures were used in order to ensure the results were not dependent on or—specific
to—a single architecture. As this was not meant to be an exhaustive hyper-parameter search,
not all parameters were varied. The bounds of the parameters that were varied were chosen
based on architectures seen in the literature. The most commonly seen hidden state size
was 256 and the most common number of LSTM layers was 2—values above and below
these were chosen [3,25]. The number of LSTM layers is set as l—a randomly chosen
integer between 1 and 4. The hidden size of the LSTM layers was set as h and the size of
the first dense layer was set as d where h and d are randomly chosen integers between
15 and 512. The input size of each LSTM cell is 2 to accommodate both the in-phase and
quadrature data, and the hidden size represents the size of the hidden state in each cell.
When processing a sequence, each sample is processed by the LSTM cell and the hidden
state is updated allowing for arbitrary sequence lengths.

The total number of trainable weights in the network can be calculated as:

W = 4h(2hl − h + l + 2) + hd + 5d. (1)

As network weights are used for each time-step, the total number of matrix multipli-
cations required will be W ∗ n where n is the sequence length of the input. Using big-O
notation, the time-complexity can be written as O(n). The time-complexity of the network
grows linearly with the input sequence length.

The same random architectures were not used for each sequence length since the
optimal architecture may vary with the length of the input sequence. The performance
of each network was examined, but for brevity, only the results for the best performing
network of each sequence length will be shown. Plots for the other networks can be found
in the Appendix of [17]. The best network for each sequence length was determined by
finding the network that had maximum probability of correct classification (PCC) when
tested on the same sequence length it was trained on. The symbol models were trained
on sequence lengths of 64, 128, 256, and 512 symbols and compared to the sample models
on trained sequence lengths of 128, 256, 512, and 1024 samples (ensuring an equivalent
number of observed symbols between these first two scenarios). The nuisance models
were also trained on sequence lengths of 128, 256, 512, and 1024 samples. Note that the

Sensors 2022, 22, 4706 7 of 30

samples and symbols are normalized to unit average energy, so that they can be accurately
compared regardless of sequence length and oversampling ratio.

4. Symbol Input Scenario

Prior work formulated the optimal ML approach for classification of digital amplitude
phase signals. Assuming perfect synchronization (The assumption of perfect synchro-
nization is not realistic for extremely low SNRs and short observation lengths leaving
the findings of this work mostly as an upper bound on performance and not a realisti-
cally achievable goal in practice), matched filtering, and an AWGN channel, the observed
symbols are the sufficient statistic of the received IQ data [35]. Under these conditions,
for a given SNR and number of observed symbols, the PCC of the ML classifier can be
determined. Since the ML classifier has the lowest error rate of all classifiers based on
complex domain data, its PCC acts as the theoretical upper bound of the trained AMCs.
While the ML classifier is optimal under the specified conditions, it has high computational
complexity leading other approaches to be preferred [36].

In order to classify c different constellations—each consisting of a set of Mj symbols
S—a test on the following hypothesis is used:

Hj : {Sj,0, Sj,1...Sj,Mj} j = 1, 2, ..., c. (2)

The received IQ stream – XN – consisting of N symbols and SNR = A can be defined
as follows:

XN = {xk = (rI,k, rQ,k), k = 1, 2, ..., N}. (3)

In order to classify XN , the ML classifier predicts H∗j so as to maximize the log-
likelihood, L(Hj|Xn). This can be expressed as the following:

H∗j = arg max
Hj

N

∑
k=i

ln
Mj

∑
i=1

exp
(
− 1

2
||xk − ASj,i||2

)
. (4)

To find the PCC for the ML classifier, a Monte-Carlo simulation consisting of 1000 ran-
dom signals for each modulation and SNR.

Figure 2 shows a comparison between the best trained RNN model for the samples
scenario, the best trained RNN model for the symbols scenario, and the ML bound—
labeled “Theory”—for different numbers of received symbols. In the case of the trained
models, the plotted model was chosen by comparing the overall average PCC when tested
on the same number of symbols that the network was trained for. These plots show the
average PCC for each SNR. For clarity, only the results for 64 and 512 symbols are shown,
but 128 and 256 were also tested and followed similar trends.

The network trained and tested on 64 symbols achieved a little below the theoretical
maximum for 64 observed symbols. However, when the network observed 512 symbols,
performance improved beyond the theoretical maximum for 64 symbols. Clearly network
performance is not bounded by the maximum performance of the training sequence length.
However, it is still bound by the maximum performance of the testing sequence length.
Additionally, the network trained and tested on 512 symbols was much closer to the
maximum than the network trained on 64 symbols and tested on 512 symbols—particularly
for lower SNRs. This suggests that training on a sequence length much shorter than that
used during testing could result in decreased performance.

Sensors 2022, 22, 4706 8 of 30

0 2 4 6 8 10
SNR (dB)

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

PCC over All Classes for 64 Symbols

Tested Symbols
64
512

Theory
Trained on Symbols
Trained on Samples

(a)

0 2 4 6 8 10
SNR (dB)

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

PCC over All Classes for 512 Symbols

Tested Symbols
64
512

Theory
Trained on Symbols
Trained on Samples

(b)
Figure 2. A comparison between the performance upper bound and the best samples and symbols
networks trained on (a) 64 symbols and (b) 512 symbols.

Surprisingly, the samples networks had higher overall performance than the symbols
networks. Considering that observed symbols are the sufficient statistic for this scenario,
it seems that for the same number of observed symbols the two should have had equiv-
alent accuracy. The difference could be due to different random architectures. To test
this, 20 identical random architectures were trained for both symbols and samples on
64 symbols. When comparing the same network architectures, with the only difference
being the sequence length (64 when trained on symbols and 128 when trained on samples),
the samples networks outperformed the symbols networks every single time. One possible
explanations for this behaviour is that RNNs have better performance on longer sequence
lengths. Another possible explanation is that RNNs are better at finding correlation in
samples rather than symbols. This behaviour will be discussed more when examining the
impact of different oversampling rates in Section 5.

Overall while the number of symbols used in training is relevant, the number of
symbols observed in evaluation has more influence on network performance. For a suffi-
ciently trained classifier, network performance can continue to improve as more observed
symbols are processed over what was used during training. What determines if a network
is sufficiently trained depends on the problem set and will be discussed more in Section 5.

5. Training Sequence Length

When training RNNs, the choice of the training sequence length is often overlooked.
Shorter sequence lengths are typically preferred due to how time-consuming training longer

Sensors 2022, 22, 4706 9 of 30

sequence lengths can be. As shown in Section 4, networks trained on a short sequence
length can improve their performance by processing more samples in evaluation. However,
the resulting networks may not be as successful as networks trained on longer sequence
lengths. With this in mind, this section aims to help determine how to choose the training
sequence length for a problem set.

To examine the impact of sequence lengths in training, the nuisance networks were
trained and evaluated on various sequence lengths. Figure 3 shows the best model for
each trained sequence averaged over all classes. Increasing the observed sequence length
increased the PCC with diminishing returns. When trained on 128 samples, the networks
reached a point where additional input samples no longer increased performance. However,
for the networks trained on longer sequence lengths, the slope of the line suggests that
observing additional samples would continue to increase performance. Based on the results
found in Section 4, as long as more input samples are given, the classification accuracy
should continue to increase if the network has been sufficiently trained. Sufficiently trained
does not refer to a specific accuracy, rather it refers to the network’s ability to generalize.

0 250 500 750 1000 1250 1500 1750 2000
Testing Samples

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Average Accuracy Samps vs Symbols

Train Samples
128
256
512
1024

Figure 3. The nuisance networks trained on different sequence lengths were compared to each
other for different testing sequence lengths. For the same trained sequence length, evaluating on a
longer sequence length increased the PCC with diminishing returns. For the same sequence length
in evaluation, networks trained on a sequence length close to the the evaluation sequence length
typically performed better.

Consider the number of examples used in training a network. The more complex the
problem, the more examples the network needs to see to adequately handle not only inputs
similar to those seen in training, but also those outside the training range. Sequence length
is similar. If the network was trained on a single sample or symbol, it would be unable to
generalize to longer sequence lengths and would be an extremely poor network. Based
on the lack of performance improvement for the networks trained on a smaller sequence
length, they do not seem to be sufficiently trained. It is worth noting that all networks used
the same number of examples no matter their sequence lengths. Future work will examine
the relationship between training with more data and using a shorter sequence length so as
to keep the number of overall samples seen in training constant.

Although the networks trained on 128 samples did not continue to increase their
performance when tested on longer sequence lengths, they outperformed the networks
trained on 1024 and 512 samples when tested on shorter sequence lengths. However, it is
worth noting that while the network trained on 128 far outperformed the 1024 network
when evaluated on 128 samples for 10 dB, there was almost no difference at 0 dB. This
suggests that for more complex problems, there is less detriment to training on a longer
sequence length and evaluating on a shorter one. To further examine this, the effect of
modulation, SNR, frequency offset, and oversampling rate at different sequence lengths is
examined. When each parameter is examined, the other parameters are varied uniformly

Sensors 2022, 22, 4706 10 of 30

across the training range. The parameters under consideration were chosen based on
the study in [37]. The study has additional simulations showing the impact of particular
parameters when others are held constant.

In the following, the performance plots shown depict the performance of the best
randomly trained models. Parameters outside the training range were tested when possible,
while the nuisance networks were trained on sequence lengths for 128, 256, 512, and
1024 samples, for brevity, only the plots for 128 and 1024 trained samples will be shown.

5.1. Modulation

Due to observing fewer unique symbols, training on a smaller sequence length could
result in a higher likelihood of model bias and lack of proper generalization. To investigate
the potential for network bias, the F1 score was examined for all trained nuisance networks.
The F1 score is commonly used in classification problems as it averages the precision and
recall for a network. Unlike PCC which only considers true positives, it takes into account
false positives and false negatives as well. The F1 score can be considered a distillation of
the confusion matrices commonly seen in modulation classification problems. Rather than
examining which class a signal was misclassified as, the F1 score considers only that it was
misclassified. Like PCC, the F1 score lies in the range of 0 to 1 with 1 being optimal. We can
define tp (true positive) as the number of times that a signal of a given class was correctly
identified, f p (false positive) as the number of times that a signal was incorrectly identified
as a given class, and f n (false negative) as the number of times that a signal of a given class
was incorrectly identified as another class. The equation used for calculating the F1 score is
defined as the following:

F1 =
2 ∗ tp

2tp + f p + f n
. (5)

The F1 score for models trained on sequence lengths of 128, 256, 512, and 1024 and
then tested on a sequence length of 128 and 1024 samples were averaged over all models
evaluated. The scores were averaged to prevent the bias of a single network dominating the
results. As no clear trend was found between training on fewer samples and a likelihood of
network bias, the results for this analysis are not shown.

However, although training on smaller sequence lengths does not appear to result in a
higher likelihood of bias, that does not mean that network bias is altogether unaffected by
sequence length. Table 3 shows the F1 score of a biased network trained on 128 samples and
a biased network trained on 1024 samples. The first two rows show the F1 score of a network
trained on 128 samples while the last two rows show the F1 scores of a network trained on
1024 samples. When tested on 128 samples, the bias is not very noticeable. The network
trained on 128 samples slightly prefers 64QAM over 16QAM while the network trained on
1024 samples slightly prefers QPSK to 8PSK. However, when tested on 1024 samples, the F1
score shows a significant bias. The F1 score for the network trained on 128 samples actually
drops for 16QAM and increases substantially for 64QAM. An even more dramatic result
occurs for the network trained on 1024 samples, with the F1 score for 8PSK decreasing by
half while QPSK increases. When testing a biased network on a longer sequence length,
regardless of the sequence length used in training, the bias actually becomes more apparent.

Table 3. F1 score on different sequences for biased networks.

Train/Test BPSK QPSK 8PSK 16QAM 64QAM

128/128 0.914 0.509 0.542 0.326 0.454
128/1024 0.967 0.676 0.671 0.300 0.601
1024/128 0.899 0.415 0.334 0.345 0.394

1024/1024 0.995 0.602 0.146 0.500 0.575

Sensors 2022, 22, 4706 11 of 30

Figure 4 shows the impact of different training and testing sequence lengths for each
modulation. For the network trained on 128 samples (This is not the biased network used
to generate Table 3. The F1 score for this network increased for each signal type when tested
on a sequence length of 1024), performance does not increase for each signal type when
the testing sequence length increases, while the accuracy of 8PSK and 16QAM increase
substantially, BPSK, QPSK, and 64QAM basically do not improve at all. This is in contrast
to the network trained on 1024 samples in which the performance of each class increased
when more samples were tested. Comparisons of the other trained models show similar
results. This suggests that the networks trained on a smaller sequence length did not
adequately learn to identify each modulation and were unable to generalize to longer
sequence lengths.

BPSK QPSK 8PSK 16QAM 64QAM
Signal Type

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu
ra
cy

Test Samps
64
128
256
512
1024
2048

(a)

BPSK QPSK 8PSK 16QAM 64QAM
Signal Type

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu
ra
cy

Test Samps
64
128
256
512
1024
2048

(b)
Figure 4. The impact of different training and testing sequence lengths on performance for different
modulations on the best network trained on (a) 128 samples and (b) The impact of 1024 samples.
Sequence lengths of 64, 128, 256, 512, 1024, and 2048 were tested for both networks.

5.2. SNR

To examine the impact of training and testing sequence lengths for different SNRs,
values inside and outside the training range were tested. The gray dashed lines in Figure 5
show the training range. The network trained on 128 samples performed very poorly when

Sensors 2022, 22, 4706 12 of 30

given SNRs lower than 0 dB. At−5 dB, the network had performance equivalent to random
guessing. At SNRs over 10 dB, the network showed very little improvement. In contrast,
the network trained on 1024 samples showed improved performance for SNRs outside
the training range, particularly those below 0 dB. Overall, this suggests that the networks
trained on longer sequence length are better able to generalize to unseen data, even for
sub-zero SNRs.

−5.0 −2.5 0.0 2.5 5.0 7.5 10.0 12.5 15.0
SNR (dB)

0.0

0.2

0.4

0.6

0.8

1.0
Ac

cu
ra
cy

SNR Trained on 128
Test Samps

64
128
256
512
1024
2048

(a)

−5.0 −2.5 0.0 2.5 5.0 7.5 10.0 12.5 15.0
SNR (dB)

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

SNR Trained on 1024
Test Samps

64
128
256
512
1024
2048

(b)
Figure 5. The impact of different training and testing sequence lengths on performance for different
SNRs. Sequence lengths of 64, 128, 256, 512, 1024, and 2048 were tested on the best network trained
on (a) 128 samples and (b) 1024 samples. The gray dotted lines show the SNR training range.

5.3. Frequency Offset

Frequency offset can significantly degrade classification accuracy, in [37], a frequency
offset of just 2.5% of the sampling frequency reduced the testing performance by over 10%.
To examine the impact of training and testing sequence lengths for different normalized
frequency offsets, values inside and outside the training range were tested. Again, the gray
dashed lines show the training range. The plots in Figure 6 are symmetrical with a plateau
around zero. As the frequency offset approaches zero, the gap between the performance
of different training sequences seems to increase. The values outside the training range
that were tested, ±5%, performed poorly—around 30% when trained on 128 and tested on
2048 samples. However, when trained on 1024 samples, performance improved to almost

Sensors 2022, 22, 4706 13 of 30

40% when tested on 2048 samples. Again, this suggests that training on a longer sequence
length allows the network to better generalize to unseen data.

−0.04 −0.02 0.00 0.02 0.04
Normalized Frequency Offset

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Frequency Offset Trained on 128
Test Samps

64
128
256
512
1024
2048

(a)

−0.04 −0.02 0.00 0.02 0.04
Normalized Frequency Offset

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Frequency Offset Trained on 1024
Test Samps

64
128
256
512
1024
2048

(b)
Figure 6. The impact of different training and testing sequence lengths on performance for different
normalized frequency offsets. Sequence lengths of 64, 128, 256, 512, 1024, and 2048 were tested on
the best network trained on (a) 128 samples and (b) 1024 samples. The gray dotted lines show the
frequency training range.

5.4. Oversampling Rate

Like frequency offsets, varied oversampling rates—especially ones not seen in training
—can degrade performance. Ref. [37] demonstrated that testing on oversampling rates
not seen in training quickly degrades performance while accuracy across the training
range tends to be relatively flat—at least for higher SNRs. However, ref. [37] also showed
that at SNRs lower than 10 dB, training on varied oversampling rates can result in a
significant decrease in accuracy (>10%) when compared to a network trained on a single
oversampling rate. Figure 7 shows the impact of different training and testing sequence
lengths at three different oversampling rates: 2, 4, and 8. Smaller oversampling rates
resulted in better performance since more unique symbols would be seen for the same
sequence length. An additional comparison was made in order to determine the impact of
the oversampling rate when the number of observed symbols is held constant. Tables 4 and
5 show the performance of the best networks trained on 128 and 1024 samples, respectively,
for different oversampling rates and observed symbols. For the same number of observed

Sensors 2022, 22, 4706 14 of 30

symbols, a lower oversampling rate always resulted in a higher PCC. Initially, this seems to
contradict the results found in Section 4 where samples consistently outperformed symbols.
This suggests that the benefit of training samples rather than symbols is not the increased
sequence length, but that the RNN is better able to examine the temporal relationship
between consecutive samples than consecutive symbols. Comparing Tables 4 and 5 shows
that, for fewer observed symbols, training on a longer sequence length resulted in a small
decrease in performance—up to 4%. However, when observing more symbols, training on
a longer sequence resulted in a large increase in performance—up to 10%. This supports
previous results suggesting that networks trained on smaller sequence lengths outperform
networks trained on longer sequence lengths when tested on shorter sequence lengths.
However, the opposite is also true and results in a significantly larger gap in performance.
Based on these results, it is best to choose a training sequence length as close as possible to
the one that will be used in testing. However, if the testing sequence length is not known, it
is better to train on a longer sequence length.

2 3 4 5 6 7 8
Samples per Symbol

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Samples per Symbol Trained on 128

Test Samps
64
128
256
512
1024
2048

(a)

2 3 4 5 6 7 8
Samples per Symbol

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Samples per Symbol Trained on 1024

Test Samps
64
128
256
512
1024
2048

(b)
Figure 7. The impact of different training and testing sequence lengths on performance for different
oversampling rates. Sequence lengths of 64, 128, 256, 512, 1024, and 2048 were tested on the best
network trained on (a) 128 samples and (b) 1024 samples.

Sensors 2022, 22, 4706 15 of 30

Table 4. PCC of observed symbols for networks trained on 128 samples.

Oversampling Rate
Observed Symbols 2 4 8

8 - - 0.421
16 - 0.508 0.487
32 0.604 0.572 0.532
64 0.651 0.628 0.574

128 0.695 0.662 0.581
256 0.729 0.680 0.576
512 0.725 0.708 -

1024 0.731 - -

Table 5. PCC of observed symbols for networks trained on 1024 samples.

Oversampling Rate
Observed Symbols 2 4 8

8 - - 0.393
16 - 0.485 0.436
32 0.590 0.531 0.496
64 0.625 0.600 0.561

128 0.688 0.653 0.618
256 0.745 0.703 0.662
512 0.774 0.755 -

1024 0.830 - -

5.5. Summary

Training on a smaller sequence length could save time in both data collection and net-
work training. However, it is important to recognize that by training on a smaller sequence
length, there is an increased risk of capping network performance due to insufficiently
training the model to generalize to longer sequence lengths. The advantage of training on
a longer sequence length increases with the complexity of the problem. For signals with
a larger frequency offset, lower SNR, and variable oversampling rate, a network trained
on a smaller sequence length for the same number of examples is unlikely to learn to
generalize over this complicated problem space. As such, training a network with a larger
sequence length will result in better generalization to unseen data. Future work will include
training short sequence length networks with more examples to see if generalization can
be improved.

The results of this section suggest that the sequence length used in training should be
carefully considered. For less complex problems or for short signal bursts, training and
evaluating on a short sequence length is likely preferable. However, for more complex
problems or variable signal lengths, training on a longer sequence length will result in better
generalization and allow for increased performance when evaluating longer input signals.

6. “Just Enough” Decision Making

The idea of “just enough” decision making, as introduced in our initial work [1], is
that an RNN can be made more efficient by stopping its processing of new inputs once it is
sufficiently confident in its decision. This is a separate concept from “early-stopping” which
aims to prevent overfitting by stopping network training when certain criteria are met.
In “just enough” decision making, no changes are currently made in the training stage—
instead all analysis is carried out during inference. Prior work focused on reducing the
number of samples processed, however, it did not allow for more samples to be processed
than initially trained for. As such, this work will examine the impact of JED when allowed
to extend past the number of samples trained for.

As the time-complexity of the network is linear with the input sequence length,
the number of samples processed is used as a measure of the processing speed, while

Sensors 2022, 22, 4706 16 of 30

the true processing speed of the network will be dependent on hardware and the specific
network architecture, it is worth noting that the post-processing required for JED requires
significantly less time than a single time step of a 1-layer LSTM.

The JED approach relies on softmax values to make decisions. To show that softmax is
a reasonable approximation of posterior probabilities, the softmax outputs of a network
were compared with the ML classifier. The ML plots were generated by determining the
percentage of times the ML classifier predicted each class for a given true class. The softmax
plots were generated by finding the average softmax values for each class for a given true
class. Both were averaged over 1000 examples per class for SNRs from 0 to 10 dB. Figure 8
shows the PCC for the maximum likelihood classifier and Figure 9 shows the average
softmax value for the chosen network. When a signal is fed into the network, for each
input a softmax value output for each of the five classes is given. The highest softmax
value is chosen as the estimated class. The softmax outputs for each of the five classes were
averaged over multiple examples to determine average trends when given different true
signals. The outputs were taken from the symbols network with the highest PCC trained
on 512 symbols) for each true class. The softmax values appear to present a reasonable
approximation of the posterior probabilities—particularly for larger numbers of symbols,
while this is true on average, at specific SNRs network bias can result in the softmax plots
diverging from the expected trend. Values for 16QAM at 0 dB and 64QAM at 10 dB do not
increase substantially as the number of observed symbols increases. Further examination
of the network shows that it tends towards 16QAM at high SNRs and 64QAM at low SNRs,
while softmax can be a useful approximate for posterior probabilities, it can be affected by
network bias and should not be taken as a direct measure of confidence in the network.
However, softmax values over time may be a reasonable measure of confidence. Future
work should investigate JED as a measure of confidence as well as consider decision criteria
that are not reliant on softmax values.

In our preliminary paper [1], four options were explored as decision criteria: threshold,
subset, subset above threshold, and delta-threshold. As the delta-threshold method per-
formed the best in nearly all cases, it is chosen for the following analysis. Figure 10 shows an
overview of the delta-threshold technique for a single time-step. As JED is a post-processing
technique, the actual model under consideration does not change. However, rather than
getting outputs for all possible time-steps—which would still occur sequentially—the
decision criteria is examined at each time step. If the decision criteria is met, then the
final output is returned and no further inputs are processed. The delta-threshold (DEL)
technique is designed to look for stability in the neural network’s output softmax value
by examining its change over each input. The technique depends on two user-defined
variables: delta-threshold which determines the amount of change between outputs that is
tolerated and duration, the number of consecutive inputs for which the change must be
below the delta-threshold. Two change values are used. The first is the change between the
current input and the first input in the series. The second is the change between consecutive
inputs. For example, if duration is 100, the delta-threshold is 0.1, and the first sample in the
series has a softmax output of 0.9 for a given class, then the output of the network must
stay between 0.8 and 1 for that class for 100 samples. Additionally, the change between
consecutive samples must not exceed 0.1; if the output drops from 0.97 to 0.8, the counter
will reset. The network will only make its decision if both these conditions are true for
the highest class for 100 consecutive samples. However, to prevent the network from
processing samples for an infinitely long time, a maximum number of samples to process
was added. If the network has not made a decision by the time 2048 samples have been
processed, it will output the current decision.

Sensors 2022, 22, 4706 17 of 30

0 100 200 300 400 500
Symbols

0.2

0.4

0.6

0.8

1.0

Ac
cu
ra
cy

BPSK
QPSK
8PSK
16QAM
64QAM

(a)

(b)

0 100 200 300 400 500
Symbols

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu
ra
cy

BPSK
QPSK
8PSK
16QAM
64QAM

(c)
Figure 8. The ML estimate of the posterior probabilities (a) averaged from 0 to 10 dB (b) at 0 dB and
(c) at 10 dB.

Sensors 2022, 22, 4706 18 of 30

0 100 200 300 400 500
Symbols

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

So
ftm

ax

BPSK
QPSK
8PSK
16QAM
64QAM

(a)

(b)

0 100 200 300 400 500
Symbols

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

So
ftm

ax

BPSK
QPSK
8PSK
16QAM
64QAM

(c)
Figure 9. The average softmax outputs of the best symbols network trained on 512 symbols (a) aver-
aged from 0 to 10 dB (b) at 0 dB and (c) at 10 dB.

Sensors 2022, 22, 4706 19 of 30

One limitation of the JED method is that it currently only works for classification and
detection problems. For a time-series prediction problem like the one defined in [38] or
an autoencoder used for classification like those seen in [5,39] alternative decision criteria
would need to be developed.

Figure 10. A diagram of the JED process where d is delta-threshold, D is duration, and S is the maximum
number of samples that can be processed.

6.1. Trade-Offs

Multiple JED combinations were tested for the different models. Delta-thresholds of 0.1,
0.2, 0.3, 0.4, and 0.5 and durations of 100, 200, 300, 400, 500, 600, 700, and 800 were tested.
In each case the maximum number of samples that could be processed was set to 2048.

Figure 11 shows the results for the best model trained on 128 samples. As observed
in [1], the value of delta-threshold had very little impact on accuracy, but did reduce the
number of samples processed. For larger values of delta-threshold, fewer samples were
processed. As seen in Section 5, performance seems to level out even when processing more
samples on average. Accuracy peaked at 73% after processing an average of 1073 samples
with a duration of 500 and a delta-threshold of 0.2. The accuracy when tested on a fixed length
of 1024 was around 66%. For a similar number of average samples processed, the flexibility
given by the JED method increase the PCC by almost 7%.

Figure 12 shows the results for the best model trained on 1024 samples. Again,
the value of delta-threshold had very little impact on accuracy. Similarly, delta-threshold had
little impact on the average number of samples processed, with the exception of when delta-
threshold was set to 0.1, and the number was significantly higher. Performance increased
slightly as duration increased and more samples were processed on average. Accuracy
peaked at 75% after processing an average of 1522 samples with a duration of 800 and
a delta-threshold of 0.1. The accuracy when tested on a fixed length of 1024 was around
67% while testing on a fixed length of 2048 was around 71%. The flexibility given by
the JED method kept signals from being over-processed—due to exceeding their training
range—which can result in an incorrect classification. By doing this, the PCC increased by
4% while processing less samples on average.

Sensors 2022, 22, 4706 20 of 30

100 200 300 400 500 600 700 800
Duration

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

JED ACC Trained on 128

Threshold
0.1
0.2
0.3
0.4
0.5

(a)

100 200 300 400 500 600 700 800
Duration

0

250

500

750

1000

1250

1500

1750

2000

Sa
m
ps

 P
ro
ce

ss
ed

JED Samps Trained on 128
Threshold

0.1
0.2
0.3
0.4
0.5

(b)
Figure 11. A tradeoff analysis of (a) accuracy and (b) the number of samples processed of the different
JED parameters for the best models trained on 128 samples.

100 200 300 400 500 600 700 800
Duration

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

JED ACC Trained on 1024

Threshold
0.1
0.2
0.3
0.4
0.5

(a)
Figure 12. Cont.

Sensors 2022, 22, 4706 21 of 30

100 200 300 400 500 600 700 800
Duration

0

250

500

750

1000

1250

1500

1750

2000

Sa
m
ps

 P
ro
ce

ss
ed

JED Samps Trained on 1024
Threshold

0.1
0.2
0.3
0.4
0.5

(b)
Figure 12. A tradeoff analysis of (a) accuracy and (b) the number of samples processed of the different
JED parameters for the best models trained on 1024 samples.

6.2. Nuisance

In addition to being shown to process fewer symbols overall, the JED method demon-
strated its ability to differentiate between inputs based on signal complexity. For example,
high SNR and BPSK signals were processed very quickly while lower SNR and higher order
modulation signals were processed for a longer sequence length. A similar breakdown
analysis to the one performed in [1] is performed below for the parameters addressed in
Section 5—modulation, SNR, normalized frequency offset, and oversampling rate.

When determining which JED combination to use, we chose to optimize accuracy.
As such, we selected the combination with the highest overall accuracy for the best 128 and
1024 models. However, for other applications, it may be preferable to accept some loss
in accuracy (say 1%) to reduce the number of samples processed on average. To reflect
that, and allow for a direct comparison between the best 128 and best 1024 models, each
model was tested on two different JED combinations. Combination 1 resulted in the
highest accuracy for the best model trained on 128 samples, and uses a delta-threshold of
0.2 and a duration of 500. Combination 2 resulted in the highest accuracy for the best model
trained on 1024 samples, and uses a delta-threshold of 0.1 and a duration of 800. In all cases,
the maximum number of samples that could be processed was 2048.

6.2.1. Modulation

In Figure 13, for both the 128 and 1024 models, the accuracy and number of samples
processed can be divided into three groups based on signal type. BPSK was processed for
the least number of samples and had the highest accuracy in all cases, with the 1024 model
having slightly higher accuracy than the 128 model while processing a similar number
of average samples for each combination. QPSK and 8PSK were processed for a similar
number of average samples and have similar accuracy for the 1024 model. However, for the
128 model 8PSK had significantly higher accuracy than QPSK even though it was processed
for only slightly longer on average. This reflects the result shown in Figure 4 where the
accuracy for QPSK did not improve much as more samples were processed. 16QAM
and 64QAM were also processed for a similar number of samples for both the 128 and
1024 models. For the 128 model, accuracy was much higher for the 16QAM case than
for the 64QAM case while the 1024 model the 64QAM case had higher accuracy than the
16QAM case. Both results are reflected in Figure 4. For both JED combinations, signals were
successfully differentiated based on the signal type. Signal types with similar accuracy,
and that are commonly misidentified as each other, were processed for a similar number
of samples.

Sensors 2022, 22, 4706 22 of 30

BPSK QPSK 8PSK 16QAM 64QAM
Signal Type

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu
ra
cy

JED MOD
Trained Samps

128
1024

JED Combination
Combo 1
Combo 2

(a)

BPSK QPSK 8PSK 16QAM 64QAM
Signal Type

0

250

500

750

1000

1250

1500

1750

2000

Sa
m
pl
es
 P
ro
ce
ss
ed

JED MOD
Trained Samps

128
1024

JED Combination
Combo 1
Combo 2

(b)
Figure 13. An examination of (a) accuracy and (b) the number of samples processed of JED for
different modulations. The best model for 128 and 1024 are each shown after processing with two
different JED combinations.

6.2.2. SNR

Examining Figure 14 shows an interesting result. For the SNRs inside the training
range, as SNR increased the number of samples processed decreased. For the above 10 dB
SNRs which the networks were not trained for, the number of samples processed begins
to flatline as processing more samples will have minimal effect. This is likely due to a
combination of being outside the training range and that higher SNRs have diminishing
returns on accuracy. However, the same does not happen for the sub-zero dB range.
As established previously, the 1024 model did a better job of generalizing to unseen data.
This can be seen from the plot where more samples were processed for −5 dB than for
0 dB. In contrast, the 128 model actually processed less data for the −5 dB case than for
the 0 dB case. As this occurred for both JED combinations, the difference is likely because
the 128 model was “confidently wrong” at sub-zero SNR which allowed it to fulfill the
JED requirements while having very poor accuracy, while performance is slightly higher at
−5 dB for the 1024 model than for the 128 model, it came at the cost of processing the signal
for a significantly longer period. Despite being processed for so much longer, performance
is still barely above random guessing. Although JED can potentially improve accuracy and

Sensors 2022, 22, 4706 23 of 30

reduce the number of samples processed in some cases, it comes at the cost of relinquishing
direct control over the number of samples processed.

−5.0 −2.5 0.0 2.5 5.0 7.5 10.0 12.5 15.0
SNR (dB)

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

 a
cy

JED SNR

T ained Samps
128
1024

JED Combination
Combo 1
Combo 2

(a)

−5.0 −2.5 0.0 2.5 5.0 7.5 10.0 12.5 15.0
SNR (dB)

0

250

500

750

1000

1250

1500

1750

2000

Sa
m

pl
es

 P
 o

ce
ss

ed

JED SNR
T ained Samps

128
1024

JED Combination
Combo 1
Combo 2

(b)
Figure 14. An examination of (a) accuracy and (b) the number of samples processed of JED for
different SNRs. The best model for 128 and 1024 are each shown after processing with two different
JED combinations. The gray dotted lines show the training range for SNR.

6.2.3. Frequency Offset

Examining Figure 15 shows that the performance curves for both the 128 and
1024 models are very similar to the 2048 curve shown for those models in Figure 6. How-
ever, significantly fewer samples were processed on average. Again, there is very little
difference between the accuracy for the two JED combinations tested. However, there is a
large gap in average samples processed due to the duration chosen. Unlike with Figure 14
there is not a large difference in the number of samples processed between the 128 and
1024 models for data outside the training range.

Sensors 2022, 22, 4706 24 of 30

−0.04 −0.02 0.00 0.02 0.04
Normalized Frequence Off et

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

JED FC

Trained Samp
128
1024

JED Combination
Combo 1
Combo 2

(a)

−0.04 −0.02 0.00 0.02 0.04
Normalized Fre uency Offset)

0

250

500

750

1000

1250

1500

1750

2000

Sa
m
pl
es
 P
ro
ce
ss
ed

JED FC

Trained Samps
128
1024

JED Combination
Combo 1
Combo 2

(b)
Figure 15. An examination of the (a) accuracy and (b) the number of samples processed of JED
for different normalized frequency offsets. The best model for 128 and 1024 are each shown after
processing with two different JED combinations. The gray dotted lines show the training range the
frequency offset.

6.2.4. Oversampling Rate

Examining Figure 16 shows a slight difference between the two JED combinations.
Combination 2 performs slightly better than combination 1, particularly for higher over-
sampling rates. However, combination 2 processed significantly more samples on average.
Surprisingly, for the 128 case with combination 1, the network actually processed slightly
more samples on average for an oversampling rate of 2 than for an oversampling rate of
4 for both combinations. However, an oversampling rate of 2 still had higher accuracy.
For the 1024 case, the network processed more samples for an oversampling rate of 4 than
an oversampling rate of 2, as expected. More samples were processed for an oversampling
rate of 8 in both cases.

Sensors 2022, 22, 4706 25 of 30

2 3 4 5 6 7 8
Samples per Symbols

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu
ra
cy

Trained Samps
128
1024

JED Combination
Combo 1
Combo 2

(a)

2 3 4 5 6 7 8
Samples per Symbols

0

250

500

750

1000

1250

1500

1750

2000

Sa
m
pl
es
 P
ro
ce
ss
ed

JED SPS
Trained Samps

128
1024

JED Combination
Combo 1
Combo 2

(b)
Figure 16. An examination of (a) accuracy and (b) the number of samples processed of JED for
different oversampling rates. The best model for 128 and 1024 are each shown after processing with
two different JED combinations.

6.2.5. Summary

The different JED combinations had very little effect on accuracy; overall the PCC
curves looked very similar to the 2048 curves shown in Section 5. However, the combi-
nation had a significant impact on the number of samples processed, while the shape of
each samples processed curve for combination 2 is very similar to that of combination 1,
the actual number of samples processed is consistently higher due to the higher value of
duration chosen.

Using the JED method can result in both higher accuracy and fewer samples processed
on average and can be very useful when the evaluation sequence length is unknown or
when there is a lot of variation in the input data. However, using JED relinquishes direct
control of the number of samples processed. In some, cases this may result in processing
many more samples with little gain. When processing sub-zero SNR data for a sufficiently
trained network, the JED method processed a large number of samples, but achieved
very little improvement in performance. This problem can be minimized by choosing an
appropriate value of delta-threshold, duration, and maximum sequence length.

Sensors 2022, 22, 4706 26 of 30

7. Discussion

This paper aimed to “decouple” training and testing sequence lengths for spectrum
sensing networks. Section 4 demonstrated that the accuracy of networks trained on short
sequence lengths can continue to improve when tested on longer sequence lengths. To better
illustrate this, a comparison was done with a maximum-likelihood classifier. The maximum-
likelihood classifier under ideal conditions forms the upper bound on classification accuracy.
However, due its computational complexity and its assumptions about synchronization
and matched filtering, it is not used in many practical applications. When testing on longer
sequence lengths, the networks were able to achieve accuracy higher than the ML classifier
did with the original training length. This proves that a trained AMCs PCC is bound by
the sequence length used in testing rather than the one used in training.

While the number of observed symbols is what ultimately bounds the network perfor-
mance, the number of symbols used in training is still relevant. Notably, the network trained
on 512 symbols was closer to the ML bound than the network trained on 64 symbols—even
though both observed 512 symbols in training. A training sequence length much shorter
than the one used in testing may result in decreased performance.

While Section 4 proved that “decoupling” is achievable, it only addressed an ideal
case. To further determine the impact of training and testing sequence lengths a more
complex case with frequency offset and varied oversampling rates was considered in
Section 5. Initial results showed diminishing returns when testing some networks on longer
sequence lengths. The performance of networks trained on short sequence lengths had
a tendency to saturate when tested on significantly longer sequence lengths. To gain a
better understanding of this behaviour the impact of several different parameters was
examined. Of particular interest was an examination of how training sequence length
impacted network bias and generalization to data outside the training range.

As networks trained on shorter sequence lengths observe fewer symbols in training,
there were concerns that they would be more likely to develop a bias. However, there was
no clear trend found between training on a shorter sequence length and a higher likelihood
of network bias. Despite this bias is still impacted by sequence length. When testing a
biased network on a longer sequence length—regardless of the sequence length used in
training—the bias actually becomes more apparent.

Examining network performance across each modulation scheme also provided some
insight into the saturation observed. For the networks trained on a short sequence length,
performance did not increase evenly across all signal types. Instead as the testing sequence
length increased, the network began to prefer certain classes over others. In contrast,
the network trained on a long sequence length saw performance improvement for all
classes, while this may seem to be simply the result of a biased network, the network
was not biased as it was not choosing one class to the detriment of another. In the biased
networks that were examined, performance for some classes actually saw a significant
decrease—in this case it simply stays the same. Ultimately, this suggests that the networks
trained on a smaller sequence length did not adequately learn to identify each modulation.
As a result, they were unable to generalize to longer sequence lengths.

Testing the networks on data outside the training range showed similar results. Net-
works trained on shorter sequence lengths were unable to generalize to unseen data.
In contrast, networks trained on longer sequence lengths saw significant improvement in
performance when sequence length increased—even for data outside the training range.

The goal of “decoupling” was to allow the testing and training sequence length to
be set independently rather than assuming them to be equivalent. However, they are not
truly independent. To achieve the best performance the training sequence length should be
chosen so that it is as close as possible to the sequence lengths that will be seen in testing.
In cases where the testing sequence length is unknown or variable, the best choice of
training sequence length will depend on the complexity of the problem. A smaller training
sequence length will save time in both data collection and network training. However, it
comes with an increased risk of capping network performance due to insufficiently training

Sensors 2022, 22, 4706 27 of 30

the model to generalize to longer sequence lengths. The advantage of training on a longer
sequence length increases with the complexity of the problem.

While Section 5 showed how to choose an appropriate training sequence length,
Section 6 addressed how to handle a variable sequence length in training. In applications
that handle signals of different lengths or have a signal of interest of unknown length, it
is unclear when the network should stop processing new inputs and output a decision.
One potential approach to this is the JED method introduced in our preliminary work [1].
The JED method dynamically chooses how much sequential input data to process based on
signal complexity. In addition to allowing the network to deal with signals of unknown
or variable sequence lengths, it can also benefit time-sensitive applications. Electronic
warfare, radar, and dynamic spectrum access systems need to make decisions as quickly
and accurately as possible. The JED approach allows a decision to be returned before the
entirety of the signal is processed without sacrificing accuracy.

The JED method is solely accomplished in post-processing and is based on user-defined
values. The values chosen can be “tuned” based on the application. The combinations
used were chosen so as to maximize accuracy, however, in other applications it may
be preferable to instead further reduce the number of samples processed. As it stands,
the first combination improved accuracy by almost 7% while processing a similar number
of samples and the second combination improved accuracy by 4% while processing around
500 fewer samples on average.

To show the utility of the JED method, multiple parameters were examined to see how
they impacted both the number of samples processed and the accuracy of the network.
In general, the results showed that the JED method processed simpler signals for shorter
sequence lengths. However, when the method saw data that had a lower SNR than seen in
training, different networks gave different responses. The first network was confidently
incorrect, so the average number of samples processed decreased even though the problem
was more difficult. The second network had better generalization, so the average number
of samples processed continued to increased as SNR decreased, while the second network
was closer to the stated goal of JED, its accuracy at low SNRs was not much better than the
first network. Twice as many samples were processed on average, but performance was
still barely above random guessing. Relinquishing direct control of the sequence length
can result in processing many more samples with no real benefit. This problem can be
minimized by choosing an appropriate value for the user-defined parameters—particularly
the maximum sequence length.

The JED method provides a useful decision criteria for applications where the signal
length in inference is unknown or variable. It can also be beneficial for time-sensitive
applications like electronic warfare and dynamic spectrum access. However, it is most
useful when there is significant variation in the input data. If some signals are significantly
easier to identify than others, using JED post-processing can result in both higher accuracy
and fewer samples processed on average. However, using JED relinquishes direct control
of the number of samples processed which may not be desirable in some applications.

8. Conclusions and Future Work

In applications like dynamic spectrum access, radar, or electronic warfare the sequence
length of a signal of interest may be variable or completely unknown. Networks generated
for these applications may need to be adapted to sequence lengths different than they were
trained for. As such, it is important to consider the impact of training and testing sequence
lengths individually. “Decoupling” training and testing sequence lengths allows us to
better determine a training length in the absence of conclusive knowledge regarding the
sequence length that will be used in inference.

While most spectrum sensing approaches have used a fixed sequence length in infer-
ence, this approach has many downsides. If the length of the signal of interest is variable
or unknown, it can be difficult to choose a reasonable testing sequence length. Even if
the testing sequence length is known, a fixed value will result in all input signals being

Sensors 2022, 22, 4706 28 of 30

processed for the same number of samples—regardless of complexity. Instead, it would be
preferable to only process signals for as long as is necessary to confidently identify them.
This capability is particularly valuable in time-sensitive applications like dynamic spectrum
access and electronic warfare.

To dynamically alter the input sequence length, the “just enough” decision making
delta-threshold technique was used, which examines the change in the softmax value of the
output over time allowing for fewer observations to be processed. By using this technique,
accuracy was actually improved when compared to training and testing on a fixed sequence
length as the network was able to dynamically alter the number of observed samples based
on signal complexity. Although using the JED method improved performance and reduced
evaluation time, it also relinquished direct control of the testing sequence length which can
result in processing many more samples for very little gain.

As the metric used in “just enough” decision making was able to differentiate between
complex and simple signals, it could prove useful as a confidence metric. Future work
will include analysis of its potential as a confidence metric as well as training on varying
sequence lengths to try and achieve better generalization.

Author Contributions: Conceptualization, M.O.M.; writing—original draft preparation, M.O.M.;
writing—review and editing, M.O.M., R.M.B. and W.C.H.; supervision, W.C.H. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: This work was supported in part by the Bradley Masters Fellowship through
the Bradley Department of Electrical and Computer Engineering at Virginia Tech.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Moore, M.O.; Clark, W., IV; Buehrer, R.M.; Headley, W.C. When is Enough Enough? “Just Enough” Decision Making with

Recurrent Neural Networks for Radio Frequency Machine Learning. In Proceedings of the 2020 IEEE 39th International
Performance Computing and Communications Conference (IPCCC) (IEEE IPCCC 2020), Austin, TX, USA, 6–8 November 2020.

2. Zheng, S.; Qi, P.; Chen, S.; Yang, X. Fusion Methods for CNN-Based Automatic Modulation Classification. IEEE Access 2019,
7, 66496–66504. [CrossRef]

3. Hu, S.; Pei, Y.; Liang, P.P.; Liang, Y. Deep Neural Network for Robust Modulation Classification Under Uncertain Noise Conditions.
IEEE Trans. Veh. Technol. 2020, 69, 564–577. [CrossRef]

4. Sutskever, I.; Vinyals, O.; Le, Q.V. Sequence to Sequence Learning with Neural Networks. arXiv 2014, arXiv:1409.3215.
5. Ke, Z.; Vikalo, H. Real-Time Radio Modulation Classification with An LSTM Auto-Encoder. In Proceedings of the ICASSP

2021—2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto, ON, Canada, 6–12 June
2021; pp. 4935–4939. [CrossRef]

6. Utrilla, R.; Fonseca, E.; Araujo, A.; Dasilva, L.A. Gated Recurrent Unit Neural Networks for Automatic Modulation Classification
with Resource-Constrained End-Devices. IEEE Access 2020, 8, 112783–112794. [CrossRef]

7. Bhargava, B.C.; Deshmukh, A.; Rupa, M.V.; Sirigina, R.P.; Vankayala, S.K.; Narasimhadhan, A.V. Deep Learning Approach
for Wireless Signal and Modulation Classification. In Proceedings of the 2021 IEEE 94th Vehicular Technology Conference
(VTC2021-Fall), Norman, OK, USA, 27–30 September 2021; pp. 1–6. [CrossRef]

8. Zang, K.; Ma, Z. Automatic Modulation Classification Based on Hierarchical Recurrent Neural Networks with Grouped Auxiliary
Memory. IEEE Access 2020, 8, 213052–213061. [CrossRef]

9. Roy, D.; Mukherjee, T.; Chatterjee, M.; Pasiliao, E. RF Transmitter Fingerprinting Exploiting Spatio-Temporal Properties in Raw
Signal Data. In Proceedings of the 2019 18th IEEE International Conference On Machine Learning Furthermore, Applications
(ICMLA), Boca Raton, FL, USA, 16–19 December 2019.

10. Glandon, A.; Ullah, S.; Vidyaratne, L.; Alam, M.; Xin, C.; Iftekharuddin, K.M. Prediction of Spatial Spectrum in Cognitive Radio
using Cellular Simultaneous Recurrent Networks. In Proceedings of the 2018 International Joint Conference on Neural Networks
(IJCNN), Rio de Janeiro, Brazil, 8–13 July 2018; pp. 1–7.

http://doi.org/10.1109/ACCESS.2019.2918136
http://dx.doi.org/10.1109/TVT.2019.2951594
http://dx.doi.org/10.1109/ICASSP39728.2021.9414351
http://dx.doi.org/10.1109/ACCESS.2020.3002770
http://dx.doi.org/10.1109/VTC2021-Fall52928.2021.9625552
http://dx.doi.org/10.1109/ACCESS.2020.3039543

Sensors 2022, 22, 4706 29 of 30

11. Siddhartha; Lee, Y.H.; Moss, D.J.M.; Faraone, J.; Blackmore, P.; Salmond, D.; Boland, D.; Leong, P.H.W. Long Short-Term Memory
for Radio Frequency Spectral Prediction and its Real-Time FPGA Implementation. In Proceedings of the MILCOM 2018—2018
IEEE Military Communications Conference (MILCOM), Los Angeles, CA, USA, 29–31 October 2018; pp. 1–9.

12. Hong, D.; Zhang, Z.; Xu, X. Automatic modulation classification using recurrent neural networks. In Proceedings of the 2017 3rd
IEEE International Conference on Computer and Communications (ICCC), Chengdu, China, 13–16 December 2017; pp. 695–700.

13. Chandhok, S.; Joshi, H.; Darak, S.J.; Subramanyam, A.V. LSTM Guided Modulation Classification and Experimental Validation
for Sub-Nyquist Rate Wideband Spectrum Sensing. In Proceedings of the 2019 11th International Conference on Communication
Systems Networks (COMSNETS), Bengaluru, India, 7–11 January 2019; pp. 458–460.

14. Hu, S.; Pei, Y.; Liang, P.P.; Liang, Y. Robust Modulation Classification under Uncertain Noise Condition Using Recurrent Neural
Network. In Proceedings of the 2018 IEEE Global Communications Conference (GLOBECOM), Abu Dhabi, United Arab Emirates,
9–13 December 2018.

15. Wang, Y.; Gui, J.; Yin, Y.; Wang, J.; Sun, J.; Gui, G.; Gacanin, H.; Sari, H.; Adachi, F. Automatic Modulation Classification for
MIMO Systems via Deep Learning and Zero-Forcing Equalization. IEEE Trans. Veh. Technol. 2020, 69, 5688–5692. [CrossRef]

16. Wang, J.; Wang, Y.; Li, W.; Gui, G.; Gacanin, H.; Adachi, F. Automatic Modulation Recognition Method for Multiple Antenna
System Based on Convolutional Neural Network. In Proceedings of the 2020 IEEE 92nd Vehicular Technology Conference
(VTC2020-Fall), Victoria, BC, Canada, 18 November–16 December 2020; pp. 1–5. [CrossRef]

17. Moore, M. One Size Does Not Fit All: Optimizing Sequence Length with Recurrent Neural Networks for Spectrum Sensing.
Master’s Thesis, Virginia Tech, Blacksburg, VA, USA, 2021.

18. Dobre, O.; Abdi, A.; Bar-Ness, Y.; Su, W. Survey of automatic modulation classification techniques: Classical approaches and new
trends. IET Commun. 2007, 1, 137–156. [CrossRef]

19. Gattoua, C.; Chakkor, O.; Aytouna, F. An overview of Cooperative Spectrum Sensing based on Machine Learning Techniques.
In Proceedings of the 2020 IEEE 2nd International Conference on Electronics, Control, Optimization and Computer Science
(ICECOCS), Kenitra, Morocco, 2–3 December 2020; pp. 1–8. [CrossRef]

20. Nie, J.; Zhang, Y.; He, Z.; Chen, S.; Gong, S.; Zhang, W. Deep Hierarchical Network for Automatic Modulation Classification.
IEEE Access 2019, 7, 94604–94613. [CrossRef]

21. Huang, S.; Jiang, Y.; Gao, Y.; Feng, Z.; Zhang, P. Automatic Modulation Classification Using Contrastive Fully Convolutional
Network. IEEE Wirel. Commun. Lett. 2019, 8, 1044–1047. [CrossRef]

22. Sherstinsky, A. Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) network. Phys. D
Nonlinear Phenom. 2020, 404, 132306. [CrossRef]

23. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
24. Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling.

arXiv 2014, arXiv:1412.3555.
25. Rajendran, S.; Meert, W.; Giustiniano, D.; Lenders, V.; Pollin, S. Deep Learning Models for Wireless Signal Classification with

Distributed Low-Cost Spectrum Sensors. IEEE Trans. Cogn. Commun. Netw. 2018, 4, 433–445. [CrossRef]
26. West, N.E.; O’Shea, T.J. Deep Architectures for Modulation Recognition. arXiv 2017, arXiv:1703.09197.
27. Liao, K.; Zhao, Y.; Gu, J.; Zhang, Y.; Zhong, Y. Sequential Convolutional Recurrent Neural Networks for Fast Automatic

Modulation Classification. IEEE Access 2021, 9, 27182–27188. [CrossRef]
28. Lin, R.; Ren, W.; Sun, X.; Yang, Z.; Fu, K. A Hybrid Neural Network for Fast Automatic Modulation Classification. IEEE Access

2020, 8, 130314–130322. [CrossRef]
29. Wu, J.; Lin, J.; Tian, B.; He, J. A Signal Modulation Identification Method Based on Neural Network. In Proceedings of the 2020

IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA), Dalian, China, 27–29 June 2020;
pp. 64–67. [CrossRef]

30. van den Oord, A.; Dieleman, S.; Zen, H.; Simonyan, K.; Vinyals, O.; Graves, A.; Kalchbrenner, N.; Senior, A.; Kavukcuoglu, K.
WaveNet: A Generative Model for Raw Audio. arXiv 2016, arXiv:1609.03499.

31. Paine, T.L.; Khorrami, P.; Chang, S.; Zhang, Y.; Ramachandran, P.; Hasegawa-Johnson, M.A.; Huang, T.S. Fast Wavenet Generation
Algorithm. arXiv 2016, arXiv:1611.09482.

32. Motwani, Y.; Saraswat, P.; Aggarwal, S.; Aniket, S.; Awari, R.M.; A, B. Analysis of Various Neural Network Architectures for
Automatic Modulation Techniques. In Proceedings of the 2021 Innovations in Power and Advanced Computing Technologies
(i-PACT), Kuala Lumpur, Malaysia, 27–29 November 2021; pp. 1–7. [CrossRef]

33. Ren, J.; Hu, Y.; Tai, Y.W.; Wang, C.; Xu, L.; Sun, W.; Yan, Q. Look, Listen and Learn—A Multimodal LSTM for Speaker Identification.
arXiv 2016, arXiv:1602.04364.

34. Warrier, A.N.; Amuru, S. How to choose a neural network architecture?—A modulation classification example. In Proceedings of
the 2020 IEEE 3rd 5G World Forum (5GWF), Bangalore, India, 10–12 September 2020; pp. 413–417. [CrossRef]

35. Wei, W.; Mendel, J.M. Maximum-likelihood classification for digital amplitude-phase modulations. IEEE Trans. Commun. 2000,
48, 189–193. [CrossRef]

36. Lichtman, M.; Headley, W.C.; Reed, J.H. Automatic Modulation Classification under IQ Imbalance Using Supervised Learning.
In Proceedings of the MILCOM 2013—2013 IEEE Military Communications Conference, San Diego, CA, USA, 18–20 November
2013; pp. 1622–1627. [CrossRef]

http://dx.doi.org/10.1109/TVT.2020.2981995
http://dx.doi.org/10.1109/VTC2020-Fall49728.2020.9348790
http://dx.doi.org/10.1049/iet-com:20050176
http://dx.doi.org/10.1109/ICECOCS50124.2020.9314297
http://dx.doi.org/10.1109/ACCESS.2019.2928463
http://dx.doi.org/10.1109/LWC.2019.2904956
http://dx.doi.org/10.1016/j.physd.2019.132306
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
http://dx.doi.org/10.1109/TCCN.2018.2835460
http://dx.doi.org/10.1109/ACCESS.2021.3053427
http://dx.doi.org/10.1109/ACCESS.2020.3009471
http://dx.doi.org/10.1109/ICAICA50127.2020.9182395
http://dx.doi.org/10.1109/i-PACT52855.2021.9696629
http://dx.doi.org/10.1109/5GWF49715.2020.9221167
http://dx.doi.org/10.1109/26.823550
http://dx.doi.org/10.1109/MILCOM.2013.275

Sensors 2022, 22, 4706 30 of 30

37. Hauser, S.C.; Headley, W.C.; Michaels, A.J. Signal detection effects on deep neural networks utilizing raw IQ for modulation
classification. In Proceedings of the MILCOM 2017—2017 IEEE Military Communications Conference (MILCOM), Baltimore,
MD, USA, 23–25 October 2017; pp. 121–127. [CrossRef]

38. Karasu, S.; Altan, A. Crude oil time series prediction model based on LSTM network with chaotic Henry gas solubility
optimization. Energy 2022, 242, 122964. [CrossRef]

39. Subray, S.; Tschimben, S.; Gifford, K. Towards Enhancing Spectrum Sensing: Signal Classification Using Autoencoders. IEEE
Access 2021, 9, 82288–82299. [CrossRef]

http://dx.doi.org/10.1109/MILCOM.2017.8170853
http://dx.doi.org/10.1016/j.energy.2021.122964
http://dx.doi.org/10.1109/ACCESS.2021.3087113

	Introduction
	Background
	System Model
	Data Generation
	RNN Model Architecture and Training Process

	Symbol Input Scenario
	Training Sequence Length
	Modulation
	SNR
	Frequency Offset
	Oversampling Rate
	Summary

	``Just Enough'' Decision Making
	Trade-Offs
	Nuisance
	Modulation
	SNR
	Frequency Offset
	Oversampling Rate
	Summary

	Discussion
	Conclusions and Future Work
	References

